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Abstract.  Stochastic optimization methods have been extensively studied for structural optimization in 
recent decades. In this study, a novel algorithm named the CA-SA method, is proposed for topology 
optimization of steel double-layer grid structures. The CA-SA method is a hybridized algorithm combining 
the Simulated Annealing (SA) algorithm and the Cellular Automata (CA) method. In the CA-SA method, 
during the initial iterations of the SA algorithm, some of the preliminary designs obtained by SA are placed 
in the cells of the CA. In each successive iteration, a cell is randomly chosen from the CA. Then, the "local 
leader" (LL) is determined by selecting the best design from the chosen cell and its neighboring ones. This 
LL then serves as the leader for modifying the SA algorithm. To evaluate the performance of the proposed 
CA-SA algorithm, two square-on-square steel double-layer grid structures are considered, with discrete 
cross-sectional areas. These numerical examples demonstrate the superiority of the CA-SA method over SA, 
and other meta-heuristic algorithms reported in the literature in the topology optimization of large-scale 
skeletal structures. 
 

Keywords:  cellular automata method; simulated annealing algorithm; steel double-layer grids; stochastic 

optimization methods; topology optimization 

 

 
1. Introduction 

 
Currently, due to the competitive development of economies and technologies worldwide, 

optimization problems have become increasingly complex, with larger scales, more variables, and 

constraints (Cui et al. 2017). Recently, meta-heuristic optimization techniques have been 

developed to tackle complex optimization problems that other algorithms have failed to solve 

effectively or efficiently. Although some algorithms perform better than others on specific design 

problems, there is no single algorithm that performs optimally on all optimization problems. 

However, the practical advantage of meta-heuristics lies in their effectiveness and general 

applicability, as evidenced by previous studies (Cho and Kang 2021, Babaei et al. 2022, Ghasemi 

et al. 2022, Mohammadnejad and Kazemi 2022, Mashayekhi et al. 2023, Amiri et al. 2023). 

The importance of structural optimization is growing due to several factors, such as limited 

material resources, environmental impact, and intense technological competition. Lightweight, 
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low-cost, and high-performance structures are in demand to address these issues (Faramarzi and 

Afshar 2012). In structural optimization, the structural weight is typically the objective function, 

while the constraints depend on the specific optimization problem and can include joint 

displacement, stress and slenderness ratio of elements, structural reliability, failure probability, and 

frequency constraints (Kaveh et al. 2023, Kaveh and Zaerreza 2022). The optimization of 

structures has long been a significant area of research due to its widespread application. The 

design of structures can be categorized into four optimization problems, which include material, 

sizing, topology (configuration), and geometry (shape) optimization. Material optimization involves 

the optimal design of elastic structures, where the design variables are material properties 

(Faramarzi and Afshar 2012). Sizing optimization involves finding the optimal cross-sectional area 

of members in skeletal structures or the thickness of continuous structures, assuming that the nodal 

coordinates of the structure are fixed. Topology optimization deals with the connectivity of 

elements between nodes, specifically the presence or absence of such elements. On the other 

hand, shape optimization is concerned with determining the optimal nodal coordinates, given that 

the topology is fixed (Faramarzi and Afshar 2012). Employing meta-heuristic search methods 

for optimal structural design is a relatively novel area that demands further research, as evidenced 

by the works of several recent studies (Hasançebi 2008, Sonmez 2011, Dogan and Saka 2012, 

Kaveh and Zaerreza 2022, Azad et al. 2013, Kaveh et al. 2023, Nabil et al. 2023). 

The structural topology optimization technique aims to attain the optimal performance of a 

structure subject to various constraints. Compared to sizing and shape optimizations, topology 

optimization offers greater flexibility and empowers the designer to create innovative and highly 

efficient conceptual designs for structures (Mozafari et al. 2012). Nowadays, numerous hybridized 

meta-heuristic topology optimization techniques have been developed in recent years, particularly 

for optimizing the topology of large-scale skeletal structures with discrete cross-sectional areas 

(Mashayekhi et al. 2011, 2012, 2015, 2016, Dehghani et al. 2016). 

The Simulated Annealing (SA) algorithm is a meta-heuristic approach that seeks to 

approximate the global optimum of a given function in a vast search space. SA uses iterative 

movement based on a variable temperature parameter that mimics the annealing process in 

metallurgy, as described in the works of Kirkpatrick et al. (1983) and Cerny (1985). Furthermore, 

several optimization techniques based on SA have been proposed to tackle structural design 

optimization problems with a discrete set of design variables (Liu et al. 2023, Vasile et al. 2022, 

Rettl et al. 2023, Hasançebi et al. 2009). 

Credit for developing cellular automata is typically given to Ulam (1952) and Neumann (1966), 

who introduced the concept in the late 1940s as a practical model for simulating the behavior of 

complex systems. Since the promising beginnings of cellular automata, numerous theoretical and 

practical applications have been developed, and computational models based on classical cellular 

automata have been successful in defining and solving various models of natural phenomena. 

Some of these applications are discussed in (Hoekstra et al. 2010). In the area of structural 

optimization, several families of combined structural optimization techniques have been proposed 

that utilize cellular automata (CA) (Zhang et al. 2023, Duan et al. 2023, Bouzouiki et al. 2021, 

Canyurt and Hajela 2005, Mashayekhi and Yousefi 2021, Dehghani et al. 2021). 

This study introduces a new and improved algorithm, called CA-SA, to optimize the topology 

of steel double-layer grid (SDLG) structures. The CA-SA enhances the efficiency of the simulated 

annealing (SA) method by incorporating a cellular automata (CA) algorithm. The CA algorithm is 

implemented by distributing cells in a square lattice structure that includes NCA cells in each 

direction, resulting in a total number of NCA
2 cells. Moore's neighborhood is also considered for  
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Fig. 1 Steel double layer grid ground structure (a), and joint numbers of bottom layer (b) (Mashayekhi et al. 

2012) 

 

 

these cells (Rajasekaran 2001). During the initial iterations of the CA-SA algorithm, new NCA
2 

designs are generated and randomly assigned to the CA cells. In subsequent iterations, a cell is 

selected at random from the CA square lattice structure, and the best design from the cell and its 

neighborhood is chosen as the "local leader" (LL). The LL design is employed to enhance the 

search for the optimal design in the SA algorithm. Updating the CA cell state involves replacing 

the worst design in the CA with the newly obtained design for each iteration, provided that 

the objective function has improved. Numerical examples demonstrate that the CA-SA algorithm 

produces superior results in the topology optimization of large-scale skeletal structures, compared 

to those obtained using the SA algorithm and several other meta-heuristic algorithms described in 

previous studies. 
 

 

2. Steel double-layer grids topology optimization 
 

In topology optimization of steel double-layer grids (SDLG), the geometry, support positions, 

and node coordinates remain fixed, while the design variables consist of the presence/absence of 

joints and cross-sectional areas. To reduce the design space, the structure's symmetry properties are 

utilized for joint tabulation, resulting in groups of 8, 4, or 1 joint (Mashayekhi et al. 2012). For 

example, in the SDLG shown in Fig. 1, number of joints with the same geometric positions is 

presented in Table 1. 

Each joint group's presence or absence is determined by a binary topology variable, which can 

only be assigned the values 0 or 1. Hence, this structure requires six topology variables to 

represent the variability of the joint groups. A topology variable with a value of 0 signifies the 

removal of the corresponding joint group from the ground structure, leading to the elimination of 

all elements connected to that node. 

In a SDLG topology optimization problem, the total number of design variables (NDV) is the 

sum of the number of topology variables (NTV) and the count of compressive and tensile element 

types. For instance, in the topology optimization process of the ground structure illustrated in Fig. 
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Table 1 Symmetrical joint group number (Mashayekhi et al. 2012) 

Group No. Joints in each group 

1 28, 33, 118, 113 

2 29, 32, 50, 101, 117, 114, 96, 45 

3 30, 31, 67, 84, 116, 115, 79, 62 

4 46, 49, 100, 97 

5 47, 48, 66, 83, 99, 98, 80, 63 

6 64, 65, 82, 81 

 

 
Fig. 2 The specified design variables (Mashayekhi et al. 2012) 

 

 

1, the design variable vector is depicted in Fig. 2. Assuming there are 4 compressive and 2 tensile 

element types considered (Mashayekhi et al. 2012). 

Given that the second topology variable is assigned a value of zero, all the joints belonging to 

the second group in Table 1 are eliminated from the ground structure. The resulting topology is 

depicted in Fig. 3 (Mashayekhi et al. 2012). 

The 6 remaining design parameters are utilized to allocate the cross-sectional area to members 

within any specific group by consulting the profile table (Mashayekhi et al. 2012). Discrete 

variables specify the appropriate cross-sectional area of structural members, chosen from pipe 

sections with specified thickness, outer diameter, and number of profiles. The existence of nodes in 

the top grid is not considered a variable to achieve a practical structure, resulting in unchanged 

load-bearing areas of top layer joints (Mashayekhi et al. 2012). 

In the SDLG topology optimization problem, the design variables are determined from a 

discrete set of values to minimize the structural weight (W), while constraints on stress (gσ), 

slenderness ratio (gσλ), and displacement (gδ) are satisfied: 

 (1) 

This formula involves various variables, including NMG, which represents the number of 

member groups. Additionally, Nk indicates the number of members in the kth member group, while 

𝑎𝑘 is the discrete cross-sectional area of the kth member group, chosen from a list of steel pipe 

sections with NP profiles denoted by . Other variables include, the material density, li the 

length of the ith element, as well as stress, slenderness ratio, and displacement constraints, which 

must be satisfied. 

The topology optimization problem is solved using both SA and CA-SA methods. To solve  
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Fig. 3 The outcome structure illustrated in Fig. 2: (a) steel double layer grid, (b) diagonal layer, and (c) 

bottom layer (Mashayekhi et al. 2012) 
 

 

a constrained optimization problem, the objective function (W) is modified to convert the 

constrained optimization problem into an unconstrained one. This modification results in a 

modified objective function (Ψ), defined as follows (Mashayekhi et al. 2012): 

 (2) 

in which 

 (3) 

where C is the penalty function, which depends on the number of elements (ne) and joints (nj) in 

the structure. 

The stress and the slenderness ratio constraints are defined as follows (Mashayekhi et al. 2012): 

 (4) 

 
(5) 

where  is, ,  and  are the member stress, allowable stress, member slenderness ratio 

and its upper limit for the kth member of the steel double layer grids, respectively. In this study, the 

AISC code provisions are applied for the stress limits and local buckling criteria (AISC Manual 

2005), as follows: 
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where the yield stress, modulus of elasticity, and Cc, denoted as Fy, E, and , 

respectively. 

The maximum slenderness ratio is restricted to 300 for tension members and 240 for 

compression members. Consequently, the design constraints related to slenderness ratio can be 

expressed as follows (Mashayekhi et al. 2012): 

 
(9) 

where is the displacement of the jth node. 

 

 

3. Simulated annealing (SA) algorithm 
 

Simulated annealing is named after the physical process of annealing with solids, in which 

a crystalline solid is heated and allowed to cool slowly until it reaches its minimum energy state. 

This results in a crystal lattice configuration that is free of defects and has superior structural 

integrity. By simulating this thermodynamic behavior, simulated annealing provides an algorithmic 

approach for searching for global minima in discrete optimization problems. This approach 

establishes a connection between the thermodynamic behavior and optimization problems, and 

provides a means for leveraging this connection. The concept of simulating the annealing 

process to solve optimization problems was first independently introduced by Kirkpatrick et al. 

(1983) and Cerny (1985). They established an analogy between minimizing the energy level of a 

physical system and reducing the cost of an objective function. This analogy forms the basis for 

applying simulated annealing algorithms to a wide range of optimization problems. The SA 

algorithm used in this study is based on the work of Hasançebi et al. (2009). Their algorithm was 

designed for sizing optimization of truss structures, and the basic steps involved in their approach 

are outlined below (Canyurt and Hajela 2005). However, some modifications are made to adapt the 

algorithm for topology optimization of steel double-layer grid structures. 

Step 1: Setting up an appropriate cooling schedule 

The cooling process is defined by three key parameters: TS, Tf, and η. TS denotes the starting 

temperature, Tf represents the temperature at the end of the cooling cycle, while η indicates 

the temperature decrement factor during the cooling process. Determining these parameters 

requires selecting suitable values for the initial acceptance probability (PS), final acceptance 

probability (Pf), and the number of cooling cycles (NC), as follows: 

 
(10) 

The optimization procedure commences with T being set equal to TS, and subsequently 

decreasing during the operation. The initial and final temperatures of the system, as well as the rate 

at which T decreases, are critical factors influencing the efficacy and efficiency of the metal 

annealing method. 
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and considered current design (XCu). This design is assigned as the current design of the 

optimization problem, and its objective function is calculated. 

Step 3: Creating the candidate design 

To create the candidate design (XCa), first, the current design of the optimization problem is 

considered. Then, a small change is made to one of its variables (the ith variable), which is 

randomly selected between 1 and (NTV+NMG), as follows: 

 
(11) 

In the above equation, dzmax represents the maximum allowable change in size variables, and dz 

is the change applied to the ith variable, which is randomly selected from natural numbers between 

1 and dzmax. It should be noted that this change should not violate the upper or lower limit of 

the selected variable. In this study, since the value of each size variable corresponds to the profile 

number used, the upper limit of the size variables is equal to the number of steel sections, and their 

lower limit is equal to one. Therefore, the candidate design of the problem is obtained by 

considering the change made to the selected design variable. Therefore, it can be said that the 

candidate design differs from the current design only in terms of one design variable. It should be 

noted that each design variable is selected only once during a single cooling cycle to create a 

candidate design. In other words, the number of candidate designs created during a single cooling 

cycle is equals the number of design variables. 

Step 4: Evaluating the candidate design 

Each time a candidate design is created, its objective function is also calculated. If the objective 

function of the candidate design (ΨCa) is less than the objective function of the current design 

(ΨCu), the candidate design is accepted without any conditions and replaces the current design of 

the problem: 

 
(12) 

Otherwise, if the objective function of the candidate design is greater than the objective 

function of the current design ( ), the acceptance of the candidate design and its placement 

as the current design of the problem will be conditional. Conditional acceptance of this weak 

candidate design is used to escape local minima. The probability of accepting this weak candidate 

design is high at high temperatures, but decreases as the temperature decreases. 

To determine the acceptance or rejection of the weak candidate design, first, the Boltzmann 

parameter is obtained using the following equation: 

 
(13) 

where  is the average value of  obtained from the beginning of the corresponding 

cooling cycle until the current moment in the above equation. 
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In general, a design can be infinitely weak to the extent that sampling from such designs can 

drive the Boltzmann parameter towards worthless values and hinder the appropriate search of the 

algorithm in the design space. To address this issue, first, the value of  is obtained within a 

range of zero to one using Eq. (14), despite having relatively large values, and then the Boltzmann 

parameter is determined using Eq. (15): 

 
(14) 

 (15) 

where represents the average value of  obtained from the beginning of the 

relevant cooling cycle until the current moment. Finally, the probability of accepting a weak 

design (P) is calculated as follows: 

 (16) 

In Eq. (16), and represent the theoretical and practical average acceptance 

probabilities in the (k-1)th cooling cycle, respectively. 

Step 5: Repeating a single cooling cycle 

A single cooling cycle performs Steps 3 and 4 for all problem variables. Generally, a single 

cooling cycle should be repeated several times to ensure that the objective function has decreased 

to a logical value proportional to the cooling cycle temperature. For this purpose, the number of 

repetitions of a single cooling cycle should be determined at the beginning (is) and end (if) of the 

cooling process. Finally, the number of repetitions of a single cooling cycle at a specific 

temperature (ic) is calculated using the following equation: 

 (17) 

Step 6: Decreasing the temperature 

After completing k cooling cycle repetitions, the system temperature must be reduced. The 

temperature of the system in the (k+1)th cooling cycle is reduced using the ratio of the cooling 

factor 𝜂 as follows: 

 (18) 
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Fig. 4 A visual depiction of Moore's neighbourhood structure for a middle, edge, and corner black cells in a 

5×5 grid (Mashayekhi and Yousefi 2021) 

 
 
4. Cellular automata (CA) method 

 

Cellular automata were first introduced by Ulam (1952) and Neumann (1966) as a pragmatic 

model for complex systems. Since their inception, cellular automata have found numerous 

theoretical and practical applications, including the modeling of natural phenomena. Various 

computational models have been developed using classical cellular automata, and some examples 

are presented in (Hoekstra et al. 2010). 

Cellular automata divide the physical domain of the problem into a regular lattice of cells. Each 

cell is assigned a finite set of values known as the cell state, updated over time using an updating 

rule. The updating rule modifies the state of each cell by using only information from the cell and 

its neighboring cells. For this study, we employed Moore's neighborhood structure of cellular 

automata, where every cell has the same neighborhood structure (Rajasekaran 2001). We 

considered a square grid of NCA×NCA cells, where NCA is the number of cells in each direction. The 

cells at the boundary of the physical domain have neighboring cells outside the border, and are 

assumed to be connected to the cells on the opposite boundary. Specifically, Moore's neighborhood 

structure of a middle, edge, and corner black cells in a 5×5 grid, with NCA =5, is shown by the 

hatched red cells in Fig. 4 (Mashayekhi and Yousefi 2021). 

 

 
5. An improved simulated annealing algorithm (CA-SA)  

 

The SA algorithm's approach to escaping local minima involves conditionally accepting weak 

designs. However, repeated acceptance of weak designs may lead to deviation of the algorithm 

from the optimal solution space. Additionally, admitting mediocre designs in the initial iterations 

of the optimization process may not be beneficial, especially when the quality of all the solutions 

is poor. Furthermore, as the number and diversity of variables in the optimization 

problem increase, the convergence rate of the SA method may decrease, particularly when a 

candidate design differs from the current one in terms of a single design variable. To address this 

issue, the present study modifies the SA method using the CA approach to enhance the quality of 

the new generated points. Specifically, the role of inadequate designs is decreased, and the use of 

better ones in generating new points is increased. To achieve this, a new enhanced algorithm called 

CA-SA is introduced for the topology optimization of steel double-layer grid structures. In CA-
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SA, the efficiency of the SA method is improved using the CA algorithm. To achieve this aim, a 

set of cells are distributed in a square lattice structure, including NCA cells in any direction. 

Therefore, the total number of cells will be NCA
2. Also, Moore's neighborhood is considered for its 

cells (Rajasekaran 2001). In the initial iterations of the CA-SA algorithm, new NCA
2 designs are 

produced and randomly located in the CA cells. After the dedication of NCA
2 different designs to all 

CA cells, in the following iterations, a cell is first selected randomly from the CA square lattice 

structure. The best design is chosen from the selected cell and its neighborhood and considered as 

a “local leader” (LL). The LL has been used to improve the search for the optimal design of Eq. 

(1). In the topology optimization problem of SDLG structures, two critical questions must be 

answered: 1. Which members of the structure should be removed, and which ones should remain? 

2. What should be the cross-sectional area of the remaining members? The first question is more 

important than the second, so even for an optimal topology, assigning inappropriate values to the 

cross-sectional area can make its objective function unsuitable. Therefore, in this article, to 

allocate a more appropriate cross-sectional area to the members of each new topology (XCa), a new 

value for some cross-sectional variables is randomly selected from LL, using the following 

equation: 

 (19) 

where r1 and r2 are random numbers that are generated in the intervals 0 and 1 with the normal 

distribution,  is the probability of using the ith variable of LL, and PLL is the probability of 

using LL to produce XCa, which is calculated as follows: 

 (20) 

where  and are the initial and final probability of using LL, respectively. In fact, in 

the early stages of optimization, where the quality of solutions and LL are not very suitable, the 

likelihood of using LL is low, but gradually, with the improvement of solution quality and, 

consequently, the progress of LL quality, the likelihood of using LL increases. 

In this article, to update the CA cell state, if the objective function of new obtained design in 

each iteration is improved, the worst design of the CA is replaced with it. In addition, the step-by-

step process of topology optimization of SDLG structures using the CA-SA optimization method 

will be presented. 

Step 1: In addition to the optimization problem specification, the parameters required for the 

CA-SA algorithm ( , , Ps, Pf, NC, 𝑑𝑧𝑚𝑎𝑥, NCA, is, if, and 𝜂) are set, and a square lattice 

including NCA
2 cells is produced. 

Step 2: An initial current design (XCu) is randomly generated, and its modified objective 

function (ΨCu) is calculated using Eq. (2). 
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Fig. 5 The topology optimization process employing the CA-SA method 
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Eqs. (15) and 
(16), 

respectively 

Yes 

No 

r2 <P 

Yes 

No r1 <PLL 

Select a random cell from CA, and identify the best cell 

from the selected cell and its neighbor (LL) 

XCa=X Cu 

Change any size variable of XCa using LL (Eq. (19)), 

if it is possible 

Calculate xi (Eq. (11))  

XCa (i)=xi 

Calculate Ψ (XCa) (Eq. (2)) 

Yes 

No 

Ψ (XCa) <= Ψ (X Cu) 

Place XCa in the position of 

the worst cell in CA if 

its objective function is better 
than that of the latter; 

XCu=XCa; 

 Ψ (XCu) = Ψ (XCa) 
 

Calculate 𝐾, 𝜑 and P, using Eqs. (15) and (16), respectively 

Yes 

No 

r3 <P 

Yes 

No 

i <NTV+NMG i=i+1 

Yes 

No 

it <ic it=it+1 

T = T * 𝜂 

cc < NC 
Yes 

cc = cc+1 

No 

XCa=X Cu 

(Step 4) 

(Step 5) 
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Table 2 Available pipe profiles (Mashayekhi et al. 2012) 

No. OD (cm) TH (cm) No. OD (cm) TH (cm) No. OD (cm) TH (cm) No. OD (cm) TH (cm) 

1 4.83 0.26 6 10.80 0.36 11 16.86 0.45 16 32.39 0.71 

2 6.03 0.29 7 11.43 0.36 12 19.37 0.45 17 35.56 0.80 

3 7.61 0.29 8 13.30 0.40 13 21.91 0.45 18 40.64 0.88 

4 8.89 0.32 9 13.97 0.40 14 24.45 0.63 19 45.72 1.00 

5 10.16 0.36 10 15.90 0.45 15 27.30 0.63  

 

Table 3 Constant count and probability parameters of the SA and CA algorithms 

 Constant count parameters Constant probability parameters 

Parameter is if dzmax NC N
CA

 PS P
f
 P

(LL)F
 P

(LL)S
 PUseLLi 

Value 1 3 5 200 4 0.5 0.001 0.9 0.1 1/NMG 

 

 

Step 3: The number of repetitions of a single cooling cycle at a specific temperature (ic) and the 

probability of using LL (PLL) are determined using Eqs. (17) and (20), respectively. 

Step 4 (There is still an empty cell in the CA): The candidate design (XCa) is created using 

Eq. (11), and its objective function (ΨCa) is determined using Eq. (2). If the objective function of 

the candidate design is better than the objective function of the current design, the candidate 

design is randomly placed in one of the empty CA cells and replaces the current design. If it is not 

better, K, 𝜑, and P (Eq. (16)) are calculated, and the candidate design is placed randomly in one of 

the empty CA cells with probability P and replaces the current design. 

Step 5 (All the CA cells are complete):  In this case, either with probability PLL, LL is used to 

determine XCa. To do this, a cell from CA is randomly selected, and LL is determined. Then, using 

LL, XCa is created using Eq. (19). Alternatively, with probability (1- PLL), XCa is created without 

determining and using LL using Eq. (11). After determining XCa using either of the two previous 

methods, its objective function (ΨCa) is calculated. If the objective function of the candidate design 

is better than the objective function of the current design, the candidate design replaces the current 

design and the worst CA cell. But if it is not better, K, 𝜑, and P are calculated (Eq. (16)), and the 

candidate design is placed with probability P in addition to replacing the current design. It also 

replaces the worst CA cell. It should be noted that replacing the candidate design with the worst 

CA cell is conditional on the candidate design being better than it. 

Step 6: Steps 4 and 5 are repeated for all design variables. 

Step 7: Steps 4 to 6 are repeated ic times. 

Step 8 (Termination): The temperature is gradually reduced, and Steps 3 to 7 are iterated until 

a predefined maximum number of cycles, denoted by NC, is reached. 

The topology optimization process with CA-SA is illustrated in Fig. 5, which depicts the 

algorithm's flowchart. 
 

 

6. Numerical examples 
 

This study evaluates the performance of the proposed CA-SA algorithm by optimizing two 

square-on-square SDLG structures. The structures are constructed from structural steel, with 

Young's modulus of E = 206 (GPa) and a material density of 7850 (kg/m3). The structures are  

126



 

 

 

 

 

 

An enhanced simulated annealing algorithm for topology optimization … 

 
Fig. 6 The 10x10 steel double-layer grid layout (Dehghani et al. 2021) 

 

     

     
Fig. 7 Optimal topology achieved through SA in the topology optimization of the 10x10 SDLG structure 

 

 

subjected to a distributed load of 180 (kg/m2), applied to the nodes of the top grid in proportion to 

their load-bearing area, as described in (Mashayekhi et al. 2011, 2012). The ground structures are 

assumed to be supported by perimeter nodes of the bottom grids. The cross-sectional areas of the  
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Fig. 8 Optimal topology achieved through CA-SA in the topology optimization of the 10x10 SDLG 

structure 

 

 

elements can be chosen from a list of available pipe profiles, as presented in Table 2, where OD 

and TH denote the outer diameter and thickness (in cm) of the cross-sectional profile, respectively. 

Two cases are examined in this study: (i) topology optimization with the SA, and (ii) topology 

optimization with the CA-SA. To account for the stochastic nature of SA and CA-SA, five separate 

optimization runs are conducted for each test problem, with different initial points for each run. It 

is worth noting that no clustering method is utilized to generate these initial populations. The 

member grouping approach developed by Mashayekhi et al. (2012) is consistently employed to 

optimize the structures. In all figures depicting the optimal designs, we use (a) to (d) to indicate 

the steel double-layer grid structure, top layer, diagonal layer, and bottom layer, respectively. 

Furthermore, the thickness of each element is directly proportional to its cross-sectional area, and 

the same scale is employed to represent element thicknesses for comparison. It is worth 

mentioning that, to display all of the elements in the optimal designs, Part (a) is presented using 

the same thickness for all members. Also, the members with internal compressive force are 

indicated in red color, and the members with internal zero or tensile force are shown in blue. 

According to the computational outcomes, the constant count and probability parameters of the 

SA and the CA, as presented in Table 3, are considered suitable choices. 
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Fig. 9 Evaluation of convergence curves obtained from the top optimization runs of SA and CA-SA in the 

10x10 SDLG topology optimization 

 
Table 4 Comparison of statistical outcomes attained from SA, CA-SA, and other metaheuristic algorithms in 

the 10x10 SDLG topology optimization problem 

Case No. 
Optimum Weight (kg) 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5  SD(kg) 

CA-SA 16688 16818 16781 16756 17939 16996 529 

SA 17826 19146 17501 16853 19146 18094 1022 

CA-ICEA 

(Dehghani et al. 2021) 
16818 16688 17473 17311 18287 17315 634 

ICA 

(Dehghani et al. 2021) 
18632 19671 17906 19790 18985 18997 776 

DE 

(Dehghani et al. 2021) 
18736 18946 20690 18134 20714 19444 1187 

ACO 

(Mashayekhi et al. 2012) 
17913 18526 17583 17340 17256 17724 516 

GPS 

(Dehghani et al. 2016) 
17759 17505 16818 19277 17400 17752 920 

ICA-GSA 

(Mashayekhi et al. 2015) 
17127 17459 17402 18601 18973 17912 819 

MGHSA 

(Mashayekhi et al. 2016) 
16852 19943 18989 18683 18502 18594 1121 

 

 

6.1 A 10x10 steel double-layer grid 
 

To validate the proposed optimization method, a 10x10 square-on-square steel double-layer 

grid consisting of 221 nodes (joints) and 800 members is utilized, and the bottom joints are 

classified into 15 groups (NTV = 15) (Dehghani et al. 2021). The steel double-layer grid has a 

depth of 290 (cm) and a node spacing of 400 (cm) in both the top and bottom chords, as shown in 

Fig. 6. 

)(kgW
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Fig. 10 The 20x20 steel double-layer grid layout (Mashayekhi et al. 2012) 

 

         

           
Fig. 11 Optimal topology achieved through SA in the topology optimization of the 20x20 SDLG structure 
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Fig. 12 Optimal topology achieved through CA-SA in the topology optimization of the 20x20 SDLG 

structure 

 

 

For Cases 1 and 2, the optimal weights of the resulting structures are determined to be 16853 

(kg) and 16688 (kg), respectively. The optimal structures for Cases 1 and 2 are presented in Figs. 

7 and 8, respectively. 

The convergence rate of the best optimal solution found in Cases 1 and 2 is depicted in Fig. 9. 

The results demonstrate that the CA-SA algorithm has a higher convergence rate than the SA 

algorithm. 

Table 4 provides a comparison of the structural weights and the associated statistical 

information (i.e., average weight ( ) and standard deviation (SD) of optimized weight) obtained 

from five independent optimization runs using SA and CA-SA in the 10x10 SDLG topology 

optimization problem. The table also compares with other meta-heuristic algorithms reported in 

the literature. The best designs are identified in the table. 

Comparing the performance of CA-ICEA (Dehghani et al. 2021) and CA-SA algorithms based 

on statistical data, it is evident that although both achieved the same best weight of 16688 kg, CA-

SA demonstrates superior performance. Specifically, the mean weight, worst weight, and standard 

deviation for CA-SA are 16996 kg, 17939 kg, and 529 kg, respectively. In contrast, these values 

for CA-ICEA (Dehghani et al. 2021) are 17315 kg, 18287 kg, and 634 kg, respectively, indicating  
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Fig. 13 Evaluation of convergence curves obtained from the top optimization runs of SA and CA-SA in the 

20x20 SDLG topology optimization 

 

 

the better performance of CA-SA. Additionally, the standard deviation of results from ACO 

(Mashayekhi et al. 2012) (516 kg) outperforms that of CA-SA (529 kg), yet CA-SA excels over 

ACO (Mashayekhi et al. 2012) in other statistical measures such as mean, worst, and best weight. 

The other statistical data presented in Table 4 indicate that the CA-SA method for the topology 

optimization of 10x10 SDLG outperforms both SA and other meta-heuristic algorithms reported in 

the literature. Hence, during the optimization process, CA-SA offers an improved balance between 

exploration and exploitation. 

 
6.2 A 20x20 steel double-layer grid 
 
As the second numerical example, a 20x20 square-on-square steel double-layer grid comprising 

841 nodes (joints) and 3,200 members is presented. The bottom joints are classified into 55 groups 

(NTV = 55). The steel double-layer grid has a depth of 450 (cm) and a node spacing of 300 (cm) in 

both the top and bottom chord, as shown in Fig. 10 (Mashayekhi et al. 2012). 

The optimal weights of the resulting structures are 76322 (kg) and 75103 (kg) for Cases 1 and 

2, respectively. The optimal structures obtained for Cases 1 and 2 are depicted in Figs. 11 and 12, 

respectively. 

The convergence rate of the best optimal solution achieved in Cases 1 and 2 is illustrated in 

Fig. 13. The results indicate that the CA-SA algorithm has a higher convergence rate than the SA 

algorithm. 

Table 5 presents a comparison of the structural weights and their corresponding statistical 

information (i.e., average weight ( ) and standard deviation (SD) of optimized weight) obtained 

from five independent optimization runs using SA and CA-SA in the 20x20 SDLG topology 

optimization problem. The table also compares with other meta-heuristic algorithms reported in 

the literature, with the best designs highlighted. 

Again, more statistical data presented in Table 5 indicate that the CA-SA method for  

W

132



 

 

 

 

 

 

An enhanced simulated annealing algorithm for topology optimization … 

Table 5 Comparison of statistical outcomes attained from SA, CA-SA, and other metaheuristic algorithms in 

the 20x20 SDLG topology optimization problem 

Case No. 
Optimum Weight (kg) 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5  SD(kg) 

CA-SA 78706 76325 81120 75103 82301 78711 3058 

SA 77559 84545 80600 78763 76322 79558 3204 

CA-ICEA 

(Dehghani et al. 2021) 
86453 82557 76902 83874 77426 81442 3715 

DE 

(Dehghani et al. 2021) 
89054 81817 86455 92254 88471 87610 3850 

ICA 

(Dehghani et al. 2021) 
88504 90694 89877 89054 92254 90077 1473 

MMA-ACO 

(Mashayekhi et al. 2012) 
86152 85607 81927 87648 83160 84899 2317 

ACO 

(Mashayekhi et al. 2012) 
89652 89947 89910 85036 92542 89417 2717 

ESO-GPS 

(Dehghani et al. 2016) 
85895 82636 86323 86155 81312 84464 2325 

GPS 

(Dehghani et al. 2016) 
88571 87648 91013 87641 84396 87854 2374 

ICA-GSA 

(Mashayekhi et al. 2015) 
80601 81854 82589 83652 81973 82134 1114 

MGHSA 

(Mashayekhi et al. 2016) 
86679 76979 84079 88039 88304 84816 4690 

GSA 

(Mashayekhi et al. 2016) 
170503 162439 173214 165540 143362 163010 11758 

 

 

the topology optimization of 20x20 SDLG outperforms both SA and all other meta-heuristic 

algorithms reported in the literature, in terms of the best, the worst, and the mean weight. Although 

the standard deviations of results obtained by ICA (1473 kg) (Dehghani et al. 2021), MMA-ACO, 

and ACO (2317 kg and 2717 kg, respectively) (Mashayekhi et al. 2012), ESO-GPS and GPS (2325 

kg and 2374 kg, respectively) (Dehghani et al. 2016), and ICA-GSA (1114 kg) (Mashayekhi et al. 

2015) are superior to that of CA-SA (3058 kg), these optimizers tend to get stuck in local optima 

and exhibit limited exploration capabilities. In contrast, CA-SA outperforms in terms of best, 

worst, and mean weight results in the topology optimization of SDLG. This is achieved by striking 

a balance between exploration and exploitation through leveraging past information within the CA 

cell to guide the search for new points in the design space using LL. 

 

 

7. Conclusions 
 

This paper proposes a hybridized stochastic optimization method, CA-SA, for topology 

optimization of steel double-layer grid structures. The CA-SA incorporates CA as an additional 

tool to enhance the SA search in the design space by implementing a local leader design (LL). The 

local leader design (LL) has been implemented in the current design to determine new values for 

multiple cross-sectional area variables simultaneously, instead of a single variable. To evaluate the 

)(kgW
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effectiveness of the proposed CA-SA method, two steel double-layer grid structures were 

examined. The efficiency of the proposed algorithm was demonstrated by comparing the 

numerical results of these 3D trusses obtained using the CA-SA method with those obtained using 

SA and other meta-heuristic optimization approaches. The two solved numerical examples show 

that using LL for simultaneous change of more than one cross-sectional area variable in the current 

design (Xcu) not only increases the convergence speed but also improves the quality of the final 

optimal solutions. 
 

 

References 
 
Amiri, H., Radfar, N., Arab Solghar, A. and Mashayekhi, M. (2023), “Two improved teaching-learning-

based optimization algorithms for the solution of inverse boundary design problems”, Soft Comput., 

https://doi.org/10.1007/s00500-023-08415-2. 

Azad, S.K., Hasançebi, O. and Kazemzadeh Azad, S. (2013), “Upper bound strategy for metaheuristic based 

design optimization of steel frames”, Adv. Eng. Softw., 57, 19-32. 

https://doi.org/10.1016/j.advengsoft.2012.11.016 

Babaei, M., Atasoy, A., Hajirasouliha, I. and Mollaei, S. (2022), “Numerical solution of beam equation 

using neural networks and evolutionary optimization tools”, Adv. Comput. Des., 7(1), 19-35.  

https://doi.org/10.12989/acd.2022.7.1.001. 

Bouzouiki, M.E., Sedaghati, R. and Stiharu, I. (2021), “A non-uniform cellular automata framework for 

topology and sizing optimization of truss structures subjected to stress and displacement constraints”, 

Comput. Struct., 242, 106394. https://doi.org/10.1016/j.compstruc.2020.106394. 

Canyurt, O.E. and Hajela, P. (2005), “A cellular framework for structural analysis and optimization”, 

Comput. Methods Appl. Mech. Eng., 194, 3516-3534. 

https://doi.org/10.1016/j.cma.2005.01.014 

Cerny, V. (1985), “Thermodynamical approach to the traveling salesman problem: An efficient simulation 

algorithm”, J. Opt. Theory. Appl., 45, 41-51. https://doi.org/10.1007/BF00940812 

Cho, A. and Kang, T.H.K. (2021), “Computer-based design optimization of post-tensioned anchor for 

single-strand”, Adv. Comput. Des., 6(4), 19-35. https://doi.org/10.12989/acd.2021.6.4.339. 

Cui, Y., Geng, Z., Zhu, Q. and Han, Y. (2017), “Review: Multi-objective optimization methods and 

application in energy saving”, Energy, 125, 681-704. https://doi.org/10.1016/j.energy.2017.02.174 

Dehghani, M., Mashayekhi, M. and Salajegheh, E. (2016), “Topology optimization of double- and triple-

layer grids using a hybrid methodology”, Eng. Optim., 48, 1333-1349. 

https://doi.org/10.1080/0305215X.2015.1105968 

Dehghani, M., Mashayekhi, M. and Sharifi, M. (2021), “An efficient imperialist competitive algorithm with 

likelihood assimilation for topology, shape and sizing optimization of truss structures”, Appl. Math. 

Model., 93, 1-27. https://doi.org/10.1016/j.apm.2020.11.044 

Dogan, E. and Saka, M.P. (2012), “Optimum design of unbraced steel frames to LRFD-AISC using particle 

swarm optimization”, Adv. Eng. Softw., 46, 27-34. https://doi.org/10.1016/j.advengsoft.2011.05.008 

Duan, L., Xu, Z., Xu, W., Zhang, X., Du, Z., Liu, X. and Jiang, H. (2023), “Subdomain hybrid cellular 

automata method for material optimization of thin-walled frame structure under transverse impact”, Int. J. 

Impact Eng., 174, 104524. https://doi.org/10.1016/j.ijimpeng.2023.104524. 

Faramarzi, A. and Afshar, M.H. (2012), “Application of cellular automata to size and topology optimization 

of truss structures”, Sci. Iran., 19, 373-380. https://doi.org/10.1016/j.scient.2012.04.009 

Ghasemi, M.R., Ghasri, M. and Salarnia A. (2022), “Soccer league optimization-based championship 

algorithm (SLOCA): A fast novel meta-heuristic technique for optimization problems”, Adv. Comput. 

Des., 7(4), 297-319. https://doi.org/10.12989/acd.2022.7.4.297. 

Hasançebi, O. (2008), “Adaptive evolution strategies in structural optimization: Enhancing their 

computational performance with applications to large-scale structures”, Comput. Struct., 86, 119-132. 

134



 

 

 

 

 

 

An enhanced simulated annealing algorithm for topology optimization … 

https://doi.org/10.1016/j.compstruc.2007.05.012 

Hasançebi, O., Ç arbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009), “Performance evaluation of 

metaheuristic search techniques in the optimum design of real size pin jointed structures”, Comput. 

Struct., 87, 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002 

Hoekstra, A.G., Kroc, J. and Sloot, P.M.A. (2010), “Simulating Complex Systems by Cellular Automata”, 

Springer, Berlin. 

Kaveh, A., Eskandari, A. and Movasat, M. (2023), “Buckling resistance prediction of high-strength steel 

columns using metaheuristic-trained artificial neural networks”, Structures, 56, 104853. 

https://doi.org/10.1016/j.istruc.2023.07.043 

Kaveh, A. and Zaerreza, A. (2022), “Reliability-based design optimization of the frame structures using the 

force method and SORA-DM framework”, Structures, 45, 814-827. 

https://doi.org/10.1016/j.istruc.2022.09.057 

Kirkpatrick, S., Gerlatt, C.D. and Vecchi, M.P. (1983), “Optimization by simulated annealing”, Science., 

220, 671-680. https://doi.org/10.1126/science.220.4598.671 

Liu, C., Zhang, F., Zhang, H., Shi, Z. and Zhu, H. (2023), “Optimization of assembly sequence of building 

components based on simulated annealing genetic algorithm”, Alexandria Eng. J., 62, 257-268. 

https://doi.org/10.1016/j.aej.2022.07.025 

Mashayekhi, M., Fadaee, M.J., Salajegheh, J. and Salajegheh, E. (2011), “Topology optimization of double-

layer grids for earthquake loads using a two-stage ESO-ACO method”, Int. J. Optim. Civ. Eng., 1, 211-

232. 

Mashayekhi, A., Mashayekhi, M. and Siciliano, B. (2023), “Identification and optimization of the operator’s 

hand and a haptic device dynamic, using artificial intelligence methods”, Int. J. Dyn. Control, 

https://doi.org/10.1007/s40435-023-01165-x. 

Mashayekhi, M., Salajegheh, E., Salajegheh, J. and Fadaee, M.J. (2012), “Reliability-based topology 

optimization of double-layer grids using a two-stage optimization method”, Struct. Multidiscipl. Opt., 45, 

815-833. https://doi.org/10.1007/s00158-011-0744-6 

Mashayekhi, M., Salajegheh, E. and Dehghani, M. (2015), “A new hybrid algorithm for topology 

optimization of double-layer grids”, Int. J. Optim. Civ. Eng., 1(3), 353-374. 

Mashayekhi, M., Salajegheh, E. and Dehghani, M. (2016), “Topology optimization of double and triple 

layer grid structures using a modified gravitational harmony search algorithm with efficient member 

grouping strategy”, Comput. Struct., 172, 40-58. https://doi.org/10.1016/j.compstruc.2016.05.008 

Mashayekhi, M. and Yousefi, R. (2021), “Topology and size optimization of truss structures using an 

improved crow search algorithm”, Struct. Eng. Mech., 77(6), 779-795. 

https://doi.org/10.12989/sem.2021.77.6.779 

Mohammadnejad, M. and Haji Kazemi, H. (2022), “Optimization of lateral resisting system of framed tubes 

combined with outrigger and belt truss”, Adv. Comput. Des., 7(1), 19-35.  

https://doi.org/10.12989/acd.2022.7.1.019. 

Mozafari, H., Ayob, A. and Kamali, F. (2012), “Optimization of functional graded plates for buckling load 

by using imperialist competitive algorithm”, Proced. Technol., 1, 144-152. 

https://doi.org/10.1016/j.protcy.2012.02.028 

Nabil, B., Khaled, B. and Mohamed, B. (2023), “Optimization of productivity in the rehabilitation of 

building linked to BIM”, Adv. Comput. Des., 8(2), 179-190. https://doi.org/10.12989/acd.2023.8.2.179. 

Neumann, J.V. (1966). “Theory of self-reproducing automata”, University of Illinois Press. 

Rajasekaran, S. (2001), “Optimization of large scale three dimensional reticulated structures using cellular 

genetics and neural networks”, Int. J. Space Struct., 16, 315-324. 

https://doi.org/10.1260/026635101760832244 

Rettl, M., Pletz, M. and Schuecker, C. (2023), “Evaluation of combinatorial algorithms for optimizing 

highly nonlinear structural problems”, Mater. Des., https://doi.org/10.1016/j.matdes.2023.111958. 

https://doi.org/10.1016/j.matdes.2023.111958 

Sonmez, M. (2011), “Discrete optimum design of truss structures using artificial bee colony algorithm”, 

Struct. Multidiscipl. Opt., 43, 85-97. https://doi.org/10.1007/s00158-010-0551-5 

135



 

 

 

 

 

 

Mostafa Mashayekhi and Hamzeh Ghasemi 

Ulam, S. (1952), “Random processes and transformations”, Proceedings of the International Congress of 

Mathematics, 2, 85-87. 

Vasile, A., Coropetchi, I.C., Sorohan, S., Picu, C.R. and Constantinescu, D.M. (2022), “A simulated 

annealing algorithm for stiffness optimization”, Procedia Structural Integrity, 37, 857-864. 

Zhang, X., Wang, D., Huang, B., Wang, S., Zhang, Z., Li, S., Xie, C., Kong, D. (2023), “A dynamic-static 

coupling topology optimization method based on hybrid cellular automata”, Structures., 50, 1573-1583. 

https://doi.org/10.1016/j.istruc.2023.02.120 

 

 

TK 

136




