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1. Introduction 
 

For theoretical vibration study of rotating cylindrical 

shell, the shells are supposed to be constructed from FG 

materials. Material composition along the radial direction is 

managed by a volume fraction law. The material stiffness 

moduli are written in integral forms and their integrands: 

geometrical parameters which are functions of the shell 

thickness variable. Vibration investigation of static and 

rotating cylindrical shells is a significant discipline in 

theoretical and applied mechanics. These shells have wide 

applications in engineering science and technology. For 

example, their uses are observed in civil, mechanical, 

electrical, nuclear engineering, aerodynamics, missile 

technology etc. More than one type of materials is used to 

structure the functionally graded materials and their 

physical properties vary from one surface to the other 

surface. In these surfaces, one has highly heat resistance 

property while other may preserve great dynamical 

perseverance and differs mechanically and physically in 
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regular manner from one surface to other surface, making 

them of dual physical appearance. All these materials have 

changeable outer and inner sides and their physical 

properties greatly differ from each other (Suresh and 

Mortense 1997, Koizumi 1997). These materials are 

organized by various techniques and their applications are 

seen in dynamical elements such as plates, beams and 

shells. Moreover, they are also observed in space crafts, 

nuclear reactors and missiles technology etc. 

Bryan (1890) is considered to be the primer research 

worker who examined studied vibrations of rotating 

cylindrical shells.  The free vibrations of a rotating ring 

were related with those of these shells. Sharma et al. (1998) 

determined frequencies of composite cylindrical shells 

containing fluid. They estimated the axial modal 

deformations by trigonometric functions. Mehar et al. 

(2016) investigated the free vibration behavior of 

functionally graded carbon nanotube reinforced composite 

plate is investigated under elevated thermal environment. 

The carbon nanotube reinforced composite plate has been 

modeled mathematically using higher order shear 

deformation theory. The material properties of carbon 

nanotube reinforced composite plate are assumed to be 

temperature dependent and graded in the thickness direction 

using different grading rules. Di Taranto and Lessen (1964) 

investigated the vibrations of thin isotropic and infinite long 
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Abstract.  The problem is formulated by applying the Kirchhoff’s conception for shell theory. The longitudinal modal 

displacement functions are assessed by characteristic beam ones meet clamped-clamped end conditions applied at the shell 

edges. The fundamental natural frequency of rotating functionally graded cylindrical shells of different parameter versus ratios 

of length-to-diameter and height-to-diameter for a wide range has been reported and investigated through the study with 

fractions laws. The frequency first increases and gain maximum value with the increase of circumferential wave mode. By 

increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies 

decrease on increasing height-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases 

and forward frequencies decreases. The trigonometric frequencies are lower than that of exponential and polynomial 

frequencies. Stability of a cylindrical shell depends highly on these aspects of material. More the shell material sustains a load 

due to physical situations, the more the shell is stable. Any predicted fatigue due to burden of vibrations is evaded by estimating 

their dynamical aspects.  
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rotating cylindrical shells. Sharma (1974) analyzed 

vibration frequencies circular cylinder with using the 

Rayleigh-Ritz formulation and made comparisons of his 

results with some experimental ones. Srinivasan and 

Lauterbach (1971) conducted the research on isotropic long 

rotating cylindrical shells including influence of coriolis 

actions on their travelling modes. Kar and Panda (2016) 

presented the free vibration responses of shear deformable 

functionally graded single/doubly curved panels under 

uniform, linear and nonlinear temperature fields. The 

micromechanical material model of functionally graded 

material is computed using Voigt model in conjunction with 

the power-law distribution to achieve the continuous 

gradation. The material properties are assumed to be the 

function of temperatures. Chung et al. (1981) studied the 

frequency response of fluid-filled CSs and presented an 

analysis of experimental and analytical investigation. 

Penzes and Kraus (1972) applied generalized end 

conditions to analyze vibrations of rotating cylindrical 

shells. The analysis of rotating shells was confined to some 

special cases owing to need of approximate approach and 

calculation process. With powerful numerical 

methodologies, shell vibration analysis has completely 

revolutionized by advanced computers. Sewall and 

Naumann (1968) considered the vibration analysis of CSs 

based on analytical and experimental methods. The shells 

were strengthened with longitudinal stiffeners.  Kar and 

Panda (2017) examined the buckling and post buckling 

behavior of functionally graded spherical shell panel under 

nonuniform thermal environment. The effective material 

properties of the graded structure are evaluated using the 

Voigt's micromechanical model through the power-law 

distribution. For the analysis purpose, a general nonlinear 

higher order mathematical model is developed in 

conjunction with Green-Lagrange geometrical nonlinearity. 

Zohar and Aboudi (1973) studied vibrations of rotating 

cylindrical shells having finite length and matrix approach 

was used to derive the shell vibration. Kar and Panda 

(2017) studied the large amplitude flexural behaviour of 

functionally graded doubly curved shell panel is 

investigated numerically under the thermomechanical load. 

The nonlinear mathematical model of doubly curved shell 

panel is developed first time based on higher-order shear 

deformation theory and Green-Lagrange geometrical 

nonlinearity. In order to achieve the exact flexure of the 

structure, all the nonlinear higher order terms are included 

in the mathematical model. Najafizadeh and Isvandzibaei 

(2007) applied ring supports to CSs for vibration analysis of 

along the tangential direction and founded their research on 

angular deformation theory of higher order. The angular 

deformation was used for shell equations and determined 

the effects of constituent volume fractions and shell 

configurations on the shell vibrations. FG material 

parameters were changed step by step. Akbaş (2017a, b) 

investigated the forced vibration analysis of a cracked 

functionally graded microbeam using modified couple 

stress theory with damping effect. Mechanical properties of 

the functionally graded beam change vary along the 

thickness direction. The crack is modelled with a rotational 

spring. The Kelvin-Voigt model is considered in the 

damping effect. static bending of an edge cracked cantilever 

nanobeam composed of functionally graded material (FGM) 

subjected to transversal point load at the free end of the 

beam is investigated based on modified couple stress 

theory. Material properties of the beam change in the height 

direction according to exponential distributions. Wang and 

Chen (1974) performed frequencies of rotating cylindrical 

shells based on energy variational approach. Ergin and 

Temarel (2002) did a vibration study of cylindrical shells. 

The shells lied in a horizontal direction and contained fluid 

and submerged in it.  

Kar and Panda (2016) investigated the post-buckling 

behaviour of functionally graded curved shell panels of 

different shell geometries (spherical, elliptical, cylindrical 

and hyperbolic) under the uniaxial and the biaxial edge 

compression. The inhomogeneity of the functionally graded 

material along the thickness direction is achieved using 

power-law distribution through Voigt’s micromechanical 

model to obtain the effective material properties. The 

cracked beam is modelled using a proper modification of 

the classical cracked-beam theory consisting of two sub-

beams connected through a massless elastic rotational 

spring. Akbaş (2017a, b) investigated the free vibration 

analysis of edge cracked cantilever microscale beams 

composed of functionally graded material (FGM) based on 

the modified couple stress theory (MCST). The material 

properties of the beam are assumed to change in the height 

direction according to the exponential distribution. The FG 

nanobeam is excited by a transverse triangular force 

impulse modulated by a harmonic motion. Mechanical 

properties of FG beam depend on the position. The Kelvin-

Voigt model is considered in the damping effect. In solution 

of the dynamic problem, finite element method is used 

within Timoshenko beam theory. 

Akbaş (2018) presented the forced vibration responses 

of a cantilever nanobeam with crack using modified couple 

stress theory with damping effect. The crack is modeled 

with a rotational spring. The Kelvin-Voigt model is 

considered in the damping effect. In solution of the dynamic 

problem, finite element method is used within Timoshenko 

beam theory in the time domain. Influences of the 

geometry, crack and material parameters on forced 

vibration responses of cracked nanobeams are examined 

and discussed. Ramteke et al. (2021) obtained the finite 

element solutions of static deflection and stress values for 

the functionally graded structure considering variable 

grading patterns (power-law, sigmoid and exponential) 

including the porosity effect. The unknown values are 

obtained computationally via a customized computer code 

with the help of cubic-order displacement functions 

considering the varied distribution of porosity (even and 

uneven) through the panel thickness. Padovan (1975) did 

analysis of pre-stress influence on buckling and vibration 

aspects of rotating cylindrical shells. Akbaş (2019) 

presented axially forced vibration of a cracked nanorod 

under harmonic external dynamically load. In constitutive 

equation of problem, the nonlocal elasticity theory is used. 

The Crack is modelled as an axial spring in the crack 

section. In the axial spring model, the nonrod separates two 

sub-nanorods and the flexibility of the axial spring 
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represents the effect of the crack. Boundary condition of the 

nanorod is selected as fixed-free and a harmonic load is 

subjected at the free end of the nanorod. Ramteke et al. 

(2020) studied two directional graded structure has been 

developed using a commercial FE package ANSYS and the 

subsequent deflection responses are obtained. Additionally, 

the model includes the porosity within the graded structure 

considering even type of distribution pattern. The present 

model is derived using the basic steps available in the 

ANSYS platform through the batch input technique. 

Goncalves and Batista (1987) gave an analytical 

investigation of submerged CSs with fluid. Ramteke (2019) 

developed a geometrical model for the analysis and 

modelling of the uniaxial functionally graded structure 

using the higher-order displacement kinematics with and 

without the presence of porosity including the distribution. 

Additionally, the formulation is capable of modelling three 

different kinds of grading patterns i.e., Power-law, sigmoid 

and exponential distribution of the individual constituents 

through the thickness direction. Fox and Hardie (1985) 

examined vibrations of rotating cylindrical shells. They 

used shell theory due to Flugge for shell motion equations. 

Akbaş (2020) investigated the axially damped forced 

vibration responses of viscoelastic nanorods within the 

frame of the modal analysis. The nonlocal elasticity theory 

is used in the constitutive relation of the nanorod with the 

Kelvin-Voigt viscoelastic model. In the forced vibration 

problem, a cantilever nanorod subjected to a harmonic load 

at the free end of the nanorod is considered in the numerical 

examples. Amabili et al. (1999) used Donnell’s shallow-

shell model with the quiescent, dense, inviscid and 

incompressible fluid. Also the dense fluid is studied for the 

influence of both the internal and external side of the shell. 

In the external side of the shell, the fluid was considered as 

an unbounded domain in the radial direction, while 

internally, the shell was considered as filled completely. 

The shell motion equations were used for rotating 

cylindrical shell by different researchers (Saito and Endo 

1996, Wang and Sivadas and Ganesan 1994, Chen et al. 

(1993). Civalek (2020) presented the free vibration 

characteristics of thick skew plates reinforced by 

functionally graded carbon nanotubes (CNTs) reinforced 

composite. Discrete singular convolution (DSC) method is 

used for the numerical solution of vibration problems via 

geometric mapping technique. Using the geometric 

transformation via a four‐node element, the straight‐sided 

quadrilateral physical domain is mapped into a square 

domain in the computational space. Lam and Loy (1994) 

investigated the vibrations of rotating composite and 

sandwich cylindrical shells. They performed comparisons 

of vibration frequencies of composited rotating cylindrical 

shells and evaluated the results applying different shell 

theories. Civalek and Jalaei (2020) studied a geometric 

transformation method based on discrete singular 

convolution (DSC) to solve the buckling problem of a 

functionally graded carbon nanotube (FG-CNT)-reinforced 

composite skew plate. The straight-sided quadrilateral plate 

geometry is mapped into a square domain in the 

computational space using a four-node DSC transformation 

method. Akbaş (2016a, b) studied the forced vibration 

analysis of a simple supported viscoelastic nanobeam based 

on modified couple stress theory (MCST). The nanobeam is 

excited by a transverse triangular force impulse modulated 

by a harmonic motion. The elastic medium is considered as 

Winkler-Pasternak elastic foundation. The damping effect is 

considered by using the Kelvin-Voigt viscoelastic model. 

Pankaj et al. (2019) studied the functionally graded material 

using sigmoid law distribution under hygrothermal effect. 

Frequency spectra for aspect ratios have been depicted 

according to various edge conditions. Li and Lam (1998) 

studied influence of edge conditions vibration frequencies 

and modes of rotating composite CSs. Several researchers 

used different approaches for the investigation of frequency 

of cylinders and concrete material (Kagimoto et al. 2015, 

Mesbah and Benzaid 2017, Alijani and Bidgoli 2018, Demir 

and Livaoglu 2019, Samadvand and Dehestani 2020, 

Ramteke et al. 2020, Ramteke and Panda 2021, Mehar and 

Panda 2018). 

In present paper, vibrations of rotating FG-CSs have 

been analyzed with clamped-clamped with different law 

index. The governing equation has been developed for the 

vibrations of FG-CSs considering the various power law 

indexes. Also the rotating frequency characteristics of shell 

for different geometrical parameters (ratios of thickness-to-

radius and length-to-radius) is either not established or 

assumed very little attention. Functionally graded materials 

are assumed to be structured them. Dynamical behavior of a 

cylindrical shell is described with regard to the reference 

surface, length, radius and thickness quantities and 

boundary conditions applied its ends. For motion of a static 

cylindrical shell, a stationary wave is generated due to 

vibration. Moreover, on increasing the rotating speed, the 

backward frequencies increases and forward frequencies 

decreases. 

 

 

2. Mathematical formulation 
 

The motion of cylindrical shell predominates the 

resultant forces and moments so expressions for these 

forces are written as 

{𝑁𝑥𝑥 , 𝑁𝜃𝜃 , 𝑁𝑥𝜃} − 𝛻2{𝑁𝑥𝑥 , 𝑁𝜃𝜃 , 𝑁𝑥𝜃}

= ∫ (𝜎̃𝑥𝑥 , 𝜎̃𝜃𝜃 , 𝜎̃𝑥𝜃)𝑑𝑧

ℎ
2

−ℎ
2

 (1) 

{𝑀𝑥𝑥 , 𝑀𝜃𝜃 , 𝑀𝑥𝜃} − 𝛻2{𝑀𝑥𝑥 , 𝑀𝜃𝜃 , 𝑀𝑥𝜃} 

= ∫ (𝜎̃𝑥𝑥 , 𝜎̃𝜃𝜃 , 𝜎̃𝑥𝜃)𝑧𝑑𝑧

ℎ
2

−ℎ
2

 
(2) 

here 𝜎̃𝑥𝑥 and 𝜎̃𝜃𝜃 stands for stress factors along the axial 

and tangential directions respectively and 𝜎̃𝑥𝜃  indicates the 

shear stress in x𝜃-plane. 

The stress element from Hooke’s law can be written as 

(

𝜎̃𝑥𝑥

𝜎̃𝜃𝜃

𝜎̃𝑥𝜃

) − 𝛻2 (

𝜎̃𝑥𝑥

𝜎̃𝜃𝜃

𝜎̃𝑥𝜃

) = [

𝑄̂11 𝑄̂12 0

𝑄̂12 𝑄̂22 0

0 0 𝑄̂66

] (

𝑒𝑥𝑥

𝑒𝜃𝜃

𝑒𝑥𝜃

) (3) 
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In same manner 𝑒𝑥𝑥 and 𝑒𝜃𝜃 exhibit the strain in x- 

and θ-directions and 𝑒𝑥𝜃  presents the shear strain in the 

x 𝜃-plane.

                         

For FG-CSs, 𝑄̂𝑘𝑙  (𝑘, 𝑙 = 1,2, . . .6)  symbolizes tis 

termed as 

𝑄̂11 =
𝐸

1 − 𝜈2
= 𝑄̂22, 𝑄̂12 =

𝜈𝐸

1 − 𝜈2
= 𝑄̂21, 

𝑄̂66 =
𝐸

2(1 + 𝜈)
 

(4) 

Love (1952) submitted the first thin shell theory on base of 

Kirchhoff’s conception. Moreover, an additional modified 

form of thin shell theory (1963) is established. The 

components of the strain vector (𝑒)  in Eq. (3), that are 

considered by Love (1952) can be expressed as linear 

combinations 

𝑒𝑥𝑥 = 𝑒11 + 𝑧𝜅11, 𝑒𝜃𝜃 = 𝑒22 + 𝑧𝜅22, 

𝑒𝑥𝜃 = 𝑒12 + 2𝑧𝜅12 
(5) 

𝜅11, 𝜅22, and 𝜅12 are known as surface curvatures whereas 

𝑒11, 𝑒22 and 𝑒12 signify the reference surface strains. 

Since from Love’s theory, the expressions of relation 

between strain and curvature displacement functions are 

considered as 

[𝑒11, 𝑒22, 𝑒12] = [
𝜕𝑢

𝜕𝑥
,
1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) , (

𝜕𝑣

𝜕𝑥
+

1

𝑅

𝜕𝑢

𝜕𝜃
)] 

[𝜅11, 𝜅22, 𝜅12] =

[
 
 
 
 −

𝜕2𝑤

𝜕𝑥2
, −

1

𝑅2
(
𝜕2𝑤

𝜕𝜃2
−

𝜕𝑣

𝜕𝜃
) ,

−
2

𝑅
(

𝜕2𝑤

𝜕𝑥𝜕𝜃
−

3

4

𝜕𝑣

𝜕𝑥
+

1

4𝑅

𝜕𝑢

𝜕𝜃
)
]
 
 
 
 

 

(6) 

By substituting Eqs. (3)-(6), resultant forces and 

moments takes the following form 

𝑁𝑥𝑥 − 𝛻2𝑁𝑥𝑥 = ∫ 𝜎̃𝑥𝑥𝑑𝑧

ℎ
2

−ℎ
2

= 

𝐸ℎ

1 − 𝜈2

𝜕𝑢

𝜕𝑥
+

𝜈𝐸ℎ

1 − 𝜈2

1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) 

(7a) 

𝑁𝜃𝜃 − 𝛻2𝑁𝜃𝜃 = ∫ 𝜎̃𝜃𝜃𝑑𝑧

ℎ
2

−ℎ
2

= 

𝜈𝐸ℎ

1 − 𝜈2

𝜕𝑢

𝜕𝑥
+

𝐸ℎ

1 − 𝜈2

1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) 

(7b) 

𝑁𝑥𝜃 − 𝛻2𝑁𝑥𝜃 = ∫ 𝜎̃𝑥𝜃𝑑𝑧

ℎ
2

−ℎ
2

= 

𝐸ℎ

2(1 + 𝜈)
(
1

𝑅

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝜃
) 

(7c) 

𝑀𝑥𝑥 − 𝛻2𝑀𝑥𝑥 = ∫ 𝜎̃𝑥𝑥𝑑𝑧

ℎ
2

−ℎ
2

= 

𝜈𝐷

𝑅2

𝜕𝑣

𝜕𝜃
− 𝐷(

𝜈

𝑅2

𝜕2𝑤

𝜕𝜃2
+

𝜕2𝑤

𝜕𝑥2
) 

(7d) 

𝑀𝜃𝜃 − 𝛻2𝑀𝜃𝜃 = ∫ 𝜎̃𝜃𝜃𝑑𝑧

ℎ
2

−ℎ
2

= 

𝐷

𝑅2

𝜕𝑣

𝜕𝜃
− 𝐷(

1

𝑅2

𝜕2𝑤

𝜕𝜃2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
) 

(7e) 

𝑀𝑥𝜃 − 𝛻2𝑀𝑥𝜃 = ∫ 𝜎̃𝑥𝜃𝑧𝑑𝑧

ℎ
2

−ℎ
2

= 

𝐷
(1 − 𝜈)

𝑅
(
𝜕𝑢

𝜕𝜃
+

3

4

𝜕𝑣

𝜕𝑥
−

𝜕2𝑤

𝜕𝜃𝜕𝑥
) 

(7f) 

Meanwhile 𝐷 =
𝐸ℎ

3

12(1−𝜈2)
 refers as bending rigidity of 

shell. 

The mass density per unit length 𝜌𝑡 is defined as 

𝜌𝑡 = ∫ 𝜌𝑑𝑧

ℎ
2

−ℎ
2

 (8) 

while 𝜌 entitles as mass density. 

The fundamental equations from the Love shell theory 

(1952) are considered as 

𝜕𝑁𝑥𝑥

𝜕𝑥
+

1

𝑅

𝜕𝑁𝑥𝜃

𝜕𝜃
−

1

2𝑅2

𝜕𝑀𝑥𝜃

𝜕𝜃
= 𝜌𝑡

𝜕2𝑢

𝜕2𝑡
 

1

𝑅

𝜕𝑁𝜃𝜃

𝜕𝜃
+

𝜕𝑁𝑥𝜃

𝜕𝑥
+

1

𝑅2

𝜕𝑀𝜃𝜃

𝜕𝜃
+

3

2𝑅

𝜕𝑀𝑥𝜃

𝜕𝑥
= 

𝜌𝑡 (
𝜕2𝑣

𝜕2𝑡
+ 𝜓

𝜕𝑤

𝜕𝑡
− 𝜓2𝑣) 

𝜕2𝑀𝑥𝑥

𝜕𝑥2
+

1

𝑅2

𝜕2𝑀𝜃𝜃

𝜕2𝜃
+

2

𝑅

𝜕2𝑀𝑥𝜃

𝜕𝜃𝜕𝑥
−

𝑁𝜃𝜃

𝑅
+ 𝑝 = 

𝜌𝑡 (
𝜕2𝑤

𝜕2𝑡
− 𝜓

𝜕𝑣

𝜕𝑡
− 𝜓2𝑣) 

(9) 

where 𝜌 expresses the applied pressure on the shell. 

 

 

3. Volume fraction laws 
 

Vibrations of rotating FG circular cylindrical shells are 

inspected for three volume fraction laws viz.: polynomial, 

exponential and trigonometric. These laws control 

functionally graded material composition in the shell radius 

direction. The term 𝑉𝑓  is designated as total volume 

fraction of FG-CS, respectively. The power exponent is 

denoted as 𝛤 and h for thickness and z is the coordinate 

which varies from zero to infinity 

𝑉𝑓 = (
𝑧

ℎ
+

1

2
)

𝜂

 (10) 

  
On mixing two or more than two materials like nickel and 

stainless steel, functionally graded materials are obtained. 

These shells are classified into two kinds depending on the 

order of constituent materials. Their arrangement has 

profound influence on the formation of FG-CSs. The order 

of the FG constituent materials is reversed as Type-I and 

Type-II. At temperature 300K, the material properties for 

FG-CS are: 𝐸 , 𝜐 , 𝜌  for Stainless steel are 

2.077882×1011 𝑁

m2, 0.317756 and 8166 
𝐾𝑔

m3 and Nickel are 

2.05098×1011 𝑁

m2, 0.3100, and 8900 
𝐾𝑔

m3.  
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So the Young’s modulus 𝐸𝑓𝑔𝑚, Poisson ratio 𝑣𝑓𝑔𝑚 and 

mass density 𝜌𝑓𝑔𝑚 for three different laws are defined as: 

FGM Polynomial Law (Law-I) 

𝜌 = (𝜌1 − 𝜌2) (
z

h
+ 0.5)



+ 𝜌2  (11) 

FGM Exponential Law (Law-II) 

𝐸 = (𝐸1 − 𝐸2) (1 − 𝑒−(
2
ℎ
+

1
2
)
𝜂

) + 𝐸2 (12) 

FGM Trigonometric Law (Law-III) 

𝑣 = (𝑣1 − 𝑣2) 𝑠𝑖𝑛2 [(
2

ℎ
+

1

2
)

𝜂

] + 𝑣2 (13) 

In Eqs. (11)-(13), other physical parameter can be 

written same. When 𝑧 = −
ℎ

2
 is substituted in the Eqs. (8)-

(13), 𝐸 = 𝐸2 , 𝜈 = 𝜈2  and 𝜌 = 𝜌2  which are material 

properties of Type-I and when substitution 𝑧 =
ℎ

2
 is made 

in the above expressions, 𝐸 = 𝐸1, 𝜈 = 𝜈1 and 𝜌 = 𝜌1 for 

a Type-II. These substitutions show that there is an 

incessant change of fabric properties of the fabric Type-I at 

the shell internal surface to those of the fabric Type-II, at 

the shell external surface where 𝑧 = 0 is associated to its 

mid surface. A FG-CS comprised of two materials is 

heterogeneous shell and its vibration characteristics are can 

be studied by applying any appropriate thin shell theory 

provided its radius to thickness ratio is greater than twenty. 

During the past few years, numerous theories have been 

extensively debated for vibration of nanotube, shell and 

plate morphologies of several conformations depending 

upon certain edge conditions. Wave propagation approach 

is among the most significant and successfully used 

numerical technique by researchers to investigate the free 

vibrations of cylinder-shaped shell, plates and nanotubes. 

The three modal displacement functions of the shell for 𝑖𝑡ℎ 

tube can be written as 

𝑢(𝑖) = 𝑎𝑚 𝑐𝑜𝑠( 𝑛𝜃)𝑒(𝜄̇𝜔𝑡−𝜄̇𝑘𝑚𝑥) (14a) 

𝑣(𝑖) = 𝑏𝑚 𝑠𝑖𝑛( 𝑛𝜃)𝑒(𝜄̇𝜔𝑡−𝜄̇𝑘𝑚𝑥) (14b) 

𝑤(𝑖) = 𝑐𝑚 𝑐𝑜𝑠( 𝑛𝜃)𝑒(𝜄̇𝜔𝑡−𝜄̇𝑘𝑚𝑥) (14c) 

where 𝑎𝑚, 𝑏𝑚 , 𝑐𝑚  describe the displacement amplitude 

coefficients in 𝑥, 𝜃 and 𝑧 directions correspondingly. The 

angular frequency is designated as 𝜔, circumferential wave 

number by 𝑛  and 𝑘𝑚  referred to be axial wave number 

allied with end supports obligatory on FG-CSs. After 

putting the Eqs. (14a)-(14c) into Eq. (9), we get a frequency 

equation in Eigen value form. 

 

 

4. Result and discussion 
 

For a system of multiple fraction laws, the present 

model is based on the Kirchhoff’s conception. The 

vibrational response has been demonstrated and verified 

with results presented in the literature. Considering the 

negligible percentage of error, thus it confirms the 

Table 1 Comparison for isotropic cylindrical shell with 

Moazzez et al. (2018) 

m Method 
n 

1 2 3 4 5 

1 

Moazzez et al. 

(2018) 
3.81 10.87 22.02 39.00 61.21 

Present 3.86 10.91 22.19 39.29 61.43 

 

Table 2 Convergence of present method frequencies (Zhang 

et al. 2001) 

Method 
Modal order (m, n) 

(1,3) (2,3) (3,3) (3,4) 

Zhang et al. (2001) 8.94 10.64 14.66 19.96 

Present 8.90 10.62 14.59 19.85 

Zhang et al. (2001) 19.61 23.28 31.98 39.78 

Present 19.6 23.31 32.01 39.81 

 

Table 3 Rotating FGM Type-I and-II frequency variation of 

versus, 𝜓 (n=2, 𝜂=0.7, L=5 m, h=0.003 m, R=1 m) 

  𝑚  𝜓 

0.1 0.2 0.3 0.4 0.5 

Type-I 1 
Backward 38.917 39.017 39.120 39.227 39.336 

Forward 38.726 40.634 38.546 38.461 38.379 

Type-II 1 
backward 38.953 41.053 42.156 42.263 38.372 

forward 38.810 38.670 42.582 42.497 38.414 

 

Table 4 Rotating FGM Type-I frequency variation of 

versus, h/R: (m=1, L/R=15, η=0.5, n=2, ψ=3) 

h/R 
Polynomial Exponential Trigonometric 

Backward Forward Backward Forward Backward Forward 

0.001 10.463 9.6999 10.445 9.6811 10.427 9.6623 

0.002 15.522 14.758 15.495 14.731 15.477 14.713 

0.003 21.398 20.634 21.361 20.597 21.343 20.409 

0.004 27.564 26.800 27.518 26.753 27.501 26.565 

0.005 33.859 33.095 33.803 33.039 33.803 32.851 

0.006 40.222 39.457 40.155 39.391 40.137 39.203 

0.007 46.621 45.857 46.545 45.780 46.527 45.592 

0.008 53.044 52.279 52.957 52.192 52.939 52.004 

0.009 59.480 58.715 59.383 58.618 59.365 58.430 

0.01 65.924 65.159 65.817 65.052 65.796 64.864 

 

 

validation of suggested shell model. Some numerical results 

are evaluated for isotropic cylindrical shell for comparing 

with existing results found in the literature. The present 

model can be easily reduced to the isotropic one by 

considering suitable material parameter for isotropic tube. 

Hence the present model holds good agreement with the 

existing results (Moazzez et al. 2018, Zhang et al. 200) for 

isotropic tubes as seen in Tables 1 and 2. Table 3 shows the 

rotating frequencies versus n (wave number) and m (axial 

wave mode) for both Types (I and II). The frequencies for 

backward and forward waves increase indefinitely as n and 

m grows for FG-CSs. Moreover, the order of constituent 

material of the shell impresses the frequency values. 
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Fig. 1 The backward and forward Type-I C-C frequencies 

against n: (m=1, h/R=0.03, L/R=10, ψ=1, η=30) 

 

 

Fig. 2 The backward and forward Type-I C-C frequencies 

against n: (m=1, h/R=0.03, L/R=10, η=30) 

 

 

Tables 4 and 5 shows the frequency value w.r.t h/R. The 

frequency values increase on increasing h/R for Types (I 

and II). The polynomial frequencies are higher than that of 

other two laws. It is also exhibited that the frequencies of 

Type-I is less than that of Type-II. Figs. 1 and 2 shows the 

variations of Type-I and -II frequencies with clamped-

clamped (C-C) end condition versus n. The material work 

of the shell is restricted by three volume fraction laws: (I), 

(II), (III). It shows that frequency determined by the 

polynomial law is the higher than that calculated from other 

two laws. It shows that frequency determined by the 

trigonometric law is the higher than that evaluated from 

other two laws. In these figures, the natural frequencies 

(Hz) of a rotating functionally graded cylindrical shell 

drawing for the circumferential wave number n. The 

variation of frequencies have been established with the 

polynomial (Law-I), exponential (Law-II) and trigonometric 

(Law-III) which is called the volume fraction laws. Both 

backward and forward frequencies increase as their 

circumferential wave number n is increased. Tables 6 and 7 

indicates the frequency pattern versus ψ (angular speed) 

 

Fig. 3 The backward and forward Type-I C-C frequencies 

against L/R: v=0.3, m=1, h/R=0.01, η=10, n=2, ψ=3) 

 

 

Fig. 4 The backward and forward Type-II C-C frequencies 

against L/R: v=0.3, m=1, h/R=0.01, η=10, n=2, ψ=3) 

 

Table 5 Rotating FGM Type-II frequency variation of 

versus, h/R: (m=1, L/R=10, η=0.7, n=2, ψ=3) 

h/R 
Polynomial Exponential Trigonometric 

Backward Forward Backward Forward Backward Forward 

0.001 18.322 17.558 18.354 17.591 18.386 17.624 

0.002 21.549 20.786 21.589 20.825 21.621 20.858 

0.003 26.050 25.287 26.097 25.333 26.129 25.366 

0.004 31.272 30.509 31.327 30.563 31.359 30.596 

0.005 36.907 36.143 36.074 35.805 36.106 35.738 

0.006 42.788 42.023 42.857 42.095 42.889 42.127 

0.007 48.825 48.060 48.905 48.140 48.937 48.173 

0.008 54.965 54.203 55.053 54.288 55.085 54.321 

0.009 61.175 60.410 61.272 60.507 61.304 60.540 

0.01 67.4343 66.669 67.540 66.775 67.572 66.808 

 

 

for two rotating functionally graded cylindrical shells. The 

frequencies pattern observed different for backward and 

forward on increasing the rotation speed. When shell starts 

rotation from ψ=0, the backward and forward frequencies 

constant for Types (I and II). The backward frequencies of 

shell increases and forward frequencies decrease on 

increasing the rotation speed (Chen et al. 1993). The shape 
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Table 6 The natural frequencies (Hz) for C-C functionally 

graded cylindrical shell with angular speed ψ for Type I: 

(m=1, h/R=0.05, L/R=10, n=2, η=30) 

Ω 
Polynomial Exponential Trigonometric 

Backward Forward Backward Forward Backward Forward 

0 25.633 25.583 25.403 25.301 25.163 25.101 

1 25.939 25.244 26 25 25 25 

2 26.209 24.999 25.912 24.732 25.632 24.522 

3 26.506 24.7833 26.123 24.521 25.823 24.271 

4 26.747 24.586 26.341 24.311 26.041 24.059 

5 26.978 24.37 26.571 24.1091 26.221 23.841 

6 27.199 24.1733 26.771 23.9051 26.391 23.641 

7 27.43 23.9433 26.993 23.6833 26.599 23.433 

8 27.668 23.753 27.173 23.5001 26.798 23.2293 

9 27.893 23.563 27.395 23.3211 26.985 23.0651 

 

Table 7 The natural frequencies (Hz) for C-C functionally 

graded cylindrical shell with angular speed 𝜓 for Type II: 

(m=1, h/R=0.03, L/R=10, n=2, η=30) 

Ω 
Polynomial Exponential Trigonometric 

Backward Forward Backward Forward Backward Forward 

0 11.163 11.102 11.402 11.302 11.624 11.582 

1 11.407 11.782 12.678 11.992 11.932 11.243 

2 11.632 10.523 11.913 10.731 12.178 10.998 

3 11.821 10.272 12.122 10.522 12.414 10.7834 

4 12.042 10.057 12.342 10.313 12.646 10.587 

5 12.222 9.842 12.5714 10.1092 12.877 10.361 

6 12.393 9.6421 12.775 9.9054 13.098 10.132 

7 12.595 9.4332 12.992 9.6832 13.321 9.9434 

8 12.799 9.2293 13.176 9.5006 13.567 9.752 

9 12.985 9.0653 13.395 9.3212 13.794 9.5608 

 

 

of the graph has a different style for backward and forward 

frequencies. Figs. 3 and 4 sketched for natural frequencies 

(Hz) for a rotating functionally graded cylindrical shell are 

sketched versus L/R for Type-I. As L/R is increased, the 

backward and forward frequencies (Hz) get lower down for 

all laws. As for the frequency variation behavior with the 

laws, both forward and backward frequencies are higher 

than those corresponding to other two laws. For the 

polynomial volume law, the forward and backward 

frequencies are the highest than those for other two laws. In 

Fig. 4, natural frequencies (Hz) for a rotating functionally 

graded cylindrical shell Type are sketched versus L/R for 

Type-II. As L/R is enhanced, the backward and forward 

frequencies (Hz) diminish for the three volume fraction 

laws. As for the frequency variation behavior with the laws, 

both forward and backward frequencies are higher than 

those corresponding to other two laws. For the 

trigonometric volume law, the forward and backward 

frequencies are the lowest than those for other two laws i.e., 

the polynomial and exponential. 

5. Conclusions 
 

Employment of the Kirchhoff’s conception for shell 

theory gives birth to the shell frequency equation. Influence 

of functionally graded materials is examined on shell 

frequencies. Expressions for modal displacement functions, 

the three unknown functions are supposed in such way that 

the axial, circumferential and time variables are separated 

by the product method. Throughout the computation, 

clamped-clamped edge condition is used. To generate the 

fundamental natural frequencies and for better accuracy and 

effectiveness, the computer software MATLAB is used. 

The rotating frequencies of FG-shell with three fraction 

laws are investigated with circumferential wave number, 

length- and height-radius ratios. Moreover, the effect of 

height- and length-to-radius ratio is investigated. It is 

examined that the backward and forward frequencies 

increase and decrease on increasing the ratio of height- and 

length-to-radius ratio. It has been. It is found that the 

rotating frequencies of exponential law is sandwich 

between the polynomial and trigonometric laws. The 

present procedure can be protracted to perform vibration 

study of rotating fluid-filled carbon nanotubes with ring 

supports. 
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