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Abstract.  The use of optimum content of supplementary cementing materials (SCMs) such as limestone 

filler (LF) to blend with Portland cement has been resulted in many environmental and technical advantages, 

such as increase in physical properties, enhancement of sustainability in concrete industry and reducing CO2 

emission are well known. Artificial neural networks (ANNs) have been already applied in civil engineering 

to solve a wide variety of problems such as the prediction of concrete compressive strength. The feed 

forward back propagation (FFBP) algorithm and Tan-sigmoid transfer function were used for the ANNs 

training in this study. The training, testing and validation of data during the backpropagation training process 

yielded good correlations exceeding 97%. A parametric study was conducted to study the sensitivity of the 

developed model to certain essential parameters affecting the compressive strength of concrete. The effects 

and benefits of limestone filler on hardened properties of the concrete such as compressive strength were 

well established endorsing previous results in the literature. The results of this study revealed that the 

proposed ANNs model showed a high performance as a feasible and highly efficient tool for simulating the 

LF concrete compressive strength prediction. 
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1. Introduction 
 

Concrete is the most used material in civil engineering because of its strong ability to resist 

compression. Mechanical properties, such as compressive strength, require selection of blend 

ratios, blend design specifications and economics of the cementitious materials used (Khan 2012). 

The compressive strength is one of the most important mechanical properties in mix design of 

concrete, which is defined as the capacity of concrete sample to withstand the momentum of a 

pivotal strength. The sample concrete is crushed when the compressive strength limit is reached, 

which is usually measured after a standard curing of 28 days (Neville 1996). This property is one 

of the major factors for controlling the strength of cementitious materials. It can be improved by 
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using a partial replacement of Portland cement in concrete through the use of alternative 

cementitious materials (Ramezanianpour 2014).  

The supplementary cementitious materials (SCM’s) are now commonly used to reduce the 

clinker factor of cement and reduce its environnemental impact (Ergun 2011, Antoni et al. 2012, 

Habert 2013). Binders are usually composed of binary, ternary and quaternary combination of 

supplementary cementitious materials (SCM’s), such as pozzolanic materials (fly ash, ground 

granulated blast furnace slag, silica fume, metakaolin, …etc.) or filler materials (quartzite filler, 

limestone filler), with Portland cement. Therefore, SCM’s can be used in Portland cement 

replacement for these reasons: (1) their cost is significantly lower than that of Portland cement; (2) 

some of SCM’s increases the early-age mechanical properties and reduces the aggressive 

environmental impacts of concrete; (3) improve the long-term performances of concrete (Bouasker 

et al. 2014).The main issues which have been gained much attention in recent years toward of 

design and enhancement properties of concrete is the use of the optimum content of non-reactive 

SCM’s such as limestone filler (LF) to partial replacement the OPC (Ramezanianpour 2014). 

Moreover, the use of limestone blended cement in concrete has several environmental and 

technical benefits, such as the reduce of CO2 emission and improves the workability, the strength 

and the durability of concrete. The term fillers refer to rock particles obtained by crushing or 

milling added to a binder. The use of fillers is intended to enhance the particle distribution of the 

powder skeleton, reducing inter-particle friction and ensuring greater packing density (Elyamany 

et al. 2014). The limestone is calcareous sedimentary rock mainly consisting of calcium carbonate 

(CaCO3) commonly so-called calcite (Thongsanitgarn et al. 2011). According to the European 

standard EN 197-1, the minimum amount of CaCO3 is specified to be 75% by mass of limestone 

used as a filler material in cement (EN 197-1 2012). In recent decades, many countries around the 

world have focused in research the use of this material as replacement materials for ordinary 

Portland cement (OPC) in concrete due to the technical, economic and ecological importance of 

limestone filler, as part of the sustainability movement (Bentz et al. 2015). 

Artificial Neural Networks (ANNs) are soft computing techniques developed to mimic the 

neural system of human being in learning from training patterns or data. They are capable to solve 

very complex problems, such as highly non-linear problems with the help of interconnected 

computing elements by approximating the nonlinear input-output relationship for a wide range of 

applications (Haykin 1994, Pratt 1994, Munakata 1998). The technique of neural networks is 

increasingly used in the field of civil engineering to predict or optimize more or less complicated 

phenomena, such as the efficiency factor of slag concretes and fly ash concrete (Boukhatem et al. 

2010, 2011), the concrete mix design incorporating natural pozzolans (Boukhatem et al. 2012), 

properties of self-compacting concrete containing fly ash (Douma et al. 2016), carbonation depth 

of fly ash concrete (Kellouche et al. 2017). Several researchers have applied this technique for the 

prediction of the compressive strength of concrete and have proved her performance compared to 

other classical techniques (Yeh 1999, Rafat Siddique et al. 2011, Ferhat Bingol et al. 2013, 

Adriana Trocoli et al. 2013, Chou and Pham 2013, Muhd Fadhil et al. 2015). Some have 

optimized the compressive strength of concrete containing cement additions; The silica fume 

concrete (Özcan et al. 2009), concrete with siliceous filler and silica fume addition (Sobhani et al. 

2010), fly ash concrete (Topçu and Sarıdemir 2008), self-compacting and high performance 

concrete with high volume fly ash (Prasad et al. 2009).  

The aim of this investigation is to develop an ANNs model with easy handling for predicting 

the compressive strength of concrete incorporating limestone filler. The training of the ANN model 

was carried out on a set of experimental data considering several parameters such as the binder 
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content (B), limestone filler percentage (LF), Gravel content (G), Sand content (S), water/binder 

ratio (W/B), superplasticiser (Sp) and curing age (A).These parameters were used as experimental 

input variables while the experimental compressive strength (CS) property was used as an output. 

Furthermore, a parametric analysis and a comparison study were carried out between the 

experimental and the ANNs predicted results for evaluating the performance of developed ANNs 

model. 

 

 

2. Brief overview of ANNs 

 
ANNs is a soft computing technique, which works on the principle of neural networks inspired 

by biological nervous systems of living organisms. It can learn by examples of data, such as each 

the intelligence models. Typically, the architecture of ANNs is composed by a set of 

interconnected many simple computational nodes operating in parallel so-called the neurons, that 

are usually arranged into groups systematically, for forming layers in network, which provide a 

response so-called output from a series of inputs (Shahin et al. 2009). Thus, the neural networks 

might be single layer or multilayer, which is consisted by an input layer which have no 

computation activities, while it was distributing the information from the environment to one or 

more hidden layers of network, which process the information to provide into the desired output. 

The number of neurons in the input and the output layers is equal to the variable in the model and 

the hidden and output layers make the activation function except for input layers. For that, all 

processing of information in the neural network is happening in the hidden and output layers. The 

connection strength between the layers is represented by links channels carrying numeric values 

so-called weights, which are initially set to a random value and adjustable during the training 

process. The use of nonlinear activation functions in hidden layers improve the ability of ANNs to 

learn nonlinear relationships between sets of inputs and outputs data; as shown in Fig. 1. The 

modeling with ANNs required five main stages: (a) acquisition and analysis the data, (b) 

determining the architecture of model, (c) learning process determination, (d) training of the 

networks and (e) testing and validation of the model proposed for generalization evaluation. 

Therefore, an artificial neuron is composed of five main parts: inputs, weights, sum function, 

activation function and outputs. The weighted sums of the input component (net)j are calculated by 

using Eq. (1) as follows: 

(𝑛𝑒𝑡)𝑗 = ∑ 𝑤𝑖𝑗  𝑥𝑖 + 𝑏 (1) 

where xi is the input data; wij is the weight of the neural model; b is the bias. The FFBP is the 

effective learning and the most commonly algorithm used for training the ANNs (Freeman and 

Skapura 1991). The FFBP algorithm is a gradient descent technique used to determine the 

appropriate weights adjustments necessary from output layer back to input layer and to minimize 

the squared error of a particular training pattern by a small amount at a time. The training phase of 

this algorithm consists: The forward pass computes for the network output for a given set of 

connection weights and input data. The backward pass computes for the error of the network with 

respect to the target outputs and this error is passing backward to the network and is used to 

modify the connection weights. In testing phase, another input data can be used in testing of the 

ANNs, while they are used the final values of the weights obtained in the training phase. A typical 

FFBP neural network is shown in Fig. 1. The FFBP is reinforced with an advanced training 
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Fig. 1 Typical neural network architecture 

 

 

supervised learning algorithm named as Levenberg-Marquardt (LM), which is considered to be the 

fastest method for training moderate-sized of FFBP algorithm, through to reduce the time required 

for training and simplify the learning process. Thus, the Levenberg-Marquardt is highly 

recommended as a first choice supervised algorithm, although it requires more memory compared 

to other algorithms, which in turn makes it ideal for learning the networks (Suratgar et al. 2005). 

 

 

3. Experimental database collections and normalization 
 

In this study, the main objective is to develop an ANNs model based on a comprehensive 

database to predict the compressive strength of concrete. For this aim, the first step needs to collect 

and select a large variety of pre-existing experimental data and construct a database reliable for 

training and testing samples and modeling with ANNs. A large number of databases with 360 

cases, were collected and selected from six different distinct sources in literature (Meddah et al. 

2014, Lollini et al. 2014, Ramezanianpour et al. 2009, Cam and Neithalath 2010, Tsivilis et al. 

2003, Marques et al. 2013), were used to construct the ANNs model. The complete list of the 

database is summarized in Table 1. In order to measure the performance of the optimal model 

obtained by ANNs, it is necessary to use the testing data. The network needs to use the validation 

data in order to improve the construct network generalization after the training and testing phases 

were completed and to specify the generalization ability of the model chosen on data which they 

did not used in training in them (Boukhatem et al. 2011). To obtain a consistent division, the data 

sets are divided randomly into three subsets: 252 data sets were allocated for the stages of training, 

approximately 70% of the database and remaining data sets were allocated about 108 data sets for 

the stages of testing and validation, approximately 30% of the database. The range of the different 

input and output variables of total data sets used for building of ANNs model are summarized in 

Table 2.  

The pre-process of data is very necessary in order to improve the accuracy of prediction and 

increase the speed in the training process, because the data will not be entered directly in ANNs by 

real values. Therefore, the data are scaled asymptotic in the range of [-1, 1], according to the 

hyperbolic tangential sigmoid transfer function which varies between -1 and +1; as given in Figure 

2. A “Tansig” sigmoid type activation function is used for hidden and output layers. The 

hyperbolic tangent sigmoid transfer function is defined by Eq. (2) in the following: 

X2 

Xi 

Xn 

Wi1 

Wi2 

Wii 

Win 

Ij=∑WijXi+b ƒ( Ij) 
Oj 

Input Output Hidden layers 

X1 

Sum function Activation function 
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𝑌 = (
𝑒2𝑥 − 1

𝑒2𝑥 + 1
) (2) 

The normalized value is calculated by using Equation (3) in the following: 

𝑋𝑛 = 2 (
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
− 1) (3) 

where Xn is the normalized value, X is the raw data value to be normalized from the dataset and 

Xmin and Xmax are the minimum and maximum raw values from the dataset, respectively. 

Therefore, after the training process is evident that must be remapped the corresponding real 

values for the calculating any prediction. The output values were post processed and calculated to 

convert the data from unnormalized units in the end process by using Equation (4) in the 

following: 

𝑌 = 0.5 (
𝑌𝑖 + 1

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
) + 𝑌𝑚𝑖𝑛 (4) 

where Y and Yi are the i-th components of the output vector before and after translation, 

respectively and Ymax and Ymin are the maximum and minimum values of the real data of all 

components of the output vector. 

 

 
Table 1 Summary of data used 

Reference Years 
fc range 

(MPa) 

Binder range 

(Kg/m3) 

Limestone 

filler range (%) 

Water to binder 

ratio range 

Age 

(days) 

Number 

of data set 

Meddah et al. 2014 0.8-56.8 235-410 0-45 0.45-0.79 1-365 175 

Lollini et al. 2014 15.4-69.6 250-400 0-30 0.42-0.61 1-180 59 

Ramezaniapour et al. 2009 9.2-53.6 350 0-20 0.37-0.55 3-180 75 

Cam et al. 2010 32.8-60.9 416 0-15 0.34-0.40 7-56 15 

Tsivilis et al. 2003 21.6-31.9 270-330 0-35 0.62-0.70 7-28 12 

Marques et al. 2013 32.1-57.0 330-390 0-35 0.55 28-365 24 

 
 

Table 2 Boundary range of inputs and output of model (records) 

Inputs variables Minimum Maximum 

Binder (Kg/m3)                                   B 235 416 

Limestone filler (%)                              LF 0 45 

Gravel (Kg/m3)                                   G 733 1289 

Sand (Kg/m3)                                     S 650 1050 

Water to binder ratio                            W/B 0.34 0.79 

Superplasticizer (%)                              Sp 0 2.6 

Age of specimen (days)                           A 1 365 

Output variable Compressive Strength (MPa)         CS 1 70 
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4. ANNs model Development  
 

4.1 Neural Network Architecture 
 

In this research, the ANNs model employs the FFBP network; it was trained through a learning 

rule based on Levenberg-Marquardt algorithm. The computer software was performed to design 

the network using neural network toolbox -NNTOOL- available in MATLAB. It was trained using 

the “TRAINLM” training function with the “LEARNGDM” adoption of learning function. The 

ANNs model selected consists of four layers: seven neurons in the input layer correspond to 

variables, two hidden layers with three neurons in the first hidden layer and eight neurons in the 

second hidden layer and an output layer with one neuron corresponding to compressive strength 

(CS). The neuron numbers in each the two hidden layers were selected after several attempts in 

order to achieve the desired result since there is no any theory until now for determining the 

number of hidden layers in to construct the network. Consequently, the optimum network 

architecture is 7-3-8-1, which contains two hidden layers. The following variables were used as 

input parameters to build and train the model namely: amount of Binder (B), Limestone filler 

percentage replacement (LF), amount of Gravel (G), amount of Sand (S), Water to binder ratio 

(W/B), Superplasticizer percentage (Sp) and Age of curing (A). The corresponding model 

illustration is given graphically in Fig. 3. 
 

 

 
Fig. 2 Tan-Sigmoid Transfer function 

 

 
Fig. 3 Architecture of neural network model 
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(a) Training set (b) Testing set 

 
(c) Validation set 

Fig. 4 Classes evaluation of system error: (a) training set; (b) testing set and (c) validation set 
 
Table 3 ANN model Learning Parameters 

Parameters Values assigned 

Training data set 

Testing data set 

number of epochs 

Learning rate 

Momentum rate 

Goal 

Show 

252 

54 

1000 

0.1 

0.001 

1e-3 

5 

 
 

4.2 Model training, testing and validation 
 

In order to compare the compressive strength results predicted by ANNs model and those of the 

experimental data, with different LF replacements (0% - 45%) and W/B ratios (0.34 - 0.79). A 

simple statistical analysis was performed through the scatter plot by determining the correlation 

coefficient (R). This analysis was carried out after selecting the neural network paradigm subject 

to several training parameters; such as the number of iterations (Epochs=1000), desired minimum  
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Table 4 Validation of the ANNs model  

References 
Experimental fc 

(MPa) 
ANN fc model (MPa) 

Deviation 

(MPa) 

 

Skaropoulou et al. 2013 

45.6 42.7 2.9 

37.1 37.6 0.5 

33.5 32.4 1.1 

 

Githachuri et al. 2013 

 

 

46.7 46.3 0.4 

34.7 32.2 2.5 

51.9 50.1 1.8 

39.6 35.4 4.2 

 

 

Guemmadi et al. 2009 

33.3 31.0 2.3 

29.5 31.0 1.5 

25.8 28.0 2.2 

22.2 23.0 0.8 

18.7 18.0 0.7 

15.4 14.0 0.6 

ABS](Exp-ANN)/Exp  [ ×100 5.6  

 

 
Fig. 5 Comparison between the ANN results and experimental results 

 

 

error (Goal=0.001) and frequency of progress displays (Show=5). The model was trained through 

number of iterations, learning rate and momentum rate values were determined. The details of 

network architecture chosen are shown in table 3. The R values are shown in figures 4a, b and c 

that were 0.990, 0.995 and 0.976 for training, testing and validation, respectively. According to R 

values obtained, the proposed ANNs model is very close and suitable to that of the experimental 

results, indicating that it is reliable for predicting the compressive strength of limestone concrete.  
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5. Checking validity of model 
 

Unfortunately, available previous studies on the prediction of compressive strength of 

limestone concrete by ANNs are unknown and, thus, a comparison cannot be made (Ӧztaş et al. 

2006). For this aim, to validate any results is to consider earlier studies and compared with these 

results obtained from this model. In this study, a comparative validation was carried out between 

the experimental results obtained from several studies from the literature (Skaropoulou et al. 2013, 

Githachuri et al. 2013, Guemmadi et al. 2009) and the predicted results obtained from the ANNs 

model. Table 4 presents the validation of the ANNs model by using the experimental results of 

compressive strength. Figure 5 shows the curve fitting between the ANN predicted values and the 

expected values. Obviously, in figure 5 and approved by findings of Table 4, the results obtained 

from the ANNs model are in agreement with those of the experimental values.  

 

6. Parametrical analysis of ANN proposed model  
 

Previous studies in the literature confirmed that many factors are affecting in compressive 

strength of concrete such as SCM’s used for partial replacement of Portland cement, water content 

and Superplasticizer. Therefore, a parametric analysis was carried out to study the influence of 

some essential parameters affecting concrete compressive strength using the ANN model 

previously developed through a sensitivity analysis. The sensitivity of the ANNs model to some 

main parameters was evaluated by examining its behavior with respect to the variation of single 

parameter. As a result of that, this analysis was performed by keeping fixed parameters values, 

whereas the desired parameter was varied (Madandoust et al. 2010). This parametric analysis was 

performed for further verification of the ANNs model performance. Therefore, this analysis 

through the simulation per network is required to validate the model selected. Accordingly, the 

main influencing parameters on compressive strength was analyzed separately in the following 

sections (the water to binder ratio, percentage replacement of limestone filler, cement content, age 

and Superplasticizer content). The parametric analysis results as shown in Figs. 6 to 8, are 

generally consistent with previous results in concrete technology.  

 

6.1 Influence of water-binder ratio (w/b) 
 

According to the viewpoint of civil Engineering, it has been reported that water to binder ratio 

(w/b) is the first parameter significantly affects the concrete compressive strength (Yılmaz et al. 

2014). The effect of the water to binder ratio (w/b) on compressive strength of concrete containing 

different LF percentages replacement (from 0 to 30%) at various ages is shown in Figure 6.  

It could be clearly seen that the compressive strength is continuously decreasing due to the 

increase of w/b ratio and vice versa, as to be expected. On the other hand, the compressive strength 

decreases with increasing the percentage replacement of LF. Moreover, the third observation is 

pertinent to note that the CS is increased with increasing the age. The effect of w/b ratio can be 

explained by the fact that an increase in the ratio will increase the volume of capillary pores which 

will also lead to a reduction in compressive strength of concrete (Madandoust et al. 2010). 

 

6.2 Influence of LF replacement 
 

Figure 7 shows the effect of percentage replacement of LF for different binder dosages at 
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Fig. 6 Effect of w/b on compressive strength of concrete at various ages 

 

 

various ages on the compressive strength of concrete. It is clear to see that the compressive 

strength decreases proportionally to the LF levels increase. On the other hand, it should be noted 
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Fig. 7 Effect of LF replacement on concrete compressive strength at different cement content 

 

 

that the increase in CS values is due to the increase of cement content (Binder); the strength of mix 

prepared with 400 kg/m3 binder content is higher than that of the mix prepared with 300 and 350 

kg/m3 binder content. The decrease of the compressive strength can be explained by the effect of 

the clinker dilution, consequence of substitution replacement of a quantity of cement by the same 

quantity of limestone (Ramezanianpour et al. 2009).  

 

6.3 Influence of Superplasticizer content 
 

A chemical admixture such as a Superplasticizer can be added to the concrete for the purpose 

of enhancing and achieving a specific modification the overall properties of concrete such as 

compressive strength. The effect of the Superplasticizer with the variation percentage content (0%, 

1%, 2%) by mass of cement on CS of control concrete, at 1, 2, 7 and 28-days is plotted in Figure 8. 

This figure illustrates the ANNs simulation of CS associated with the dosage of binder kept fixed 

at (B=400 kg/m3). Considering this figure, it was observed that the CS increased proportionally 

with increasing the content of Superplasticizer and age, as expected according to the literature 

(Neville 1996). 
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Fig. 8 Effect of Superplasticizer content on concrete compressive strength at various ages 

 

 
7. Conclusions 

 

In this research, a soft computing approach such as ANNs is used to predict the compressive 

strength of limestone filler concrete. The results obtained from this paper lead us to the following 

conclusions:  

•  The ANNs model proposed in this current study showed its ability to predict the 

compressive strength of limestone filler concrete and the best ANN’s architecture of the proposed 

model is 7-3-8-1.  

•  A back-propagation ANNs model can be trained to predict the compressive strength of 

concrete while relating the mix design of concrete and age of curing.  

•  The modeling results are very good coinciding well with the experimental values in all 

phases of training, testing and validation clarifying the accuracy of the proposed ANNs model. 

Thus, the ANNs model is a powerful tool for predicting the compressive strength of concrete  

•  A parametric study was carried out to see the effect of each parameter taken into account in 

the proposed model on compressive strength. The results were in agreement with the literature. 

•  The compressive strength continuously decreasing with increasing the w/b ratios at all ages 

and different LF replacement. 

•  Any replacement of limestone filler in the concrete mixes decreases the strength in all ages, 

that’s mean that the limestone filler contributes less to concrete strength than cement Portland. 

•  The superplasticizer tends to increase the concrete compressive strength at all ages. 

•  There are a lot of potential avenues for further works. In the future, the work can be 

extended by applying the ANN’s for predicting several proprieties of concrete with limestone filler 

such as the workability, elasticity module, durability etc. 
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