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Abstract.  In this article, we propose a criterion for ensuring the asymptotic stability of large multiple delays, based 
on the direct Lyapunov method. Based on this criterion and distributed control scheme, the controllers are 
synthesized by the PDC to stabilize these large-scale systems with multiple delays. And we focus on the results 
which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis 
of composite materials. Finally, the numerical simulations confirmed the effectiveness of the method. 
 

Keywords:  aerospace vehicles; LMI; nonlinear systems; smart control; stability analysis 

 
 
1. Introduction 
 

Mathematics seems to be a guide, appearing by the physicist at the right time, bringing light to 

the gloomy world of physics. However, the mutual influence of mathematics and physics is far 

more complicated than the story told. In most recorded history, physics and mathematics are not 

even separate subjects. The mathematics of ancient Greece, Egypt, and Babylon believed that we 

live in a world where distance, time, and gravity all operate in a certain way. The mathematical 

and statistical models for many physical, nature and technical systems are generally large or 

contain dynamic interaction phenomena and the cost for testing these models of control purposes 

are often too high. Therefore, it is natural to find a technique that can reduce the calculation costs. 

The large systems methodology provides this technique by manipulating the structure of the 

system in some way. Therefore, research on modeling, math, analysis, collection, optimization and 

control of large-scale systems has generated great interest. Recently, many of these methods have 

been proposed to verify the stability of the literature and the stability of large systems (Yang and 

Chang 1996, Bedirhanoglu 2014, 2004, 2005, Chiang et al. 2007, Liu et al. 2009, Liu et al. 2010, 

Hung et al. 2019, Eswaran and Reddy 2016 and references included). 

In a computer network, because different communication subnets and network architectures 

adopt different transfer control methods, the transfer delay in the communication subnet is 

determined by the network status. The delay time caused by the electrical signal response is fixed. 

The smaller the response time, the smaller the delay, the larger the bandwidth, and the higher the 
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transmission rate. Therefore, the larger the channel bandwidth, the smaller the delay. Delay time is 

the time it takes to get a packet from a specific point. Delay time is generally the sum of response 

delay and transmission delay. Delays usually occur in other technological systems. Computer 

control systems, for example, experience delays because computers take a long time to perform 

digital tasks. Also, there are remote operations, radar, power grid, transportation, metal delay and 

so on. The outputs of these systems do not respond to the input data until a certain amount of time 

has passed. The introduction of a delay factor usually causes instability and often complicates the 

analysis. Therefore, the analysis of the delay stability of the system on research (Mori 1985, Trine 

Aldeen 1995, Tsai et al. 2012, 2015, Tim et al. 2019, Chen 2011, 2014, Tim et al. 2020, Chen et 

al. 2020) have published and executed by demonstrations. 

In recent years, there has much been on the topic of a growing interest in system controls. 

There are already many successful applications. Despite that of its success, it is clear that a great of 

basic problems remain to be solved and the main problem with control systems is system design to 

ensure stability. Recently, there have been many studies on the stability (see Tanaka Sugeno 1992, 

Tim et al. 2021, Zhen et al. 2021, Chen et al. 2022, Hsiao et al., Wang et al. 1996, Tanaka et al. 

1996, Feng et al. 1997 and references). The history of applying the artificial intelligence tools into 

the the engineering problems has been presented in some papers. For example, Chiang et al. 

(2001, 2002, 2004) have provided the novel criterion for system, Chengwu et al. (2002) provided 

the LMI form for system, Hsiao et al. (2003, 2005) utilized the AI theory in nonlinear systems, 

Hsieh et al. (2006) proposed the stability analysis for AI, Lin et al. (2010) et al. provided the 

control application in TLP system, Chen et al. (2006, 2007, 2009) also demonstrated the 

performance by neural network based LDI theory. Recently Chen et al. (2019, 2020) had some 

research results of evolutionary models for engineering applications (Mori 1985 and Trine Aldeen 

1995, Tsai et al. 2012, 2015, Tim et al. 2019, Chen 2011, 2014, Tim et al. 2020, Chen et al. 2020). 

However, studies in the literature have yet to solve the stability and non-stable problem of large 

systems with multiple delays.  

Consequently, this study has a stability criterion based directly on the Lyapunov method to 

provide asymptotic stability to large systems with multiple delays. In accordance with this 

criterion and decentralized control schemes, fuzzy control groups are incorporated, stabilizing 

large-scale systems in multiple delays consisting of multiple interconnected subsystems. 

Furthermore, these subsystems are represented by a fuzzy Takagi-Sugeno model in multiple 

delays. In these models, each rule is represented by a linear system model, so linear feedback 

control can be used as feedback stability. Therefore, the kind of control design is based on the 

fuzzy model that uses a parallel distributed compensation (PDC) scheme. The ideas are those all 

linear local linear models control feedback share the same premises. And we focus on the results 

which shows the high effective by the proposed theory utilized for damage propagation for aircraft 

structural analysis of composite materials. 

In summary, we briefly introduce Takagi Sugeno's fuzzy model with some delays and describe 

the system. The stability criterion is then derived and considered based on the Lyapunov method, 

ensuring asymptotic stability of systems with multiple delays. And we focus on the results which 

shows the high effective by the proposed theory utilized for damage propagation for aircraft 

structural analysis of composite materials. Finally, the results explain and draw conclusions for the 

numerical simulation examples they are referred to. 

 

 

2. System description  
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The following we review a nonlinear parabolic PDE  

To simplify the construction of the equation Eq. (2.1), we consider a nonlinear J as 

interconnected in subsystems Fj, j=1,2,…,J. The jth as isolated subsystems (without any 

interconnection) of F are represented by the technique of IF-THEN delay control model of Takagi-

Sugeno. The main feature of the Takagi-Sugeno fuzzy model with multiple delays is the 

expression of each of rule by means of a linear equation of state, and the model is as follows (Chen 

2014, Chen et al. 2019, Chen et al. 2020) 
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where 𝐶𝑛𝑗 is the interconnection. 

 

 

3. Parallel Distributed Compensation (PDC) 
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The fuzzy control, according to a distributed control system using PDC technology, is used to 

stabilize a large number of synthetic design. The concept of the PDC scheme is to provide a way to 

handle each distribution rule for the relevant rules of the Takagi Sugenno model with multiple 

delays. Each rule in the model is described linear, so you can use linear control theory to develop 

controllers.  

The fuzzy controller of the jth subsystem of rule i is derived as follows. 

IF any of ig jg jjij MtxMtx   is  )( and  and    is  )( 11  ,  THEN one )()( txKtu jijj −= ,       (3.1) 

in which i =1, 2,…, 𝑟𝑗. Hence, these final outputs of the fuzzy controllers are  
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Combine (3.2) and (2.4), the subsystem becomes 
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Theorem 1: These multiple time-delay fuzzy large-scale systems F are asymptotically 
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and 𝜆𝑀(. ) is the maximum eigenvalues, 𝜆𝑚(. ) is minimal eigenvalues. 

Proof: See Appendix.  

Remark 1: Both conditions are met by default. The stability of systems F with delays can be 

verified using the equations in (3.4) and (3.5). Therefore, it is advisable to check for asymptotic 

stability under certain conditions. If this fails, another condition is required.  

An evolutionary bat algorithm (EBA) based on a complex system of bats in the wild is 

proposed. Unlike other cluster reconnaissance algorithms, the strength of EBA lies in the fact that 

only one of the parameter (called the environment) is determined. Therefore, it is necessary to use 

an algorithm to solve the problem (Yan et al. 1998, Tsai et al. 2015, Zandi et al. 2018). During the 

evolution, the choice of support determines the different phases of the study. In this study, we 

chose air because it is the original natural habitat in which bats live. The capabilities of the EBA 

could be summarized by four steps: 

Initialization: random assignment of artificial reagents, diffusion in the solution area. 

Movement: An artificial example is movement. Generate a random number and make sure it 

doesn't exceed a fixed heart rate intensity. If positive, a random walking process is used to move 

the artificial specimen. 1t t

i i
x x D−= + ,  

in which these t

i
x  indicate the coordinate in these i-th artificial agents in thees t-th iteration, then 

1t

i
x −  is the last iteration i-th artificial agents, and D moving distance as follows. 

ΔD T= 
 

where 0.17 = , Δ [ 1, 1]T  −  random number when the chosen mediums are air. 

( )best

Rt t

i i
x x x= −

, 
 0,  1 

 

where random  , 
best

x  is almost best solution are found so long throughout all of the artificial 

agents, and Rt

i
x  new coordinates in these artificial mean upon each walking movement. 

Then we use the custom fitness function to calculate the artificial treatment fit and update it 

using the best stored solution. 

 

 

4. Example  
 

In this section, we will examine Fisher's equations and temperature control of high-speed 

aircraft cooling coils to demonstrate about this effectiveness of these proposed method in design. 

Fisher's equations have been used as the basis for various models of spatial gene spread of 

populations, chemical wave propagation, flame propagation, branched brown motion processes, 

and reactor theory. And we focus on the results which shows the high effective by the proposed 

theory utilized for damage propagation for aircraft structural analysis of composite materials. 

The purpose of this example is to create the fuzzy controller based on the system stabilization 

model (4.1). 

J=1, then 

Rule No. 1: If )(11 tx  is about 4 , Rule No. 2: If the )(11 tx  is about 4−  

Then we say )()( 1111 txAtx = + )()( 111

3

1
111 tuBtxA

k
kk +−

=

 , )()( 1211 txAtx = +
=

−
3

1
112 )(

k
kk txA  + )(121 tuB   

557



 

 

 

 

 

 

C.C. Hung and T. Nguyễn 

in  
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where )](  )([)( 21111 txtxtxT = , )](  )([)( 22122 txtxtxT = , )](  )([)( 23133 txtxtxT = are in and the 

matrices 
ijA , 

ijB  and 
kj  are shown in Eqs. (4.1)-(4.3). 

The pairs ( ijij BA  , ), 2 , 1   =i , then 3 2, ,1=j  are all locally controllable. Then we need to control 

(4.5) where three designed fuzzy controllers by these PDC schemes are described as the following. 

Fuzzy controller j=1:  

Rule No. 1: If )(11 tx  is about 4 , Rule No. 2: If )(11 tx  is about 4−  

Then one of )()( 1111 txKtu −= , or )()( 1211 txKtu −=                                       (4.6) 

Choosing these closed-loop eigenvalues )8 ,8.27( −−  for an 111111 KBA −  and these closed-

loop eigenvalues at )28 ,17( −−  are 212121 KBA − , we would get =11K  946.138848.0 −−  

and then =21K  4128.14153.27 −− . 

Fuzzy controller j=2: 

Rule No. 1: If )(12 tx  is considered about 0 , Rule No. 2: If )(12 tx  is considered about 4  

Then we get ),()( 2122 txKtu −=  and we get )()( 2222 txKtu −= ,                           (4.7) 

In another way, we choose these closed-loop eigenvalues (−27.5, −8.5) in 𝐴12 − 𝐵12𝐾12 and 

these closed-loop eigenvalues (−16.5, −29)  in 𝐴22 − 𝐵22𝐾22 , we have 𝐾12 =
[2.1493 −13.9627] and 𝐾22 = [−20.7884 −14.0162]. 

Fuzzy controller j=3:  

Rule No. 1: If )(13 tx  is about 3 , Rule No. 2: If )(13 tx  is about 3−  

Then the )()( 3133 txKtu −= ,  and Then )()( 3233 txKtu −= .                            (4.8) 

Choosing one of the closed-loop eigenvalues saying (−28, −10) for 𝐴13 − 𝐵13𝐾13 and one of 

these closed-loop eigenvalues (−20, −23)  for 𝐴23 − 𝐵23𝐾23 , then some get 𝐾13 =
[−1.7114 −12.1111] and 𝐾23 = [−21.2908 −11.152]. 

The choice and dominance of an appropriate matrix to satisfy Theorem 1 will be key issues to 
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address. In this article, we will use EBA to find the right solution. The solution obtained in this 

case can be divided into two categories: possible and impossible. That said, developing an 

adaptive function with binary arithmetic is an easier way to meet the needs of this application. In 

this article, we use the Lyapunov function method to construct a fitness function according to 

stability criteria derived from the LMI state. The logical AND operation is used in the fit function 

to validate a solution and generate a binary classification result for the solution found. The formula 

for the training function is: 



 =

=
                       otherwise.,0

.0 and 0 if,1 TPP
F  

in which F  is one of these fitness values and   is regarded as follows. 

)()( KBAPPKBA ii

T

ii −+−=  

If the elements of the array must always be symmetric, EBA is modified using the array. Also, 

the matrix and boundary conditions are used in the initialization process. Using the LMI 

optimization algorithm when the matrix is affected by the constraints of the same region, a 

workable solution is provided in Eq. (4.9). 









=

25.022.0

22.078.0
1P , ,

3.022.0

22.07.0
2 








=P  








=

27.022.0

22.086.0
3P .                     (4.9) 

Combining ( 3.41.4 − , 4.9), ( 8.46.4 − ) and ( 8.36.3 − ) yields  










−

−
=

6466.29714.1

9714.18532.1
11Q , 










−

−
=

7487.18688.1

8688.16251.15
21Q , 









=

0908.59673.15

9673.152194.44
  121Q , 

12Q =









−

−

3238.32738.2

2738.26302.1 ,









−

−
=

8105.28759.0

8759.01128.15
22Q ,









=

2273.68178.16

8178.165249.42
  122Q ,










−

−
=

9264.23978.3

3978.35364.5
13Q ,










−

−
=

8599.16436.3

6436.33401.15
 23Q ,









=

0063.37099.13

7099.133992.49
  123Q ,










−

−
=

1.00

01.0
11Q , 










−

−
=

1.00

01.0
21Q ,










−

−
=

1.00

01.0
31Q ,










−

−
=

1.00

01.0
12Q ,










−

−
=

1.00

01.0
22Q , 










−

−
=

1.00

01.0
32Q , 










−

−
=

1.00

01.0
13Q ,










−

−
=

1.00

01.0
23Q 









−

−
=

1.00

01.0
33Q                         (4.10) 

From Eq. (3.5), we have 

















−

−=

5014.15979.00

5979.0239.00

001.0

1
, 

















−

−=

7485.23669.00

3669.00506.00

001.0

2
, 

















−

−=

9381.07423.00

7423.05916.00

001.0

3
                                      (4.11) 

and the eigenvalues of them are given below 
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Fig. 1 The comparison of the numerical results 

 

 

, 01.7396  0.0008,  ,1.0)( 1 =                                        (4.12) 

, 02.7975 0.0016,  ,1.0)( 2 =                                        (4.13) 

01.5272  0.0026,  ,1.0)( 3 = .                                       (4.14) 

These math matrices in j  ( 3 2, ,1=j ) are considered with positive definite, which means 

Theorem 1 then let these fuzzy controllers (4.6-4.8) asymptotically in stabilization of the system 

(4.5). Simulation in results are all illustrated in Fig. 1 which shows the comparison of the 

numerical results. 

 

 

5. Conclusions 
 

A Modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in 

states is considered in this paper. To do this, at the first level, a two-step strategy is proposed to 

divide a large system into several interconnected subsystems. And we focus on the damage 

propagation for aircraft structural analysis of composite materials. As a modified fuzzy control 

command, the next was received as feedback theory based on the energetic function and the LMI 

optimal stability criteria which allow researchers to solve this problem and have the whole system 

in asymptotically stability. And we focus on the results which shows the high effective by the 

proposed theory utilized for damage propagation for aircraft structural analysis of composite 

materials.  
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Appendix: Proof of theorem 1 
 

(I): Let these Lyapunov function in these multiple time-delay fuzzy large-scale systems F are 

defined as  
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Substituting Eqs. (A3-A6) into Eq. (A2) yields 
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According to these Eq. (3.4), we therefore get 0V  as well as the proof in condition (I) is 

then satisfied. 

(II): Based in Eq. (A.7), we then get 
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derivatives are negative if one of these matrices j  ( Jj   ,    2,  , 1 = ) is positive digit, which 

accomplish one of the proof in condition (II). 
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