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Abstract.  In this paper, we develop models to design the airfoil using Multilayer Feed-forward Artificial Neural 
Network (MFANN) and Support Vector Regression model (SVR). The aerodynamic coefficients corresponding to 
series of airfoil are stored in a database along with the airfoil coordinates. A neural network is created with 
aerodynamic coefficient as input to produce the airfoil coordinates as output. The performance of the models have 
been evaluated. The results show that the SVR model yields the lowest prediction error. 
 

Keywords:  support vector regression model; neural networks; airfoil design; inverse design; 

backpropagation 

 
 

1. Introduction 
 

The aim of this paper is to generate geometry for airfoil with minimal error. Hence, we are 

supposed to enhance design method which will converge fast and have minimal error. There are 

many techniques in use, for example, hodo-graph methods for two-dimensional flows, 

(Garabedian 1971). The inverse design of backpropagation takes long time to converge. Hertz 

(1991) focused on better function and suitable learning rate and momentum in backpropagation 

algorithm. To design fast algorithm, Abid et al. (2001) proposed a new algorithm by minimizing 

sum of squares of linear and nonlinear errors for all output. Jeong et al. (2001) proposed learning 

algorithm based on first and second order derivatives of neural activation at hidden layers. Han et 

al. proposed modified constrained learning algorithms—First new Learning Algorithm and Second 

new Learning Algorithm to obtain faster convergence rate. The notable differences of the 

accelerated modified LM method are that the line search for the approximate LM step, Jinyan Fan 

(2014). 

One of important things is when designing a particular neural network is to calculate proper 

weight for neural activities. The weight values are obtained from the training process of neural 

 

Corresponding author, Ph.D., E-mail: thinakarank.sse@saveetha.com 
a Ph.D., E-mail: rajasekar080564@yahoo.com 
b Ph.D., E-mail: santhiglorybai@gmail.com 
c Ph.D., E-mail: nalini.tptwin@gmail.com 



 

 

 

 

 

 

K. Thinakaran, R. Rajasekar, K. Santhi and M. Nalini 

network. To obtain appropriate weight in a neural network design utilizes two set of equations. 

First, the neural network equation is used to calculate the error function. The feedback neural 

network equation is next used to calculate the gradient vector. The use of gradient vector is for 

defining search directions in order to calculate weight change. The traditional inverse method uses 

the conformal mapping of flow domains. 

The present inverse design is an alternative design procedure based on artificial neural 

networks. The CFD solver is first used to generate solutions which are stored and serve as an input 

to the neural network. The neural network is trained based on stored data. The neural network is 

then ready to perform airfoil design procedures limited by the training data. This is the technique 

for design of Airfoil based on non-parametric mapping using Neural Networks. A neural network 

uses supervised learning to train the neural network structure. Selviah (1991) showed the 

improvements gained by Generalised Correlation Higher Order Neural Networks. 

Two methods are typically used in studies: analytical and simulation modelling. Analytical 

models become intractable, and are not practical for application dependent studies. Simulation is a 

feasible approach that can produce an accurate picture of Airfoil. Statistical method can 

characterize the behaviour of the program with some probability distributions. The important 

benefit is that a synthetic trace is very small network. The neural network is trained based on 

stored data. The neural network is then ready to perform airfoil design procedures limited by the 

training data. This is the technique for design of Airfoil based on non-parametric mapping using 

Neural Networks. A neural network uses supervised learning to train the neural network structure. 

Selviah (1991) showed the improvements gained by Generalised Correlation Higher Order Neural 

Networks. Machine learning techniques earned much importance for the prediction of the various 

parameters in different fields of science and engineering (Susom Dutta 2018). 

Two methods are typically used studies: analytical and simulation modelling. Analytical models 

become intractable, and are not practical for application dependent studies. Simulation is a feasible 

approach that can produce an accurate picture of Airfoil. Statistical method can characterizes the 

behavior of the program with some probability distributions. The important benefit is that a 

synthetic trace is very small compared to real program traces (Genbrugge 2007). A statistical 

simulation is a robust tool in Airfoil design. Statistical simulation is still be time consuming 

especially when the systems to be simulated have many parameters and these parameters have to 

be tested with different probability distributions. Some studies in literature (Zayid 2012), which 

prove the fact that artificial intelligence method could be applied to perform simulation. The 

dataset contained the following input variables: An airfoil profile can be described by a set of ‘x’ 

and ‘y’ coordinates. 

Support Vector Regression (SVR) was used to build prediction models. It was concluded that 

SVR model is a promising tool for predicting the Airfoil structure. Additional studies with 

different programming models are definitely required in order to generalize the effectiveness of 

machine learning methods. In this paper SVR and MFANN have been employed to predict the 

airfoil. The results show that the SVR model has the lowest error value. The aeroelastic behavior is 

sensitive in an Airfoil design process. Publications can be found in the area of uncertainty 

quantification for aero elasticity problems (Pettit 2004). The boundaries are created using a 

support vector machine (SVM). SVM belongs to the class of classifiers and is widely used in the 

computer science community (Cristianini 2002). The SVM boundary is constructed from an initial 

design of experiment whose samples are classified into categories based on the response of the 

system.  

The set of results concerns the construction of explicit LCO boundary for the airfoil problem. 
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The LCO boundary is subsequently included in an design optimization problem with a constraint. 

Among the nonlinear phenomena, limit cycle oscillations (LCOs) have emerged as an interesting 

design challenge Kousen (1994) and Dowell (2002). Other studies on aeroelastic design 

optimization can also be found by Allen (2004) and Maute (2003). The rest of this paper is 

organized as follows: Section 2 summarizes the inverse design of airfoil. Section 3 presents an 

overview of MFANN and SVR. Section 4 is devoted to the details of models. Section 5 presents 

results and discussion. Finally, Section 6 concludes the paper. 

 

 

2. Inverse design of airfoil 
 

The inverse methods use the conformal mapping of the flow domains. It can be used for two-

dimensional (2D) potential and Euler flows in which the flow equations can be transformed. On 

the other hand, the optimization methods aim at minimizing some objective function characteristic 

of the airfoil performance. The flow equation is taken as one kind of aerodynamic constraints in 

the optimization procedure. These methods are not only used for 2D, potential and Euler flows, but 

also for Navier Stokes flows. This method has become more and more popular in the last decade. 

For the inverse problem, the desired pressure distributions on the airfoil surfaces are specified. The 

summation of squares of difference between the actual (pi) and target (pit) pressures is used as the 

objective function F (fitness) which is described as follows in equation (1). 

 

(1) 

where N is the number of grid point on the airfoil surfaces. In the present inverse design procedure 

based on artificial neural networks is performed. The CFD solver is first used to generate solutions 

which are stored and serve as an input to the neural network. The backpropagation neural network 

is trained based on these data using a suitable algorithm and the optimized network is determined. 

The neural network can perform any design procedures subject to the input range limited by the 

training data. An aircraft design depends on the multidisciplinary factors such as aerodynamic 

efficiency, structural weight, stability and control. A design is finalized only after numerous 

iterations. The development of accurate methods for aerodynamic shape optimization is the goal of 

optimal design. 

In our research, an airfoil is drawn with 26x and 26y coordinates with corresponding coefficient 

of lift (CL) and the coefficient of drag (CD). The database consists of 78 NACA series airfoils with 

different combinations of CL, CD, x and y coordinates. Here the CL, CD and x coordinates as 

input values to the neurons in the input layer of ANN. The y coordinates are considered as output 

value in the output layer of ANN. We are going to calculate the y coordinates using the proposed 

algorithm. The calculated y coordinates should match with the y coordinates stored in the 

database. This is the "inverse" problem for airfoil design. 
 

 

3. Overview of methods 
 

3.1 Multilayer feed-forward neural networks 
 

 The feed forward backpropagation network is a supervised training; it has finite number of 
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pattern pairs consisting of an input pattern and a desired output pattern. In the training, an input 

pattern is presented at the input layer. Then neurons pass the pattern to the hidden layer. The 

outputs of the hidden layer neurons are obtained through activation function with bias value or 

threshold value. The Hidden layer outputs value become inputs to the output neurons, which 

process the inputs value using an optional bias and a threshold function. At last final output of the 

network is determined by the activation function from the output layer. 

The computed pattern and the stored pattern are compared. The error is difference between 

computed pattern and stored pattern. Based on this, adjustment to weights of connections between 

the hidden layer and the output layer are computed. Similarly, based on the error in the output, 

change is made for the connection weights between the input and hidden layers. The procedure is 

repeated for the entire stored pattern. The pass through all the training patterns is called an epoch. 

The process is repeated as many cycles as needed until the error is within a prescribed tolerance 

limit. From the optimization literature that gradient descent methods are usually very inefficient. In 

gradient descent, if search space contains long ravines then it results in oscillation which makes it 

difficult to find search direction. Gill handles this situation by modifying the search direction with 

introduction of momentum term. 

In training, the energy function has to be minimized. If the network achieves the optimum value 

in a finite number of steps, then you have for the operation of the network. In that case, to avoid a 

lot of computation time, introduce a momentum parameter to change the weight in order to speed 

up the convergence. Momentum is a portion of the previous weight change added to current 

weight. Momentum improves the rate of convergence. Change of weight is described in Fig. 1. 

The momentum also overcomes the effect of local minima. Sejnowski and Rosenberg Parker 

(1987) proposed a similar momentum method that used exponential smoothening. In the 1990s 

Rumelhart put effort into popularizing the training algorithm among the neural network scientific 

community. Presently, the backpropagation algorithm is also used for training of other categories 

of neural networks. In the training, neural networks aims to find a correct set of weights that give 

us a global minimum in the error function. Fu (1994) illustrated that the error surface of neural 

networks is generally described to be complex, convex and contains concave regions. 

 

 

 
Fig.1 A single node example 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 A single node example 

=f (∑ w * Input) Output 

 

 

 

 

Change in weight = learning rate X gradient 
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The two method deterministic and probabilistic approaches can optimize a function. We use 

deterministic supervised learning methods as they tend to give better approximation. We want to 

predict output at time t which is described by the variable yt. We try to find the set of weights that 

minimise the square of the error. Usually an energy function is described by a single variable such 

as the Mean Square Error (MSE). When the errors are small the error behaves linearly. In addition, 

Patternson (1996) proved that the convergence behaviour of the algorithm depends on initial 

weights and learning rate. In error surface the direction and distance of the optimum can be 

accurately estimated from the first and second order derivatives. Quadratic function in f(x) can be 

expressed in matrix notation as follows in Eq. (2). 

f(x)=XTAx+2bTX+c (2) 

f(x) achieves its minimum at x = A-1 b, f(x) achieves its maximum at x = - A-1 b, if A is 

negative definite. All derivative based optimization techniques employ the concept of the Taylor 

series expansion. In order to train the network, the data set is divided into training and test sets. In 

order to reduce network over fitting we should test randomly selected data. Finlay (2003) used the 

error from the networks as stopping parameter for algorithms to determine if training should be 

stopped when the validation error becomes larger than the training error, the training can be 

stopped. The way to avoid local minima is by using randomly selected starting points for the 

weights being optimised. The bias is a measure of how much the network output data sets differs 

from the desired function. There are techniques for maximizing the generalization of 

backpropagation algorithm. 

 

3.2 Support vector machine 
 

 The airfoil geometry is generated with an innovative inverse design technique based on 

support vector machine. Support Vector Machine was introduced by Cortes and Vapnik(1997). The 

SVM model has high prediction accuracy (Ahmet Emin Kurtoglu,2018). Support vector machine 

methods are based on results of Statistical Learning theory. The SVM is trained using a profile 

database and used to obtain the geometry of new profile with specified operating conditions and 

performance parameters. The conformal mapping is applied to design airfoil in early days. 

Practical application was hampered severely by the lengthy calculations involved in obtaining the 

airfoil. Mangler and Lighthill showed for the first time that the velocity distribution specified 

around the airfoil could not be entirely arbitrary. Specifically, the velocity distribution had to 

satisfy two important integral constraints: 1. guarantee compatibility with the free stream velocity 

and 2. Ensure closure of the airfoil profile. These theories did much to the inverse approach. All 

important constraints are expressed in terms of the velocity distribution around the airfoil. The 

Eppler method allows the airfoil to be divided into a number of segments along each of which the 

velocity distribution is prescribed with the angle of attack. This approach has matured into a very 

powerful tool for design. 
 
 

4. Methodology 
 

4.1 MFNN Model 
 

 Neural networks offer a very powerful framework for representing nonlinear mappings from 

several input variables to several output variables. The system should produce good predictions for  
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Fig. 2 Neural network trained to predict surface Y-coordinates of Airfoil 

 

 

new data. Training involves minimization of an appropriate error function. Riedmiller and Braun 

(1993) said that Learning algorithms such as the back-propagation algorithm for feed-forward 

multilayer networks help us to find a set of weights by improvement from an arbitrary starting 

point. An airfoil can be described by a set of x- and y-coordinates. 

The aerodynamic coefficients corresponding to series of airfoil are stored in a database along 

with the airfoil coordinates. A feed forward neural network is created with input as an aerodynamic 

coefficient and the output as the airfoil coordinates. This is then trained to predict the 

corresponding y-coordinates. The Fig. 2 shows the Neural-Network Model trained to predict Y-

coordinates and the coefficients Cl,Cd and X Coordinates are the inputs . 

 

4.2 SVR Model 
 

Simulation is the feasible method because analytical techniques become too difficult to handle. 

The benchmarks consist of several hundreds of billions of dynamically executed instructions. One 

needs alternative methods to predict the performance measures the method will use machine 

learning techniques such as MFNN and SVR which have shown big success in the solution of 

learning problems. To find optimal parameters, minimizing root mean squared error can be used 

for determining the optimum function value. Grid search can use a cross validation process, In 

cross validation the original dataset is partitioned into k subsets. Fig. 3 shows the flowchart of our 

SVR model for a single fold. 

The design space decomposition, where by the boundaries of regions are defined by the 

variables. The designs as acceptable and unacceptable and explicitly defining the boundaries. The 

approach does not approximate responses. The explicit boundaries are obtained using an SVR 

classifier, Cristianini(2002) and Alpaydin(2004).The definition of explicit nonlinear boundaries in 

a multidimensional space and can form disjoint regions. A set of N training points xi is associated 

with one of two classes characterized by a value yi . A general expression of the SVR is in Eq. (3) 
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Fig. 3 SVR to optimize model parameters 

 

 

𝑠 = 𝑏 +∑𝑖𝑦𝑖𝑘(𝑥𝑖, 𝑥)

𝑁

𝑖=1

 (3) 

The construction of explicit boundaries in terms of deterministic variables. It is used to train the 

SVR consists of classifying the samples into stable and unstable configurations. This classification 

is performed in two ways. The approach assumes the availability of its approximation for a 

spectral analysis. Consider a system governed by a set of n first order differential equations: 

f X; p 

where ‘p’ is a vector of parameters. The n Eigen values i of the Jacobian J of component Jij 

@fi=@Xj provide the information on the stability of the system. Each sample Xi of the DOE is 

then assigned a value yi for the training of the SVR. 
 

4.3 Airfoil problem 
 

The problem consists of a 2D airfoil. The stiffness in pitch and plunge are assumed to be 

polynomials leading to the following Eq. (4) form for the restoring moment M and force Fh: 

𝑀= = 𝑘(+ 𝑘3
3 + 𝑘5

5) (4) 

𝐹ℎ= = 𝑘ℎ(+ 𝑘3ℎ
3 + 𝑘5ℎ

5) (5) 

where h is the non dimensional plunge. This is a properties of geometric nonlinearities for actual 

wings make LCOs. Here the terms k3, k5, k3h, and k5h provide the nonlinear terms. In the 

nonlinear case, Lee et al. (1999) derived the equations for cubic stiffness. The integration was 

performed using the explicit Euler method. The code was parameterized with the following Table 

1 quantities: 

Data set 

Standardize predictor variable 

New Data set Data 

Perform Grid Search 

Train the new train subset to obtain the SVR model 

SVR to predict the performance 
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Table 1 Configuration of Airfoil for the construction of boundaries 

Parameter Value 

Reduced velocity 6.0 

Mass ratio 40 

Elastic-axis midchord separation ah 2.0 

Initial pitch 0.05 

Initial plunge 0.0 

Center-of-mass elastic-axis separation x 1.8 

Radius of gyration r 1.86 

Damping in pitch and plunge 0 

Nonlinear stiffness 0 

 

 

5. Results and discussion 
  

Evaluation criteria also include the number of parameters as these affect the training time and a 

small number of parameters give better generalisation ability; one example that does this is the 

Akaike information criterion (AIC) in Eq .(6), Akaike (1974).  

𝐴𝐼𝐶(𝐾) =
𝐿𝐿𝐹

𝑁
+
𝐾

𝑁
 (6) 

The best input dimension for NN structure be selected using the AIC criterion. When simple 

models are generated using AIC criterion, it provides better generalisation ability. During training, 

the performance criteria to be minimised is usually represented by the Mean Square Error (MSE) 

in Eq. (7). 

𝐸𝑘 =
1

2
(𝑇𝐾 − 𝑂𝑜𝑘)

2 (7) 

The best AIC is achieved by the networks HONNs. The time taken for training has a direct 

correlation with the number of weights. The best model has the lowest MSE and training time. The 

compared convergence curves of MSE’s in training process for each machine learning method are 

given in Fig. 4. The performance of the prediction models are summarized in Table.2, which 

shows the MSE for the different model. Figure-4 shows how the training decreases MSE with the 

epoch. The green dotted line indicates the error in MFANN. And the blue line indicates that of 

error in SVR approach. From the fig. 4, it is obvious that our approach converges quickly 

compared to other approach. Also the error is minimal for SVR model. 

It is said that SVR is one of the fastest and accurate learning algorithms. Our proposed SVR is 

faster than Levenberg-Marquardt algorithm in MFANN. From the below Table 2 observation, you 

can see the time taken to converge to solve design problem is less when compared to the other 

algorithm. In general, the standard algorithm does not perform as well on pattern recognition 

problems as it does on function approximation problems. The advantage of the back probation 

algorithm decreases as the number of network parameters increases. 

Higher lambda favours gradient descent, lower lambda favours Newton. Cell in this matrix 

represents the second order derivative of the output of the neural network. The calculation of the 

Hessian matrix value will be accomplished by calculating the gradients. 
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Fig.4 Convergence comparison 

 

Table 2 Performance comparison 

 SVR   MFNN  

      

epoch MSE Time epoch MSE Time 

  (ms)   (ms) 

0 0.108857 16 1 0.500698 109 

480 0.124079 31 2 0.442961 111 

840 0.124255 47 4 0.347800 114 

1140 0.123867 62 6 0.314990 116 

1500 0.106499 78 8 0.269975 119 

1860 0.021690 82 10 0.192142 122 

2280 0.000039 94 12 0.098765 125 

 

 

 

The LMA algorithm only supports a single output. LMA algorithm has its roots in 

mathematical function approximation concepts. The Levenberg-Marquardt algorithm has some 

drawback; the each epoch will take more time to complete the computation. In the Table 2 the 

Levenberg-Marquardt algorithm take more time to complete each epoch. In our investigation of 

neural network models for inverse design of airfoil sections, we found that satisfactory results 

were obtained by using the SVR model. 

In Table 3, we have given the values of stored y coordinates, the values of calculated y 

coordinates (calculated using our algorithm) for a pattern NACA1017 and also the difference  
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Table 3 Profile comparison between calculated and stored Y coordinates 

Y coordinate Y coordinate calculated Difference 

database using proposed  

 algorithm in test phase  

0.00350 0.003086 0.000414 

0.00993 0.009320 0.000610 

0.03173 0.030728 0.001002 

0.04468 0.044099 0.000581 

0.05721 0.056115 0.001095 

0.07540 0.074828 0.000572 

0.07835 0.078136 0.000214 

0.07593 0.075784 0.000146 

 

Table 4 Maximum error for airfoils 

Airfoil Maximum error (%) 

NACA0012 0.00194 

NACA0014 0.00265 

NACA2013 0.00113 

NACA2017 0.00238 

 

 

between these values. We have given some sample coordinates out of 26 coordinates for the 

pattern NACA1017. From the table 3, we can say that the computed profiles generated during the 

SVR process show good agreement with the database profiles. 

We computed the error by considering the y coordinate we derived from our  approach as  

yi(computed) and the y coordinate from the database as yi(actual) and tabulated in Table 4 and this 

table shows the maximum error in percentage for the airfoils shown in Fig. 5. From this table, we 

can conclude that the SVR predicated comparatively the correct airfoil profiles. 

The new computed airfoil x and y coordinates from the SVR process are passed to XFoil tool. 

This tool creates the airfoil and generates its corresponding CL, CD. Four such airfoils are shown 

in Figure 5. 

In Table 5 the results obtained are compared and tabulated. When you check the table, you can 

easily find that our proposed algorithm converges quickly than the other approaches. This table 

clearly proves that the SVR approach results in less error and takes less time to predict the airfoil 

for the given CL, CD. 

The following observations could be gained from the results: 

•  In general, the results show that the SVR method performs much better than MFANN 

methods. 

•  The SVR model yields the lowest error (MSE = 0.000016) for the prediction of Airfoil 

design. 

•  The MFANN model yields the lowest error (MSE = 0.000103) for the prediction of Airfoil 

design. 

•  Execution times of the SVR prediction models within 94ms. 
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Fig. 5 Generated airfoil profiles 

 

 

6. Conclusions 
 

In advances in machine learning, the design of Airfoil becomes a realistic, high lift and low 

drag promises to deliver the important performance. The performance measures of the 2D Airfoil 

design is an important task and simulation is a time consuming process for this operation. We 

developed data driven SVR and MFNN models to predict the 2D airfoil architecture. The 

nonlinear aero elastic problems, which relies on the construction of explicit LCO boundaries using 

SVR. These can design the airfoil accurately and fast without time consuming. Among the 
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Table 5 Comparison table 

Epoch * error in MFNN 
SVR Model 

1000 approach 
 

   

0 3.20248 3.011418 

2 0.00013 0.000131 

4 0.001444 0.001125 

6 0.003933 0.000961 

8 0.00014 0.000101 

10 0.001281 0.000041 

12 0.002752 0.000141 

14 0.000065 0.000061 

16 0.00020 0.000021 

18 0.001336 0.000093 

20 0.000294 0.000056 

22 0.000106 0.000018 

24 0.000926 0.000068 

26 0.000499 0.000016 

  Converged and the a 

28 0.000039 attained 

30 0.000202 - 

32 0.000064 - 

34 0.000024 - 

36 0.000063 - 

38 0.000294 - 

40 0.000034 - 

42 0.000538 - 

44 0.000096 - 

46 0.000172 - 

48 0.000245 - 

50 0.000067 - 

52 0.000151 - 

54 0.000187 - 

56 0.000051 - 

58 0.000138 - 

60 0.000136 - 

62 0.000039 - 

64 0.000134 - 

66 0.000099 - 

68 0.000037 - 

70 0.00012 - 

72 0.000095 - 

74 0.000041 - 

76 0.000098 - 
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models, the SVR model shows the best performance for airfoil design. In future the research can 

include more number of variables and the use of multi fidelity approaches to reduce computational 

expenses. 
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