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Abstract.  This study is aimed to accurately predict the vibration response of two types of functionally graded 
sandwich plates, one with FGM core and another with FGM face sheets. The gradation in FGM layer is quantified 
by exponential method. An efficient zig-zag theory is used and the zigzag impacts are established via a linear unit 
Heaviside step function. The present theory fulfills interlaminar transverse stress continuity at the interface and zero 
condition at the top and bottom surfaces of the plate for transverse shear stresses. Nine-noded C-0 FE having 
8DOF/node is utilized throughout analysis. The present model is free from the obligation of any penalty function or 
post-processing technique and hence is computationally efficient. Numerical results have been presented on the free 
vibration behavior of sandwich FGM for different end conditions, lamination schemes and layer orientations. The 
applicability of present model is confirmed by comparing with published results. Several new results are also 
specified, which will serve as the benchmark for future studies.  
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1. Introduction 
 

To withstand harsh environmental conditions, design requirement of incompatible properties 
like toughness and hardness, high melting point and strength, etc. at one place, generated a need of 
developing composite materials. Alloys have distinct material combinations, but alloying materials 
of different melting points is a difficult and impossible task (EI-Galy 2019). So, laminated 
composites (LC) which are a layer-by-layer combination of more than one material were 
developed. These were tested for thermo-mechanical loads and found to be good in withstanding 
stress conditions, having only drawback of material de-bounding at the interfaces (Garg and 

Chalak 2019). At the joining lamina, material properties were wide apart, so materials behaved 
differently (elongation) to the temperature elevation resulting in failure. To comply with stress 
failure at interfaces, functionally graded material (FGM) having a regular variation of material 
property was developed. The concept was applied firstly in 1984 for designing a thermal barrier in 
Japan (Koizumi 1997). FGM provides a way of controlling the material response by suitably 
choosing and varying material property. Different manufacturing methods of FGM are discussed 
by Owoputi (2018).     
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Sandwich plates are a lower density material, so is very suitable to use in aerospace 
applications. It is a light weight option for the components of aircrafts components (Antony et al. 
2019, Al-Fatlawi et al. 2021). FGM is used as a strong connecting layer between distinct material 
layers of sandwich plates to avoid delamination at interface. Functionally graded sandwich plates 
(FGSP) comprise layer(s) of FGM in between or at the edges of homogenous materials. Even 
when, FGM is superior to homogenous material, verified and reliable results are needed for 

generating confidence in the practical applications. Swaminathan et al. (2015), Garg et al. (2021) 
listed many theories developed by researchers to describe large stress variation of FGSP in 
thickness direction. Among all methods, elasticity theories provide most accurate results. Anderson 
(2003) presented 3D elasticity solutions for FGSP loaded transversally with rigid spherical 
indentor. Vel and Batra (2004) found vibration response of FGM plate using mori-tanaka and self-
consistent methods for grading schemes. Woodward and Kashtalyan (2010) found 3D elasticity 
solutions for sandwich panels. Elasticity theories give benchmark data for comparison with 

simpler numerical methods. 
Tounsi et al. (2016) used most basic Classical plate theory (CPT) which neglects transverse 

shear effects, so is useful for thin plates only. First-order shear deformation theory (FSDT) 
considers transverse shear effects, but fails to give stress free conditions at top and bottom of plate. 
Also, FSDT ignores transverse shear strains and is dependent on shear correction factor for getting 
acceptable results (Khalafi and Fazilati 2021) which in turn is dependent on various factors like: 
geometry, material property and boundary conditions. Ebrahimi (2014) used FSDT for analysing 
FGM shells. To alleviate the use of shear correction factor, many Higher-order shear deformation 

theories (HSDTs) are developed. Sahouane et al. (2019) presented dynamic analysis of FGM beam 
based on HSDT. Meksi et al. (2017) presented bending, buckling and vibration solutions of FGSP 
based on HSDT. Third-order shear deformation theory was employed by Reddy (2000) for analysis 
of FGSP. Third-order parabolic shear deformation theory is used by Ebrahimi and Barati (2017) 
for FGM nanobeams. Zenkour (2005a, 2005b) applied sinusoidal shear deformation theory for 
simply supported FGSP. Belabed et al. (2018) utilized hyperbolic shear deformation theory for 
analyzing FGSP. Benferhat et al. (2021), Nguyen et al. (2015) presented vibration response of 

FGSP using refined HSDT. 
The displacement approximation in shear displacement theories can be based on central layer, 

assuming single layer construction: equivalent single layer (ESL) theory or individual layers: layer 
wise theory (LWT). ESL theory is simpler so, applied in most of the cases, but may not give 
acceptable results for multilayered plates and widely varied material properties in thickness 
direction. So, LWT and zig-zag theories (ZZT) were developed. Pandey and Pradyumna (2018), 
Moleiro et al. (2019), Hirane et al. (2021) utilized LWT for finding response of FGSP. LWT have 

advantage of realistic assumptions of DOF based on individual layers for multilayered plates, but 
becomes time consuming and non-economic with a hike in layers. Also LWT provides two values 
of shear stresses at joints of layers through two different approximations used for layers. 

ZZT is ESL type, including an additional term (zig-zag factor, ZZF) to describe the kink/jump 
of the material properties at the interfaces of layers. A historic review on ZZTs is presented by 
Carrera (2003). As an alternate to expensive LWT, Murakami (1986) proposed a zig-zag factor to 
describe slope discontinuity. The advantages of using ZZT for multilayered plates and shells along 
with finite element implementation are discussed by Carrera (2004), Demasi (2008), Brischetto et 

al. (2009). FSDT based displacement approximation is used with ZZF by Shariyat and Alipour 
(2015) for analysing circular FGSP, hyperbolic shear deformation theory based displacements are 
used with ZZF by Neves et al. (2012) for analysing FGSP and sinusoidal shear deformation theory 
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based displacements are used with ZZF by Neves et al. (2017). 
Engineering applications like automobiles, aircraft structures, ship hulls, submarine hulls, pipes 

carrying water and all such applications where high speed moving parts are used, require 
knowledge of vibration behavior. From the above discussion it can seen that different theories have 
been used by various researchers to analyze the FGM plate. The objective of the present paper is to 
utilize the most accurate theory for vibration behavior of the FG sandwich plates and present 

vibration results for inclined plates. An accurate theory should present the actual stress behavior of 
the plate at the interfaces of the two materials as well as at the top and bottom of plate. As it is 
known that the ESL theory assumes single layer architecture for the formulation of independent 
variables, which may not be accurate for analysis of multilayered plates. In literatures higher order 
terms have been used within ESL framework to increase the accuracy the results, which proved to 
be successful up to a certain limit, beyond which (at certain order of formulation) this advantage 
becomes insignificant. Some researchers found that LWT theories are more apt for analyzing 

sandwich plates than ESL theories, since LWT theory formulation uses layer-wise assumption of 
independent variables. But an increase in number of layers in plate design leads to larger number 
of equations to be solved making LWT complex an uneconomical. The unique feature of ZZT lies 
in realization of actual change of material property across the interface through zigzag term. The 
present ZZT fulfills all the requirements: stress free boundary conditions, single stress value at the 
interface and parabolic stress distribution of stress. The present theory uses ZZT and aims to 
provide accurate estimation of vibration response of the considered sandwich plates. 

From the literature review, it is found that mostly analytical solutions were adopted by 

researchers for solving the independent variables for FGSP, which has restrictions in terms of 
geometry, boundary conditions, gradation of material properties and loading cases (Sharma et al. 
2015, Chareonsuk and Vessakosol 2011). So, Finite element method (FEM), which is a numerical 
method, is adopted in this study for analyzing complex behaviour of FGSP. With an inclusion of 
zigzag factor in the independent variable assumption, the solution method on adoption of FEM 
becomes complex. To encounter zigzag factor C1 continuity issue rises. The problem of C1 
continuity in using FEM for HSDT case is discussed by Chakrabarty et al. (2011). To alleviate C1 

continuity Cho and Averill (2000) used sublaminate models; Averill (1994) used penalty functions 
and interpolation displacement; Di Sciuva (1985, 1993) used Hermitian functions to approximate 
transverse displacement. In this study HSDT is refined by expressing the differentiation variables 
of shear stress in terms of displacement terms to avoid C1 continuity. According to Li et al. (2016), 
the gradation of the FGM greatly determines analysis response, so is an important factor in 
analysis process. Most of the earlier studies use power law for material property quantification 
(Garg et al. 2021). 

In present paper exponential law is used for obtaining free vibration response of FGSP through 
a higher-order zigzag theory. The zigzag impacts are established via a linear unit Heaviside step 
function. The present theory fulfills interlaminar transverse stress continuity at the interface and 
zero condition at the top and bottom surfaces of the plate for transverse shear stresses. Nine-noded 
C-0 FE having 8DOF/node is utilized throughout analysis. The present model is free from the 
obligation of any penalty function or post-processing technique and hence is computationally 
efficient. Free vibration behavior of FGSP made of exponential homogenization rule for various 
boundary conditions, orientation of layers and lamination schemes is determined. Present results 

are compared with those present in the literature to study the applicability of the proposed model. 
Several new results are also specified, which will serve as the benchmark for future studies. 
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Table 1 Material homogenization schemes 

Nomenclature 
Faces 𝑉𝑐(𝑧) 

Figure 
Bottom Core Top 𝑧 ∈ [ℎ0, ℎ1] 𝑧 ∈ [ℎ1, ℎ2] 𝑧 ∈ [ℎ2, ℎ3] 

H-Type-E FGM Ceramic FGM (
2𝑧+1

2ℎ1+1
)
𝑛

  1 (
2𝑧−1

2ℎ2−1
)
𝑛

  5 

S-Type-E FGM Metal FGM 1 − (
2𝑧+1

2ℎ1+1
)
𝑛

  0 1 − (
2𝑧−1

2ℎ2−1
)
𝑛

  6 

CT-Type-E1 Ceramic FGM Ceramic 1 

(
𝑧−ℎ𝑚

ℎ1−ℎ𝑚
)
𝑛

 for 𝑧 ∈ [ℎ1, ℎ𝑚] 

𝑉𝑐(𝑧) = (
𝑧−ℎ𝑚

ℎ2−ℎ𝑚
)
𝑛

 for 𝑧 ∈

[ℎ𝑚, ℎ2], ℎ𝑚 =
ℎ1+ℎ2

2
 

1 7 

MT-Type-E1 Metal FGM Metal 0 1 −𝑉𝑐(𝑧) for CT-Type-E1 0 8 

 
 

2. Homogenization rule 
 

Two distinct forms of FGSP are examined which observe exponential law variation of material 
property across the thickness of plate: 

Type E: Top and bottom face sheets comprise FGM. The central core comprises ceramic, then it 
is called as a hardcore-Type E plate (H-Type-E). If the central core comprises metal, then it is 
called as softcore-Type E (S-Type-E) sandwich plate (Fig. 1(a) &1(b)). 

Type E1: the central core comprises FGM layer, If the top and bottom faces are made up of ceramic, 

then it is written as CT-Type E1, and if the top and bottom faces are made up of metal, then it is called as 
MT-Type E1 sandwich FGM plate (Fig. 2(a) &2(b)). 

Table 1 quantifies the variation of volume fraction of ceramic phase, 𝑉𝑐(𝑧) in the thickness (z) 
direction for all four types of FGSP. Material property 𝑃(𝑧) is a function of material properties of 

metal (𝑃𝑚), ceramic (𝑃𝑐) and 𝑉𝑐(𝑧) given by Eq. (1). 

𝑃(𝑧) = 𝑃𝑚e
(ln(

𝑃𝑐
𝑃𝑚

)𝑉𝑐(𝑧))
 

(1) 

 
 

3. Mathematical modeling  
 

The in-plane displacement field is chosen as 

𝑈(𝑥) = 𝑢
(0) + 𝑧𝜑(𝑥) + 𝑧2𝜇(𝑥) + 𝑧3𝜉(𝑥)+ 𝑧4𝜓(𝑥)+ ∑ (𝑧 − 𝑧𝑖

(𝑢)
)𝐻 (𝑧 − 𝑧𝑖

(𝑢)
)𝑁(𝑢)−1

𝑖=1 Φ𝑖
(𝑥𝑢) +

∑ (𝑧 − 𝑧𝑗
(𝑙)
)𝐻 (−𝑧 + 𝑧𝑗

(𝑙)
)𝑁(𝑙)−1

𝑗=1 Φ𝑗
(𝑥𝑙)  

(2) 

𝑈(𝑦) = 𝑣
(0) + 𝑧𝜑(𝑦) + 𝑧2𝜇(𝑦) + 𝑧3𝜉(𝑦) + 𝑧4𝜓(𝑦) + ∑ (𝑧 − 𝑧𝑖

(𝑢)
)𝐻 (𝑧 − 𝑧𝑖

(𝑢)
)𝑁(𝑢)−1

𝑖=1 Φ𝑖
(𝑦𝑢)+

∑ (𝑧 − 𝑧𝑗
(𝑙)
)𝐻 (−𝑧 + 𝑧𝑗

(𝑙)
)𝑁(𝑙)−1

𝑗=1 Φ𝑗
(𝑦𝑙)  

(3) 

The transverse displacement field is assumed as 
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𝑈(𝑧) = 𝑙1𝑤
(𝑢) + 𝑙2𝑤

(0) + 𝑙3𝑤
(𝑙) for core 

              𝑈(𝑧) = 𝑙1𝑤
(𝑢) for upper faces 

 𝑈(𝑧) = 𝑙3𝑤
(𝑙) for lower faces 

(4) 

Where, 𝑢(0), 𝑣(0)  are the displacement of any point on the mid-plane about x- and y-axis, 

𝜑(𝑥), 𝜑(𝑦)  are the rotation of the mid-plane about y-, x- respectively. 𝑤(𝑢),𝑤(0)and 𝑤(𝑙) denote 

transverse displacement at upper, middle and bottom sheet of the core respectively and 𝑙1, 𝑙2, 𝑙3are 

the lagrangian interpolation factors in z-direction. 𝜇(𝑥), 𝜇(𝑦), 𝜉(𝑥), 𝜉(𝑦), 𝜓(𝑥), 𝜓(𝑦)  represent  

higher-order unknowns. Φ denotes the slope of the ith/jth layer for upper and lower layers. 𝐻(𝑧 −

𝑧𝑖
(𝑢)
) ,𝐻 (𝑧 − 𝑧𝑖

(𝑢)
) represent the Heaviside unit step function. The above assumption is based on 

the formulation used by Chalak et al. (2013) with an advancement of including one fourth-order 
term in the in-plane displacement variables. 

The stress-strain dependency for kth layer can be expressed as 

{𝜎} = [𝐶](𝑘){𝜀} (5) 

where {𝜎}, {𝜀} and [𝐶]  are the stress, strain vector and compliance matrix for the kth layer, 

respectively. The matrix [𝐶] can written in same lines as given by Chalak et al. (2013). 
Now utilizing conditions: Transverse stress-free condition at the top and bottom surface of the 

plate, Condition of transverse stress continuity at the interface and Additional conditions: 𝑢 =

𝑢(𝑢) , 𝑣 = 𝑣(𝑢), 𝑤 = 𝑤(𝑢) at the top of the plate and 𝑢 = 𝑢(𝑙), 𝑣 = 𝑣(𝑙), 𝑤 = 𝑤(𝑙) at the bottom of 

the plate, the unknowns 𝜇(𝑥), 𝜇(𝑦), 𝜉(𝑥), 𝜉(𝑦) , 𝜓(𝑥), 𝜓(𝑦) , Φ𝑖
[𝑥(𝑢)]

,Φ𝑗
[𝑥(𝑙)]

,Φ𝑖
[𝑦(𝑢)]

, Φ𝑗
[𝑦(𝑙)]

,

𝜕𝑤(𝑢)

𝜕𝑥
,
𝜕𝑤(𝑙)

𝜕𝑥
,
𝜕𝑤(𝑢)

𝜕𝑦
,
𝜕𝑤(𝑙)

𝜕𝑦
 can be written in terms of displacements 𝑢(0), 𝑣(0), 𝜑(𝑥), 𝜑(𝑦),

𝑢(𝑢) , 𝑣(𝑢), 𝑢(𝑙), 𝑣(𝑙) as 

{𝑀} = [𝑁]{Θ} (6) 

where, {Θ} = {𝑢(0), 𝑣(0), 𝜑(𝑥), 𝜑(𝑦), 𝑢(𝑢), 𝑣(𝑢), 𝑢(𝑙), 𝑣(𝑙)}
𝑇
 and  

{𝑀} = {𝜇(𝑥), 𝜇(𝑦) , 𝜉(𝑥), 𝜉(𝑦), 𝜓(𝑥), 𝜓(𝑦), 𝛷1
[𝑥(𝑢)]

𝛷2
[𝑥(𝑢)]

…  

𝛷
𝑁(𝑢)−1

[𝑥(𝑢)]
𝛷1
[𝑥(𝑙)]

𝛷2
[𝑥(𝑙)]

… 𝛷
𝑁(𝑙)−1

[𝑥(𝑙)]
𝛷1
[𝑦(𝑢)]

𝛷2
[𝑦(𝑢)]

…  

𝛷
𝑁(𝑙)−1

[𝑦(𝑙)]
,
𝜕𝑤(𝑢)

𝜕𝑥
,
𝜕𝑤(𝑙)

𝜕𝑥

𝜕𝑤(𝑢)

𝜕𝑦
,
𝜕𝑤(𝑙)

𝜕𝑦
}𝑇 

The elements of [𝑁]are dependent on the material property of the layer. Since the last four 

terms in the {𝑀}  are the derivative terms and are denoted in terms of displacement 
components{Θ}, hence the problem related with the C-1 continuity can be evaded simply by using 
the proposed model. 

With the aid of Eq. (6), the Eqs. (2) and (3) can be re-arranged as 

𝑈(𝑥) = 𝑎(1)𝑢(0) +𝑎(2)𝑣(0) +𝑎(3)𝜑(𝑥) + 𝑎(4)𝜑(𝑦) + 𝑎(5)𝑢(𝑢) +𝑎(6)𝑣(𝑢) + 𝑎(7)𝑢(𝑙) +𝑎(8)𝑣(𝑙) (7) 

𝑈(𝑦) = 𝑏
(1)𝑢(0) +𝑏(2)𝑣(0) + 𝑏(3)𝜑(𝑥) +𝑏(4)𝜑(𝑦) + 𝑏(5)𝑢(𝑢) + 𝑏(6)𝑣(𝑢) +𝑏(7)𝑢(𝑙) +𝑏(8)𝑣(𝑙) (8) 

Here, the coefficients a’s, and b’s are dependent on the material properties, thickness 
coordinates, and the unit step function. 
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In the present work, nine-noded C-0 isoparametric FE having 8DOF/node is utilized. 

The connected DOF/node are {𝑢(0), 𝑣(0), 𝜑(𝑥), 𝜑(𝑦), 𝑢(𝑢), 𝑣(𝑢), 𝑢(𝑙), 𝑣(𝑙)}. 
The generalised displacement for an element can be defined as 

{𝛿} = [𝑁𝑖]{𝛿𝑖} (9) 

where 𝑁𝑖 is the shape function linked with the node. 
Expressing strain-displacement dependency with the assistance of Eqs. (6-9), the strains can be 

expressed in the arrangement of unknowns as 

{𝜀} = [𝐵]{𝛿} (10) 

where, [𝐵] is the strain-displacement affiliation on cartesian coordinates. 
The governing equation of frequency can be derived on the same lines as done by Garg et al. 

(2022) from Hamilton’s principle of the Equation of motion which can be written as 

∫ 𝛿(𝑇 − 𝑈)𝑑𝑡
𝑡

0
= 0  (11) 

where, T is kinetic energy 𝑇 =
1

2
∫𝜌(𝑈̇(𝑥)

2 + 𝑈̇(𝑦)
2 + 𝑈̇(𝑧)

2 )𝑑𝜈  and 𝑈̇(𝑥), 𝑈̇(𝑦) 𝑎𝑛𝑑 𝑈̇(𝑧)  are the 

derivatives of 𝑈(𝑥), 𝑈(𝑦) and 𝑈(𝑧) respectively and 𝜌 is the density of the material. 

The potential energy of the plate is forces and damping also, Hamilton’s principle principals to 
the equilibrium equation of a system, which can be quantified as 

  
(a) H-Type E (b) S-type E 

Fig. 1 Variation of Young’s modulus and geometry across the thickness for 1-1-1 sandwich FGM plate 
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𝑈 =
1

2
∫𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦 +𝜎𝑧𝑧𝜀𝑧𝑧 +𝜎𝑥𝑧𝜀𝑥𝑧 +𝜎𝑦𝑧𝜀𝑦𝑧 + 𝜎𝑥𝑦𝜀𝑥𝑦 𝑑𝜈 (12) 

or 

𝑈 =
1

2
∑ ∬{𝜀}̅𝑇[𝐶]{𝜀}̅𝑑𝑥 𝑑𝑦 𝑑𝑧𝑛
𝑘=1   

Eq. (12) disregards external work done by external 

[𝑀]{
𝜕2𝛿̅

𝜕𝑡2
}+ [𝐾]{𝛿̅} = 0 (13) 

where, [𝑀], [𝐾], {𝛿̅}, {
𝜕2𝛿̅

𝜕𝑡2
} are global mass matrix, stiffness matrix, nodal variable vector, and 

acceleration vector of the system respectively. 

Frequency (𝜆) can be worked out utilizing Eq. (13) 

[𝐾]{𝛿̅} = 𝜆2[𝑀]{𝛿̅} (14) 

As elemental stiffness matrix [𝐾𝑒] is obtained on the same lines elemental mass matrix can be 
found out. Acceleration at any point within the plate can be expressed as 

  
(a) CT-Type E1 (b) MT-Type E1 

Fig. 2 Variation of Young’s modulus and geometry across the thickness for 1-1-1 sandwich FGM plate 
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Table 2 Convergence and validation study for non-dimensional natural frequency (𝜆̅) 

Boundary condition Source Non-dimensional natural frequency 

CCCC 

Present (4×4) 39.9482 

Present (8×8) 32.2883 

Present (10×10) 29.5326 

Present (16×16) 28.6871 

Present (20×20) 28.6871 

Chakraverty and Pradha (2014) 28.3422 

CSCS 

Present (4×4) 35.5630 

Present (8×8) 28.8051 

Present (10×10) 24.2697 

Present (16×16) 23.0815 

Present (20×20) 23.0815 

Chakraverty and Pradha (2014) 22.7996 

SSSS 

Present (4×4) 26.6256 

Present (8×8) 20.7355 

Present (10×10) 17.0531 

Present (16×16) 15.9862 

Present (20×20) 15.9862 

Chakraverty and Pradha (2014) 15.5462 

 
 

{
𝜕2𝛿̅

𝜕𝑡2
} =

{
  
 

  
 
𝜕2𝑈̅(𝑥)

𝜕𝑡2

𝜕2𝑈̅(𝑦)

𝜕𝑡2

𝜕2𝑈̅(𝑤)

𝜕𝑡2 }
  
 

  
 

= −𝜆2{

𝑈(𝑥)
𝑈(𝑦)
𝑈(𝑧)

} = −𝜆2[Δ]{𝛿} (15) 

where, [Δ] is holding terms of z and some constant values. 

[𝑀] = ∑ ∫𝜌𝑖 [𝑁]
𝑇[Δ]𝑇[𝑁][Δ]𝑑𝑥 𝑑𝑦 𝑑𝑧𝑁(𝑢)+𝑁(𝑙)

𝑖=1 = ∫[𝑁]𝑇[𝐿][𝑁]𝑑𝑥 𝑑𝑦 𝑑𝑧  (16) 

where, 𝜌𝑖 is the mass matrix of the i-th layer. 
[𝐿] appeared in the above equation can be inscribed as 

𝐿 = ∑ ∫𝜌𝑖 [Δ]
𝑇[Δ]𝑑𝑥

𝑁(𝑢)+𝑁(𝑙)

𝑖=1

 (17) 

The skyline storage technique is utilized to stock the global stiffness matrix in a single array, 
and after that simultaneous iteration technique is utilized for resolving the governing equations. 

The above conversed FE-based model is scripted in FORTRAN for finding the frequency for 
FGSP. The free vibration response is determined for the four types of FGSP governed by 
exponential homogenization rule, as discussed above. Following six different thickness patterns 
are employed for the study: 1-1-1, 1-2-1, 2-1-2, 2-2-1, 2-1-1 and 1-8-1. 2-1-1 characterizes the  
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Table 3 Variation of non-dimensional natural frequency for SSSS square-shaped Type-E sandwich FGM 

plate 

a/h n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

H-Type-E 

100 

0.5 1.3748 1.4391 1.4190 1.4850 1.4861 1.7111 

1 0.9219 1.2851 1.2260 1.3439 1.3612 1.6454 

5 1.0245 1.0476 1.0349 1.1320 1.1413 1.5473 

10 0.9976 0.6499 1.0145 1.1178 1.0415 1.5366 

10 

0.5 1.3013 1.3720 1.3828 1.4269 1.4775 1.6619 

1 0.9080 1.2146 1.2288 1.2827 1.3398 1.6005 

5 1.0002 1.0223 1.0010 1.1070 1.1204 1.5083 

10 0.9092 0.9109 0.9976 1.1216 1.0848 1.4982 

S-Type-S 

100 

0.5 1.6325 1.6266 1.6118 1.5978 1.4732 1.3021 

1 1.7819 1.7663 1.7531 1.6263 1.5951 1.3919 

5 1.8967 1.9773 1.9945 1.8603 1.9524 1.6243 

10 2.0075 1.9907 2.0177 1.8865 1.9906 1.6692 

10 

0.5 1.4080 1.5047 1.4864 1.3758 1.4515 1.1240 

1 1.5352 1.6252 1.6025 1.4826 1.5498 1.2599 

5 1.8237 1.8192 1.7940 1.7701 1.7440 1.4980 

10 1.8369 1.8456 1.8118 1.7899 1.7692 1.5824 

 
 

bottom, and core faces are of the same thickness, and the top face has a thickness twice as that of 

the core. Following is the relationship used to convert the natural frequency into non-dimensional 

form (𝜆̅) 

𝜆̅ = 𝜆𝑎2√
𝜌𝑐ℎ

𝐷𝑐
;  𝐷𝑐 =

ℎ3𝐸𝑐
12(1 − 𝜈2)

 (18) 

 
 
4. Result and discussions 
 

4.1 Convergence study  
 

For choosing the appropriate mesh size for the analysis of exponentially graded sandwich FGM 
plate, convergence study is carried out at first. Material properties used during the present study 

are: Metallic phase is made up of Aluminium (𝐴𝑙) 𝐸 = 70 GPa,𝜈 = 0.30, 𝜌 = 2707 kg/m3.   

The ceramic phase is made up of Alumina (𝐴𝑙2𝑂3) 𝐸 = 380 GPa,𝜈 = 0.30, 𝜌 = 3800 kg/m3. 
The results for the convergence study are reported in Table 1 for different end conditions. It can be 
observed that the present results converge at the mesh size of 16 x 16. Therefore, in further studies, 
same mesh size is adopted. Present results are compared with the Rayleigh-Ritz method-based 
CPT given by Chakraverty and Pradha (2014). Some discrepancy in the results is observed due to 
the adoption of CPT. 
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Table 4 Variation of non-dimensional natural frequency for Type-E square shaped (a/h=4) sandwich FGM 

plate with different end conditions 

Thickness scheme n CCCC SSCC CCCF CCFF SSSS CFFF 

H-Type-E 

2-1-2 

0.5 1.8452 1.5462 1.2845 1.2234 1.2031 0.2329 

1 1.4765 1.1396 1.1364 1.1042 0.8458 0.2054 

5 1.3858 1.1600 0.9629 0.9170 0.8998 0.1734 

10 1.3472 1.1369 0.9322 0.8857 0.8954 0.1707 

2-1-1 

0.5 1.8886 1.5934 1.3051 1.2399 1.2506 0.2371 

1 1.7317 1.4577 1.1888 1.1285 1.1285 0.2121 

5 1.4188 1.1821 0.9956 0.9493 0.9189 0.1807 

10 1.1135 0.7939 0.9403 0.9253 0.6007 0.1766 

1-1-1 

0.5 1.9182 1.6150 1.3276 1.2620 1.2639 0.2403 

1 1.7530 1.4625 1.2165 1.1576 1.1239 0.2156 

5 1.4086 1.1308 1.0246 0.9837 0.8394 0.1808 

10 1.4037 1.1485 0.9990 0.9550 0.8644 0.1771 

2-2-1 

0.5 1.9513 1.6457 1.3510 1.2830 1.2915 0.2454 

1 1.8163 1.5267 1.2517 1.1881 1.1829 0.2228 

5 1.5640 1.3062 1.0821 1.0276 1.0034 0.1907 

10 1.5269 1.2782 1.0550 1.0010 0.9844 0.1872 

1-2-1 

0.5 1.9931 1.6808 1.3819 1.3120 1.3193 0.2512 

1 1.8731 1.5728 1.2948 1.2289 1.2183 0.2304 

5 1.6418 1.3601 1.1453 1.0877 1.0295 0.1990 

10 1.5635 1.2726 1.1181 1.0666 0.9510 0.1950 

1-8-1 

0.5 2.1772 1.8440 1.5274 1.4462 1.4661 0.2853 

1 2.1255 1.7966 1.4899 1.4101 1.4196 0.2753 

5 2.0450 1.7233 1.4321 1.3541 1.3486 0.2604 

10 2.0359 1.7151 1.4256 1.3479 1.3409 0.2588 

 
 

4.2 Vibration analysis 
 

Type-E sandwich FGM plate: The results for non-dimensional natural frequencies, 𝜆̅ for Type-E 
plate are entirely new in the present work and are presented in Table 3. With increase in value of 

a/h, value of 𝜆̅ decreases for both H-Type-E and S-Type-E plates. With increase in value of n, 

value of 𝜆̅  decreases for H-Type-E plate and increases for S-Type-E plate. With increase in 

thickness of core, value of 𝜆̅ increases for H-Type-E plate and decreases for S-Type-E plate. When 
thickness of core is less, H-type-E plates exhibit less stiff behavior as compared to corresponding 
S-Type-E plates. But when thickness of core increases, H-Type-E plate shows stiffer behavior as 

compared to corresponding S-Type-E plate. Table 4 shows the value of 𝜆̅ for Type-E plate (a/h=4) 

with different end conditions. The boundary conditions, along with the thickness schemes, affect 
the vibration response of the plate. 

Type-E1 sandwich FGM plate: Results for 𝜆̅ for Type-E1 plate are reported in Table 5. The CT-

Type-E1 plate shows a considerable value of 𝜆̅ as compared to corresponding MT-Type-E1 plates. 

For plates with symmetric thickness schemes, 𝜆̅ is almost two times the non-dimensional natural 

frequency of the MT-Type-E1 plate. For unsymmetric plates, the same is found to be 

approximately 1.7 times of MT-Type-E1 plate. For the thin Type-E1 plate, the value of 𝜆̅ increases  
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Table 4 Continued 

S-Type-E 

2-1-2 

0.5 1.6081 1.4165 1.2376 1.1609 1.0962 0.2696 

1 1.7051 1.5040 1.3155 1.2335 1.1636 0.2913 

5 1.9065 1.6737 1.4478 1.3750 1.2963 0.3236 

10 1.9476 1.7047 1.4675 1.4012 1.3215 0.3261 

2-1-1 

0.5 1.6061 1.4165 1.2389 1.1538 1.0880 0.2660 

1 1.7039 1.5052 1.3158 1.2228 1.1514 0.2854 

5 1.9318 1.7014 1.4666 1.3761 1.2953 0.3180 

10 2.0143 1.7678 1.5130 1.4310 1.3491 0.3235 

1-1-1 

0.5 1.5699 1.3856 1.2155 1.1344 1.0706 0.2653 

1 1.6412 1.4525 1.2786 1.1897 1.1212 0.2849 

5 1.7739 1.5704 1.3784 1.2875 1.2105 0.3169 

10 1.7978 1.5888 1.3892 1.3031 1.2251 0.3200 

2-2-1 

0.5 1.5627 1.3801 1.2119 1.1248 1.0604 0.2611 

1 1.6319 1.4452 1.2720 1.1752 1.1060 0.2779 

5 1.7652 1.5663 1.3725 1.2680 1.1898 0.3079 

10 1.7885 1.5849 1.3835 1.2827 1.2033 0.3112 

1-2-1 

0.5 1.5291 1.3514 1.1897 1.1052 1.0427 0.2588 

1 1.5766 1.3988 1.2383 1.1440 1.0779 0.2753 

5 1.6578 1.4798 1.3189 1.2102 1.1360 0.3069 

10 1.6672 1.4881 1.3252 1.2173 1.1419 0.3108 

1-8-1 

0.5 1.4149 1.2363 1.0659 1.0134 0.9582 0.2220 

1 1.4452 1.2697 1.1068 1.0395 0.9818 0.2341 

5 1.5015 1.3374 1.1950 1.0917 1.0275 0.2639 

10 1.5078 1.3466 1.2083 1.0985 1.0331 0.2693 

 
Table 5 Variation of non-dimensional natural frequency for SSSS square-shaped Type-E1 sandwich FGM 

plate 

a/h n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

CT-Type-E1 

100 

0.5 2.0948 1.6947 2.0945 1.4218 2.0875 2.0169 

1 2.1070 1.7909 2.1040 1.5807 2.0937 1.9767 

5 2.1432 1.8252 2.1327 2.0969 2.1203 1.8605 

10 2.1443 1.8247 2.1459 2.0960 2.1342 1.8314 

10 

0.5 1.9607 1.6375 1.9537 1.3802 1.9412 1.8756 

1 1.9653 1.7207 1.9493 1.5118 1.9285 1.8234 

5 1.9705 1.7388 1.9343 1.9073 1.9134 1.6987 

10 1.9689 1.7364 1.9382 1.8961 1.9038 1.6717 

MT-Type-E1 

100 

0.5 1.0344 1.0354 1.0356 1.0238 1.0496 1.0806 

1 1.0361 1.0325 1.0409 1.0769 1.0659 1.2250 

5 1.0395 1.0348 1.0593 1.1172 1.0900 1.4566 

10 1.0397 1.0360 1.0622 1.1403 1.1698 1.5733 

10 

0.5 1.0012 0.9982 1.0049 0.9911 1.0211 1.0540 

1 1.0038 0.9958 1.0120 1.0441 1.0519 1.2135 

5 1.0086 0.9984 1.0147 1.0880 1.0740 1.4201 

10 1.0090 0.9995 1.0366 1.1108 1.1455 1.5300 
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Table 6 Variation of non-dimensional natural frequency for Type-E1 square shaped (a/h=4) sandwich FGM 

plate with different end conditions 

Thickness scheme n CCCC SSCC CCCF CCFF SSSS CFFF 

CT-Type-E1 

2-1-2 

0.5 2.1021 1.8258 1.5019 1.4207 1.5489 0.3309 

1 2.0774 1.8080 1.4849 1.4035 1.5395 0.3304 

5 1.9890 1.7398 1.4231 1.3408 1.4945 0.3271 

10 1.9811 1.7333 1.4177 1.3354 1.4894 0.3268 

2-1-1 

0.5 2.1800 1.8506 1.5638 1.5007 1.4204 0.3294 

1 2.1835 1.8855 1.5306 1.4595 1.4659 0.3272 

5 2.1152 1.8551 1.4512 1.3753 1.4471 0.3222 

10 2.1049 1.8492 1.4408 1.3645 1.4413 0.3214 

1-1-1 

0.5 2.0608 1.7941 1.4767 1.3963 1.5295 0.3302 

1 2.0033 1.7500 1.4390 1.3590 1.5009 0.3287 
5 1.8610 1.6383 1.3432 1.2635 1.4222 0.3231 

10 1.8404 1.6227 1.3285 1.2485 1.4129 0.3222 

2-2-1 

0.5 1.9307 1.5919 1.4776 1.4384 1.2206 0.3269 

1 1.8903 1.5921 1.4267 1.3781 1.2759 0.3240 

5 1.8404 1.6228 1.3205 1.2410 1.4107 0.3147 

10 1.8031 1.5909 1.2978 1.2191 1.3870 0.3129 

1-2-1 

0.5 2.0105 1.7559 1.4444 1.3650 1.5065 0.3277 

1 1.9223 1.6881 1.3865 1.3079 1.4624 0.3244 

5 1.7323 1.5404 1.2594 1.1819 1.3632 0.3154 

10 1.6961 1.5124 1.2347 1.1572 1.3456 0.3133 

1-8-1 

0.5 1.9263 1.6861 1.3865 1.3103 1.4539 0.3165 

1 1.8016 1.5870 1.3026 1.2290 1.3843 0.3066 

5 1.5788 1.4068 1.1489 1.0809 1.2547 0.2820 

10 1.5394 1.3747 1.1208 1.0539 1.2328 0.2760 

MT-Type-E1 

2-1-2 

0.5 1.2776 1.0849 0.8724 0.8919 0.8480 0.1695 

1 1.2920 1.0961 0.8779 0.8995 0.8550 0.1696 

5 1.3193 1.1166 0.8873 0.9147 0.8692 0.1701 

10 1.3211 1.1180 0.8879 0.9158 0.8702 0.1702 

2-1-1 

0.5 1.2456 1.0542 0.8582 0.8863 0.8445 0.1732 
1 1.2529 1.0551 0.8576 0.8962 0.8548 0.1744 

5 1.2712 1.0620 0.8617 0.9161 0.8750 0.1770 

10 1.2741 1.0636 0.8628 0.9187 0.8778 0.1774 

 
 

with an increase in n for both types. But for the plate with a/h=10, the value of 𝜆̅ decreases with an 

increase in the value of n for symmetric thickness schemes and increases for unsymmetric 

thickness schemes for CT-Type-E plates. But for MT-Type-E1 plates, 𝜆̅ increases with an increase 
in the value of n. 

Table 6 shows variation of 𝜆̅ for Type-E1 plate (a/h=4) with different end conditions. For thick 

plate, the 𝜆̅ decreases with an increase in the value of n for all types of thickness schemes and end 
conditions for the CT-Type-E1 plate. The opposite behavior is observed for the MT-Type-E1 plate. 

Among Type-E, and E1 plates, the CT-Type-E1 plate gives the maximum value of 𝜆̅, and the MT-

Type-E1 plate gives the least value of 𝜆̅. 
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Table 6 Continued 

1-1-1 

0.5 1.3107 1.1095 0.8837 0.9113 0.8665 0.1701 

1 1.3638 1.1674 0.8965 0.9447 0.8911 0.1725 

5 1.4104 1.1811 0.9135 0.9749 0.9275 0.1748 

10 1.4335 1.2029 0.9318 0.9863 0.9375 0.1761 

2-2-1 

0.5 1.2830 1.0756 0.8644 0.9149 0.8738 0.1747 

1 1.3603 1.1492 0.9161 0.9471 0.9007 0.1765 

5 1.4873 1.2482 0.9715 1.0261 0.9754 0.1848 

10 1.5230 1.2790 0.9931 1.0476 0.9952 0.1880 

1-2-1 

0.5 1.3606 1.1490 0.9065 0.9411 0.8948 0.1724 

1 1.4075 1.1775 0.9121 0.9772 0.9310 0.1754 

5 1.5037 1.2150 0.9633 1.0795 1.0356 0.1902 

10 1.6316 1.3622 1.0425 1.1226 1.0677 0.1969 

1-8-1 

0.5 1.4418 1.2105 0.9445 1.0009 0.9533 0.1814 

1 1.6512 1.4274 0.9615 1.0575 1.0311 0.1917 

5 1.9259 1.6226 1.2699 1.3291 1.2635 0.2401 

10 2.0262 1.7131 1.3553 1.4034 1.3339 0.2582 

 
Table 7 Non-dimensional natural frequency for SSSS Type-E rhombic plate (a/h=10) 

Ξ0 n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

H-Type-E 

15° 

0.5 1.4176 1.4802 1.4918 1.5277 1.5598 1.7542 

1 0.9667 1.3255 1.3094 1.3862 1.4253 1.6895 

5 1.0561 1.0790 0.9561 1.1687 1.1848 1.5923 

10 1.0653 0.6705 0.9929 1.1523 1.0861 1.5818 

30° 

0.5 1.6873 1.7579 1.7722 1.8141 1.8522 2.0816 

1 1.1640 1.5768 1.5591 1.6474 1.6935 2.0054 

5 1.2548 1.2797 1.1470 1.3876 1.4125 1.8909 

10 1.1080 0.7764 1.1869 1.3682 1.3000 1.8784 

45° 

0.5 2.3364 2.4301 2.4504 2.5074 2.5600 2.8732 

1 1.6099 2.1853 2.1612 2.2805 2.3439 2.2700 

5 1.7343 1.7638 1.5944 1.9186 1.9614 2.6145 

10 0.7890 1.0317 1.6483 1.8914 1.8073 2.5975 

60° 

0.5 4.1037 4.2661 4.3047 4.3961 4.4952 4.6760 

1 2.4453 3.8530 3.8096 4.0194 4.1308 4.6540 

5 2.2949 3.0858 2.7997 3.3801 3.4694 4.5980 

10 0.6059 1.4889 2.9009 3.3294 2.9566 4.5697 

S-Type-E 

15° 

0.5 1.6944 1.6907 1.6712 1.6599 1.6343 1.3955 

1 1.8281 1.8177 1.7932 1.7721 1.7374 1.4750 

5 2.0264 2.0224 1.9935 1.9687 1.9400 1.6718 

10 2.0404 2.0511 2.0121 1.9892 1.9661 1.7078 

30° 

0.5 1.9969 1.9927 1.9686 1.9554 1.9247 1.6476 

1 2.1527 2.1416 2.1098 2.0860 2.0436 1.7397 

5 2.3846 2.3840 2.3401 2.3130 2.2743 1.9659 

10 2.4017 2.4208 2.3614 2.3363 2.3031 2.0067 
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Table 7 Continued 

45° 

0.5 2.7068 2.7037 2.6666 2.6511 2.6071 2.2469 

1 2.9112 2.9020 2.8492 2.8221 2.7595 2.3666 

5 3.2196 3.2323 3.1431 3.1153 3.0473 2.6554 

10 3.2448 3.2908 3.1703 3.1446 3.0810 2.7065 

60° 

0.5 3.0926 3.1847 3.0975 3.1458 3.0769 2.7960 

1 3.2742 3.4011 3.2714 3.3405 3.2330 2.8932 

5 3.6770 3.8736 3.6567 3.7713 3.6075 3.1740 

10 3.7674 3.9998 3.7331 3.8595 3.6861 3.2333 

 
Table 8 Non-dimensional natural frequency for SSSS Type-E1 rhombic plate (a/h=10) 

Ξ0 n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

CT-Type-E1 

15° 

0.5 2.0671 1.7683 2.0597 1.4507 2.0462 1.9771 

1 2.0713 1.8395 2.0543 1.5974 2.0318 1.9212 

5 2.0742 1.8557 2.0359 2.0071 2.0020 1.7881 

10 2.0725 1.8533 2.0391 1.9945 2.0013 1.7593 

30° 

0.5 2.4400 2.1235 2.4305 1.6992 2.4133 2.3320 

1 2.4428 2.2142 2.4213 1.8939 2.3924 2.2628 

5 2.4382 2.2325 2.3903 2.3564 2.3457 2.1007 

10 2.4356 2.2298 2.3915 2.3390 2.3414 2.0658 

45° 

0.5 3.3184 2.0059 3.3014 2.2913 3.2742 3.1638 

1 3.3177 2.9264 3.2806 2.5781 3.2344 3.0606 

5 3.2930 3.0815 3.2143 3.1729 3.1420 2.8297 

10 3.2880 3.0775 3.2108 3.1423 3.1289 2.7815 

60° 

0.5 3.8917 1.6116 3.7479 3.2741 3.6569 3.4693 

1 3.9830 2.4897 3.7966 4.3292 3.6283 3.3715 

5 4.5086 2.7123 3.8884 4.1254 3.8158 3.3048 

10 4.5672 2.7030 4.0322 4.1839 3.9528 3.2797 

MT-Type-E1 

15° 

0.5 1.0570 1.0534 1.0610 1.0463 1.0428 1.1128 

1 1.0596 1.0507 1.0683 1.1019 1.0685 1.3052 

5 1.0646 1.0528 1.0719 1.1484 1.1341 1.4992 

10 1.0650 1.0539 1.0946 1.1726 1.2104 1.6151 

30° 

0.5 1.2540 1.2481 1.2592 1.2411 1.1998 1.3216 

1 1.2571 1.2441 1.2657 1.3068 1.2697 1.5395 

5 1.2631 1.2448 1.2748 1.3629 1.3424 1.7804 

10 1.2635 1.2459 1.3006 1.3922 1.4404 1.9169 

45° 

0.5 1.7280 1.7139 1.3160 1.7066 1.5518 1.8263 

1 1.7330 1.7068 1.5623 1.8011 1.7555 2.1333 

5 1.7423 1.7040 1.7646 1.8820 1.8308 2.4610 

10 1.7430 1.7053 1.7991 1.9238 1.9966 2.6467 

60° 

0.5 1.6478 2.4330 1.0678 2.8000 2.1202 1.8758 

1 1.8577 2.5053 2.4321 2.7239 2.5023 2.3925 

5 2.8922 2.7390 3.1036 3.3015 2.8475 4.3233 

10 3.0461 2.7790 3.1650 3.3787 3.5248 4.5654 
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Tables 7, 8 show the value of non-dimensional natural frequency for Type- E and E1 simply 
supported rhombic plates, respectively (a/h=10). Skew angles of 15, 30,45,60 degrees are adopted 

in this study. With an increase in the value of the plate’s skew angle, 𝜆̅ increases for all the cases. 

 
 

5. Conclusions 
 

In the present work free vibration response of FGSP is found by employing a zig-zag theory. 
The present model satisfies interlaminar stress continuity and is free from any post processing 
technique. FEM used for solving FGSP in the present study consists of nine-noded C-0 FE having 
8DOF/node. Several new results are reported in the study which will serve as benchmark for future 

work in parallel direction. Following points are noted down in this study: 
• The boundary conditions, along with the thickness schemes, affect the vibration response of 
the plate. 

• With increase in thickness of core, value of non-dimensional natural frequency (𝜆̅) increases 

for H-Type-E plate and decreases for S-Type-E plate. 

• Among Type-E, and E1 plates, the CT-Type-E1 plate gives the maximum value of 𝜆̅, and the 

MT-Type-E1 plate gives the least value of 𝜆̅. 

• With an increase in the value of the plate’s skew angle, 𝜆̅ increases for all the cases. 
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