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Abstract.  Dams play a vital role in the development and sustainment in a country. Failure of dams leads to 

the catastrophic event with sudden release of water and is of great concern. Hence earthquake-resistant 

design of dams is of prime importance. The present study involves static, modal and transient analyses of 

dam-reservoir-foundation system using finite element software ANSYS 15. The dam and the foundation are 

modeled with 2D plane strain element “PLANE 42” and the reservoir by fluid acoustic element “FLUID 29” 

with proper consideration of fluid-structure interaction. An expression for the fundamental period of 

concrete dams is developed based on modal analysis. Seismic response of gravity dams subjected to 

earthquake acceleration is evaluated in terms of peak displacement and stress. 
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1. Introduction 
 

A dam is the cornerstone in the development and management of water resources development 

of a river basin (International Commission on large Dams, www.icold-cigb.org). A gravity dam is 

a structure so proportioned that its own weight resists the external forces exerted upon it. This type 

of structure is most common and requires less maintenance. It usually consists of two sections; 

namely, the non-overflow section and the overflow section or spillway section. These are 

particularly suited across gorges with very steep side slopes. 

Gravity dam can be constructed with ease on any dam site, where there exists a natural 

foundation strong enough to bear the enormous weight of the dam. Such a dam is generally 

straight in plan, although sometimes, it may be slightly curved. When suitable conditions are 

available, such dams can be constructed up to great heights. The highest gravity dam in the world 

is Grand Dixence Dam in Switzerland (285 m), followed by Bakra Dam in India (226 m); both are 

of concrete gravity type. 

Many concrete gravity dams have been in service for over 50 years. The identified causes of 

failure of gravity dams are failure of foundation or abutments, inadequate spillway capacity, 

spillway design error, poor construction, poor maintenance, extreme rainfall, uneven settlement,  
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acts of war, human or computer design errors, embankment slips, landslides into reservoir, 
defective materials, incorrect operation, earthquakes, etc. 

India is a country with 5,100 large dams and 1,040 active faults covering 57% of land mass, 
thus making the built-up structures prone to earthquake. There is always a possibility that a severe 
earthquake in high seismic zones might affect the stability of dams (Patra 2014). 

During past decades, several studies were conducted on the safety and stability of gravity dams 
under operating as well as seismic loadings. Linear analyses (Chopra and Gupta 1982) reveal that 
large tensile stresses in excess of the strength of the concrete would develop in the dam during 
strong earthquakes. Following this, many nonlinear analyses have been carried out to predict the 
occurrence and propagation of cracks. Skrikerud and Bachmann (1986) conducted studies related 
to the development of cracks in the body of gravity dams. Using the maximum tensile strength 
criteria, they simulated the crack propagation of the Koyna dam under strong earthquakes by 
incorporating the discrete crack approach in a finite element program. 

 
 

2. Finite element model of dam-reservoir system 
 
Dynamic analyses of buildings and dams are very complex phenomena. In order to solve these 

complex phenomena, mathematical models are generally adopted considering certain assumptions 
imposed on the physical problem. The discretized structural dynamic equation including dam and 
foundation subjected to ground motion can be formulated using finite element approach as 

pegseseses QuMukuCuM 
.....

 
(1)

where Ms, Cs and Ks are respectively the mass, damping and stiffness matrices of the structure, ue, 
is the nodal displacement vector with respect to the ground and eu  and o

eu  represent the velocity 
and acceleration vectors. gu  is the ground acceleration and the term Qpe represents the nodal force 
vector associated with the hydrodynamic pressure produced by the reservoir (Khosravi and 
Heydari 2013). 

The discretized wave equation is given by 
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(2)

where Mf, Cf and Kf are the fluid mass, damping and stiffness matrices respectively and pe is the 
nodal pressure. The term pωQT is referred to as the coupling matrix. 

 
 

3. Fluid-structure interaction 
 
Fluid structure Interaction (FSI) refers to the coupling of unsteady fluid flow and the structural 

deformation. It is a two-way coupling of pressure and deflection. There are various approaches for 
modelling FSI; the added mass approach, Eulerian approach and Lagrangean approach. Because of 
its simplicity, Westergaard’s added mass approach has been frequently adopted for modelling Dam 
-liquid interaction. In Eulerian approach, the variables for measuring the response are pressure and 
velocity. The hydrodynamic pressure distribution is governed by the Wave equation 
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The relations between pressure P, velocity vector {v} and velocity potential φ are
   pandv  where ρ is the density of fluid. 

In Lagrangean approach, the behavior of the fluid and structure is represented by displacement. 
Hence, compatibility and equilibrium are automatically satisfied at the nodes along the interface 
between liquid and structure.  

The coupled fluid structure foundation equation is 
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where, kfs=-Q, Mfs=pωQT. Eq. (4) expresses a second order linear differential equation having 
unsymmetrical matrices and may be solved by direct integration method. In general the dynamic 
equilibrium equations of the system modeled in finite element can be expressed as 

)(
...

tFukuCuM cccccc  (5)

where Mc, Cc and Kc are the coupled mass, damping and stiffness matrices respectively and F(t) is 
the dynamic load vector. 

 
 

4. Formulation of natural periods of concrete gravity dams 
 
One of the objectives of the present work is to develop an expression for the natural period of 

dam-reservoir system. Concrete gravity dam-reservoir systems are idealized as two-dimensional 
sections in the plane normal to the dam axis. The dam is assumed to be homogeneous, isotropic, 
and linearly elastic having modulus of elasticity (Ed) equal to 2.74×1010 N/m2, Poisson’s ratio of 
0.24 and density of 2446.5 Kg/m3. Reservoir water is assumed to have a density equal to 1000 
Kg/m3, sonic velocity of 1440 m/s and wave reflection coefficient of 0.5. Dam is assumed to be 
fixed at the base. Reservoir length is taken as one and a half times the depth.  

In order to find a simplified formula for natural period, a set of concrete gravity dams is 
selected. The dams that are taken into consideration are of varying height and base width. The 
heights, base width, top width, and height of reservoir of selected dams are listed in Table 1. 
 
 

Table 1 Geometry of dams under study 

Dam Height (m) Base width (m) Top width (m) Reservoir Height (m)

Grand Dixence 285 200 15 270 .00 
Bhakra 226 403 10 214.70 

Three Gorges 181 115 40 171.95 
Guangzho 200 410 20 190.00 
Boyabat 195 135.8 10 185.25 

Dworshak 219 193 13 208.05 
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(a) Period vs. Height of dam (b) Period vs. Base width of dam 

Fig. 1 Natural periods of Empty Dam 
 
 
4.1 Natural periods of empty dam 
 
Modal analysis is performed on the selected dams and the natural periods of vibration are 

extracted. The variation of period with respect to height of the dam and base width for first three 
modes is shown in Fig. 1. From the figure, it is clear that as the height increases the time period 
also increases for constant ratio of bottom width to height. As the base width of the dam increases 
the first fundamental mode period decreases. However, base width is found to have little influence 
for higher mode periods. 

 
4.2 Natural periods of Dam-Reservoir System 
 
Modal analysis on the dams with full reservoir is carried out. The results from modal analysis 

indicate that the water in the reservoir alters the dynamic characteristics of the structural system. It 
is found that there is an increase in periods of fundamental modes of vibration compared to that of 
empty dam and a corresponding reduction in the frequency of vibration. 

Regression analysis is carried out on the results obtained from modal analysis. Modal analyses 
on dams with empty and full reservoir conditions show that the first fundamental natural time 
period is a function of height and base width of the dam. But the second fundamental natural time 
period depends only on the height of dam. The following equations for time periods are obtained 
by regression analysis 

48.00041.0

41.00035.0
86.0

2

30.03.1
1



 

hT

bhT

R

R
                                (6) 

where TR1 and TR2 are respectively the first and second natural periods of dam with full reservoir 
condition, h is the height of dam and b is the base width of dam. 

The graphical representation of periods as per the empirical formula (theoretical) and from 
modal analysis (actual value) is shown in Fig. 2. The values predicted by the proposed equations 
are in good agreement with modal analysis results. 
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Fig. 2 Plot for first and second mode periods of dam (full reservoir)- comparison of empirical and 
modal analysis values 

 
Table 2 Comparison of time periods obtained using empirical and modal analysis 

Dam 

Time Period (s) 

Empirical (using Eq. (6)) From Modal Analysis 

TR1 (s) TR2(s) TR1(s) TR2(s) 

Pine Flat 0.406 0.207 0.396 0.205 

Koyna 0.368 0.173 0.375 0.178 

 
 
To check the accuracy of the equations predicting the time period of concrete gravity dams, 

another set of existing dams, viz., Pine Flat Dam and Koyna Dam are selected and the time periods 
are calculated using the proposed formula.  

Time period obtained from modal analysis of the selected dams and that from the proposed 
equation is shown in Table 2.The periods obtained using Eq. (6) are matching well with modal 
analysis results. Hence the proposed equations can be used for calculating the natural periods of 
concrete gravity dams satisfactorily. 

 
 

5. Seismic Analysis of concrete gravity dams 
 
For performing transient analysis using earthquake time history records, Koyna dam 

(Maharashtra, India) is selected. This monolith is 103 m high and 70 m wide at its base. The depth 
of the reservoir at the time of Koynanagar earthquake (1967) was 91.75 m (Sarkar et al. 2007). 
The 6.5 magnitude shock hit near the site of Koyna dam; but, it didn’t cause any major damage to 
the dam except some cracks which were quickly repaired. Some geologists believe that the 
earthquake was due to reservoir-triggered seismicity.  

The non-overflow monolith of the dam is assumed to be in the plane strain condition. First 
order plane strain elements have been used to model the dam body. The dam is assumed to rest on 
a 350×140 m foundation. The bottom of the foundation is assumed to be fixed and the foundation 
is considered to be in the plane strain condition. First order plane strain elements have been used 
for modeling the foundation. Symmetric boundary conditions have been used at the ends of the 
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foundation block to simulate the unbounded nature of the foundation. The reservoir is assumed to 
be 140 m in length, and first-order acoustic elements have been used for modeling the reservoir. 
The acoustic element has four corner nodes with three degrees of freedom per node: translations in 
the nodal x and y directions and pressure. The translations, however, are applicable only at nodes 
that are on the interface. 

The material properties adopted for the dam body are the modulus of Elasticity (E) equal to 
32027 N/mm2, mass density (ρ) of 2643 kg/m3 and Poisson’s ratio (µ) of 0.2. Properties of rock 
foundation are modulus of elasticity (Ed) equal to 62054 N/mm2, mass density of 3300 Kg/m3 and 
Poisson’s ratio of 0.33. Properties of reservoir are bulk modulus (Kw) equal to 2250 N/mm2, mass 
density of 1000 Kg/m3, boundary admittance of 0.5 and sonic velocity of 1440 m/s. 

 
5.1 Modal response of Dam-Reservoir-Foundation System 
 
It is obvious that the foundation and water reservoir affect the modal frequencies and 

consequently the dynamic response of gravity dams during earthquakes. A parametric study is 
performed here to view the combined effect of foundation and reservoir on the dynamic response 
of the dam. To investigate the modal behavior of the dam, three different cases are taken as 
follows:  

Model 1- Dam with fixed support and empty reservoir named “Fixed-Empty” (Fig. 3(a)) 
Model 2- Dam with foundation and empty reservoir, named “Mass-Empty” (Fig. 3(b)) 
Model 3- Dam with foundation and full reservoir, named “Mass-Fluid” (Fig. 3(c)) 
Eigen value analysis of the above three models are carried out and a comparative study on the 

modal frequencies is depicted in Fig. 4. 
From the modal analysis results, it can be inferred that when the reservoir is empty and 

foundation is fixed (Fixed-Empty model), natural frequency of dam is maximum. Furthermore, a 
minimum value for the fundamental frequency is obtained when dam-reservoir-foundation 
interaction is considered (Mass-Fluid model), i.e., there is a 20% decrease of modal frequency for 
first mode and more than 50% decrease of modal frequencies of other higher modes if structure-
foundation and structure-reservoir is considered. This is because when reservoir interaction is 
considered the water that is found near the structure causes increase in inertial force acting on the 
structure. The reservoir moves along with the displaced structure and thus the hydrodynamic force 
act on the structure. Hence the water in the reservoir leads to changes in the dynamic 
characteristics of the system by modifying the mode shapes and decreasing the frequency of 
vibration.  

 
 

(a) Model 1 (b) Model 2 (c) Model 3 

Fig. 3 Models for Seismic Analysis 
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Fig. 4 Effect of reservoir and foundation on the modal frequencies of the dam 

 
Table 3 Static Analysis Results (C-Compression and T –Tension) 

Parameter Fixed-Empty Mass-Empty Mass-Fluid 

Stress at heel (N/mm2) 3.05(C) 4.06 (C) 0.05 (T) 

Stress at toe (N/mm2) 0.11(C) 0.21(C) 1.02 (C) 

 
 
When foundation interaction is considered it is found that there is a decrease in the natural 

frequency compared to that of dam with fixed support, which is because of a reduction in the 
stiffness and an increase in the mass of the vibrating system. 

 
5.2 Static analysis of Dam-Reservoir-Foundation System 
 
Static analysis is carried out for the three models considering the self weight of the dam and the 

hydrostatic pressure. The output in terms of the stresses at salient points is shown in Table 3.  
From the static analysis results, it is found that in Fixed-Empty model, compressive stresses at 

the heel and toe are lesser than that of the Mass-Empty model, where foundation interaction is 
considered. In the Mass-Fluid model (Dam-Reservoir-Foundation System), due to hydrostatic 
forces acting on the structure, tensile stresses develop at the heel and the compressive stresses 
increase at the toe. However, the magnitudes are within permissible limits. Hence, the section is 
safe for static forces. 

 
5.3 Linear time history analysis of dam-reservoir-foundation system 
 
Linear time history analysis has been carried out on dam-reservoir-foundation system using 

four spectrum compatible time histories which are normalized to peak ground acceleration (PGA) 
of 0.6 g. Two modeling techniques are adopted for the fluid, viz., fluid finite element modeling 
technique and Westergaard’s added mass approach (Berrabah 2011). In fluid finite element 
modeling, the reservoir is modeled using fluid acoustic element FLUID 29. But in Westergaard’s 
added mass approach, fluid is modeled using SURF 153 element. Here, the added mass per unit 
area is taken as 
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8

7
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ρw is the mass density of water, h is the height of reservoir and y is the depth of the node below 
the surface of water. The added mass is applied on the upstream face of the dam in addition to 
hydrostatic pressure. 

Four natural ground acceleration time histories are selected from the strong motion database 
available in the website of Centre for Engineering Strong Motion Data, USA 
(www.strongmotioncenter.org). Their response spectra are generated using Seismospect and made 
compatible with IS 1893:2002 design spectrum for Type II soil using Seismomatch 
(www.seismosoft.com). The response spectra of ground motions along with the design spectrum 
are shown in Fig. 5. The earthquake records used for the study are shown in Fig. 6. 

 
 

 
Fig. 5 Response spectra of accelerograms along with IS 1893 spectrum for Type II soil  

 

 

 
Fig. 6 Acceleration-time history of earthquake records made compatible with IS 1893 spectrum for Type II 
soil with a PGA of 0.6 g 
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Generally, two principal procedures are used for ground motion modification: direct scaling 
and spectral matching. The direct scaling procedure consists of determining a constant scale factor 
by which the amplitude of an accelerogram is increased or decreased. As the elastic response 
spectra correspond to linear response of single-degree-of freedom systems, the same scale factor 
applies to spectral accelerations at all periods. In contrast, spectral matching adjusts the frequency 
content of accelerograms until the response spectrum is within user-specified limits of a target 
response spectrum over a defined period band. The period range for spectral matching varies 
among code provisions.  

As per ASCE 7-05, the ground motions shall be scaled such that the average value of the 5 
percent damped response spectra for the suite of motions is not less than the design response 
spectrum for the site, for periods ranging from 0.2T to 1.5T where T is the natural period of the 
structure in the fundamental mode for the direction of response being analyzed. 5% damping is 
adopted for the concrete dam models under investigation.  

The summary of peak values of responses such as crest displacement, stresses at heel etc. are 
shown in Fig. 7. It is found that reservoir modeling technique using Westergaards’ added mass 
approach gives conservative values of response in terms of stresses and displacements. By 
adopting added mass approach, the displacement at crest increases by almost 1.85 times that 
obtained using FE fluid modeling technique, and the Von Misses stress at heel and neck is about 
1.5 times that using FE fluid modeling technique of reservoir. 

For the two fluid modeling techniques the same level of water is considered for the analysis, 
but the way of application is different. By fluid FE modeling technique of reservoir using 
FLUID29 element, the water effect is transmitted to the structural system as displacement and 
pressure. But, in reservoir modeling technique of added mass using SURF153 element, the water 
effect is applied as mass per unit area over the upstream face of dam structure, which increases the 
inertial force of the system, thereby attracting more seismic forces. 

Maximum responses such as crest displacement (at 3.22 s), vertical stress and Von Mises stress 
at heel (9.1 s) due to Earthquake 1 are shown in Fig. 8. 

Considering the responses due to time history analysis using four earthquakes, it is observed 
that maximum displacement occur at the crest of dam and higher value of stresses are found at heel 
of dam, neck of dam and the region opposite to neck in the upstream side. 

It is also found that the maximum stress values found at these regions are above the material 
permissible tensile stress of 1.2 N/mm2 and permissible compressive stress of 13 N/mm2. Thus 

 
 

(a) Crest displacement (b) stress at heal (vertical) (c) Von-Mises Stress at heal 

Fig. 7 Peak values of responses for different modeling techniques of reservoir 
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(a) Crest displacement at 3.2 s (b) stress at heal (vertical) at 9.1 s (c) Von-Mises Stress at heal at 9.1 s

Fig. 8 Peak values of responses due to earthquake 1 with fluid FE Modeling 
 
 

there are chances of localized failure at these regions due to seismic action which may affect the 
overall stability of the dam in due course. 

 
 

6. Conclusions 
 
It is obvious that the presence of water in the reservoir, and the foundation affect the response 

of dams under seismic excitation. Two fluid modeling techniques are used in the present study; one 
is the standard added mass approach and the second one using fluid finite elements. Lagrangean 
approach is adopted for fluid modeling and hence, the equations of motion for the fluid and dam 
structures are similar. The nodes of the common boundary are constrained to be coupled in the 
normal direction, while movements are allowed in the tangential direction. 

ANSYS uses an automated tetrahedral mechanical meshing method to produce an optimal 
mesh for the structural domain. Fixed support conditions as well as FE modeling of foundation are 
adopted as the boundary conditions. Fluid-structure interface boundaries are identified to allow for 
coupled mesh deformation resulting from fluid motion. 

From the modal analysis results of different FE models, it can be inferred that when the 
reservoir is empty and foundation is fixed, the natural frequency of the dam is maximum. 
Furthermore, a minimum value for the fundamental frequency is obtained when dam-reservoir-
foundation interaction is considered. There is about 20% decrease of modal frequency for first 
mode and more than 50% decrease of modal frequencies of higher modes if structure-foundation 
and structure-reservoir is considered.  

Most dams are founded on rocks. Usually, analyses of dams are done assuming fixed support 
condition. However, from the present study, it is found that the dynamic response of dams is 
affected by the interaction of reservoir and foundation. Hence, it is necessary to consider both the 
dam-reservoir interaction and dam-foundation interaction for predicting the realistic behavior of 
dams under earthquake forces. 

Reservoir modeling using Westergaards’ added mass technique is easier and requires only less 
computing power. The analysis gives conservative values of responses compared to fluid FE 
modeling technique. FE modeling predicts the realistic effect of fluid-structure interaction, but it 
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takes more computational time. 
From the time-history results, it is also observed that the response of dam may change with the 

type of earthquake depending on the band width and predominant frequency. Maximum 
displacement occurs at the crest of dam and the higher values of stresses are obtained at the heel, 
neck, and the region opposite to neck of the dam on the upstream side. The stress values due to 
seismic loading are found to be higher than the material permissible tensile and compressive 
stresses at these locations. Hence damages are likely to initiate and get distributed from these 
regions during earthquake. 
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