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Abstract.  The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-
flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other 
assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, 
constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), 
nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved 
plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and 
Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are 
temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on 
the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the 
governing nonlinear differential equations are obtained after fractional integration. 

This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach 
by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix 
and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear 
frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based 
on the weighted residual method. The partial differential equations are converted to ordinary differential equations, 
after which they are solved based on the Runge–Kutta fourth- and fifth-order methods. The comparison between the 
results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The 
results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic 
aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing 
curvature. 
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1. Introduction 
 

From the aeroelastic point of view, studying the effect of curvature and plate vibrations are of 

great importance. Even a small geometric curvature on a homogeneous plate is crucial to 
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determine the aeroelastic behavior (with regard to the range of flutter instability), buckling and 

vibrations of plates.  

Plates may have a general and irreversible curvature. The structure may suffer a general or local 

imperfection as a result of the production process and operations. Curvatures are also found in the 

location of plate connections in different forms (welds, rivets, etc.). Geometric curvatures 

markedly affect the speed of flutter. Static loading due to the aerodynamic flow in front of the 

curved plate significantly impacts the flutter boundaries. The amplitude of plate oscillation in the 

flutter conditions is in the range of plate curvature. A curvature is applied to the strain energy of 

the structure, which reduces or increases the structural stiffness. 
The overall curvature can be matched to the buckling mode or vibration modes of the plate. The 

curvature size clearly affects the nonlinear transient response of the plate. It should be noted that 
the plate vibration frequency depends on the curvature height value. 

Yang et al. (2012) investigated the flutter of thermally buckled finite element panels. The finite 

element formulation was extended to treat the flutter model of a semi-infinite panel which is 

buckled into large deflections due to aerodynamic thermal load. Birman et al. (1990) studied the 

effect of aerodynamic heating on the deflection of composite cylindrical panels in fluid flow. It 

was shown that the main contributor to large static deformations is non-uniform aerodynamic 

heating, while aerodynamic pressure is of secondary significance at high Mach numbers. 

Nydick et al. (1995) studied the hypersonic flutter on curved panels. The flutter of shallow 

curved heated three-dimensional (3D) orthotropic panels exposed to hypersonic flow was 

considered. A comparison of the aerodynamic loads predicted by the third-order piston theory, 

Euler equations and Navier Stokes equations was also presented. Krause et al. (1998) studied the 

influence of curvature on supersonic panel flutter. The effect of curvature on flutter boundaries and 

flutter behavior was investigated for isotropic two-dimensional (2D) and 3D panels exposed to 

supersonic flow on one side of the panel using the finite element method (FEM). Librescu et al. 

(2002) studied the supersonic/hypersonic flutter and post-flutter of geometrically non-perfect 

circular cylindrical panels. An analysis of the flutter and post-flutter of infinitely-long thin-walled 

circular cylindrical panels in a supersonic/hypersonic flow was also presented. The third-order 

piston theory and shock wave aerodynamics were used in conjunction with the geometrically 

nonlinear shell theory to obtain the aeroelastic equations.  

Pany et al. (2003) inspected the flutter of periodically-supported curved panels. They 

considered one-dimensional axial wave propagation in an infinitely long periodically-supported 

cylindrical curved panel subjected to supersonic airflow. The aerodynamic forces were based on 

the piston theory. Azzouz et al. (2004) used FEM to simulate the nonlinear flutter of shallow shells 

under yawed supersonic flow. A nonlinear finite element formulation was employed to analyze the 

effects of arbitrary flow angle on large-amplitude supersonic flutter of isotropic and composite 

shallow shell panels. 
Azzouz et al. (2005) utilized FEM for the nonlinear flutter of cylindrical shell panels under 

yawed supersonic flow. A finite element frequency domain technique and a multi-modal finite 
element time domain method were developed to predict the flutter and the nonlinear flutter 
response of shallow shell panels. Fazelzadeh studied the chaotic behavior of nonlinear curved 
panels in supersonic flow. Chaotic and hyper-chaotic behavior were detected using qualitative and 
quantitative methodologies such as time history, phase portrait, Lyapunov exponents and fractal 
dimension. Singha and Mandal examined the supersonic flutter characteristics of composite 
cylindrical panels. The effects of curvature, laminate stacking sequence, airflow direction and 
boundary condition on the supersonic flutter characteristics of laminated composite cylindrical 
shell panels were also investigated.  
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Ghoman et al. (2009) used a time-domain method to study the nonlinear flutter of curved 

panels under yawed supersonic flow at elevated temperatures. Time history responses, phase plots, 

power spectrum density and bifurcation diagrams were employed to understand the pre/post-flutter 

behavior of cylindrical panels of different heights under increasing dynamic pressure and uniform 

or linearly-varying static thermo-aerodynamic loading (STAL).  

Abbas et al. (2011) studied the supersonic/hypersonic flutter behavior of aero-thermo-elastic 

geometrically-imperfect curved skin panel. The aero-thermo-elastic governing equations were 

developed from the geometrically-imperfect nonlinear theory of infinitely-long 2D curved panels. 

Yang et al. (2012) proposed an aero-thermo-elastic two-way coupling method for hypersonic 

curved panel flutter. The governing equations of a simply-supported 2D curved panel were derived 

based on the von Kármán geometrically-nonlinear theory. Compared with the results of one-way 

aero-thermal-elastic coupling, it was shown that the two-way coupling, which decreases the flight 

time with respect to the onset of flutter, is more dangerous. 

Amirzadegan and Dowell (2020) studied the flutter and post-flutter limit cycle oscillation 

(LCO) of elastic shells in supersonic regime. The effects of streamwise and spanwise curvature 

were shown to be different, with the former lowering the stability and the latter increasing the 

stability.  

Amirzadegan et al. (2019) studied the flutter behavior of isotropic plates in view of pre-stress 

effects. Zhou et al. (2019) examined the panel flutter considering the thickness changes, boundary 

conditions, and the length to width ratio. Cao et al. (2019) examined the panel flutter assuming 

thermal effects to determine the Hopf-bifurcation. Muc et al. (2019) investigated the optimization 

of plate and shell structures under the influence of the flutter. 
The first part of this paper is devoted to the frequency analysis of the vibrations and flutter of 

flat and curved plates. The second part deals with the time-domain analysis of nonlinear vibrations 
and post-flutter behavior of flat and curved plates. The combined effects of in-plane mechanical 
loads, uneven heat on the plate with temperature-dependent properties and supersonic aero-
dynamic loads, is first applied to a 2D curved plate. The results show that the flutter instability as 
well as the buckling of the plate and the shell displays a complex behavior due to the combined 
mechanical and thermal loads. The effect of in-plane compressive force demonstrates the complex 
behavior of panel flutter and the nonlinear frequency changes of structure. The use of an 
aerodynamic model based on the third-order piston theory makes the flutter boundary more 
critical. 

 

 

2. Problem formulation 
 

The model of curved panel under the effects of supersonic aerodynamic flow, in-plane load and 

aerodynamic heating is shown in Fig. 1.  

The parameters displayed in Fig. 1 are as follows. 𝑈∞: free flow velocity on the curved plate, 

𝑅𝑥: in-plane load, 𝑃𝑑: dynamic flow pressure above the plate, 𝑃𝑠: low static pressure, 𝑇: flow 

temperature, ℎ: thickness, 𝐻: maximum height of curvature, 𝑅̱𝑥 : radius of curvature, 𝑎: plate 

width. 

Nonlinear finite element analysis is used to verify the vibrational behavior of the plate model 

with the effects of curvature. In this analysis, an initial displacement is applied to the structure and 

a static analysis is performed. Then, the free vibration analysis of the plate is performed in the 

presence of initial residual stresses. To investigate the nonlinear vibration frequencies of the 

structure, a fast Fourier transform (FFT) analysis of the dynamic free vibration response of the  
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Fig. 1 2D plate geometry with environmental loads 

 

 

Fig. 2 Initial deformation in the transient analysis 

 

 

system is employed. Accordingly, an initial displacement is exerted to the 2D plate model and 

after static analysis, transient vibrations under the pre-stress effect are investigated. Fig. 2 shows 

the initial plate displacement. 

 

2.1 Structural formulation 
 

The equations are derived taking the effect of aerodynamic heating into account with the use of 

virtual work. The virtual work principle in dynamic form is defined as Reddy (2003) 
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0 = ∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾)𝑑𝑡
𝑇

0

 (1) 

where 𝛿𝑈, 𝛿𝑉 and 𝛿𝐾 are the virtual strain energy, the virtual work done by applied forces and 

the virtual kinetic energy, respectively, and are expressed as Reddy (2003) 

𝛿𝑈  =  ∫σ⃡: 𝛿ε⃡ 𝑑𝑉
𝑉

 (2) 

𝛿𝑉  =  ∫ 𝐩⃗⃗ . 𝛿𝐮⃗⃗  𝑑𝑥𝑑𝑦
𝛺0

 (3) 

𝛿𝐾  =  ∫𝜌𝐮⃗⃗ ,𝑡. 𝛿𝐮⃗⃗ ,𝑡 𝑑𝑉
𝑉

 (4) 

where 𝜎, 𝜀, 𝒑⃗⃗ , 𝒖⃗⃗  and 𝒖⃗⃗ ,𝑡 are the stress tensor, strain tensor, external distributed force vector, 

displacement vector, and velocity vector, respectively, and 𝛺0 is the mid-plane. Next, using the 

classical panel strain-displacement, Euler-Lagrange equations are derived. The structural equations 

are reduced from two dimensions to one dimension for a panel of infinite length. The structural 

bending equation is defined as Abbas et al. (2011) and Yang et al. (2012). 

𝑀𝑥,𝑥𝑥 − 𝑁𝑥 (𝑤0,𝑥𝑥 −
1

𝑅
_
𝑥
) + 𝛥𝑃𝑎 + 𝑀𝑥,𝑥𝑥

𝑇  + 𝜌𝑚ℎ𝑤0,𝑡𝑡 = 0 (5) 

where
 
𝑤0(𝑥, 𝑡) is the plate’s out-of-plane displacement, 𝑁𝑥is the in-plane axial force resultant, 

𝑀𝑥 and 𝑀𝑥
𝑇are the bending and thermal moments resultant, 𝛥𝑃𝑎 is the aerodynamic pressure, 

𝜌𝑚ℎ𝑤0,𝑡𝑡 is the panel transverse inertia and Rx is the curvature radius. Additionally, 𝑀𝑥 ≡ 𝐷𝑤0,𝑥𝑥 

and  𝐷 = 𝐸ℎ3 12(1 − 𝜈2)⁄  where 𝐷 is the panel stiffness, 𝐸 is the elastic modulus, 𝜈 is the 

Poisson’s ratio and 𝑤0,𝑥𝑥is the mid-plane curvature variation. The panel strain is defined via the 

nonlinear von  Kármán relation as 𝜀𝑥 = 𝑢0,𝑥 + 1 2⁄ (𝑤0,𝑥)
2
 + 𝑤0 𝑅1⁄  Reddy (2003). In 

aerospace applications such as airplane wings, fuselage or tail, the plate is connected rigidly to the 

aircraft structure. The stress is generated on the panel boundaries due to the existence of supports. 

The axial stress, 𝑁𝑥 , is the total in-plane load in the x direction which is defined as Yang et al. 

(2012) 

𝑁𝑥 = 𝑁𝑥
𝑚 + 𝑁𝑥

𝑔
+ 𝑁𝑥

𝑇 (6) 

where 𝑁𝑥
𝑚  is the mechanical tensile or compressive load, 𝑁𝑥

𝑔
 stems from curvature and 

nonlinear terms, and 𝑁𝑥
𝑇 is the in-plane thermal load. These terms are defined as 

𝑁𝑥
𝑚 =

𝑎ℎ

(1 − 𝜈2)

1

∫ 𝐸(𝑥)−1𝑑𝑥
𝑎

0

𝜂 (7) 

𝑁𝑥
𝑔

=
ℎ

(1 − 𝜈2)

1

∫ 𝐸(𝑥)−1𝑑𝑥
𝑎

0

(
1

2
∫ (𝑤0,𝑥)

2
𝑑𝑥

𝑎

0

+
1

𝑅
_
𝑥
∫ 𝑤0 𝑑𝑥

𝑎

0

) (8) 
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𝑁𝑥
𝑇 = −

1

(1 − 𝜈2)

1

∫ 𝐸(𝑥)−1𝑑𝑥
𝑎

0

((1 + 𝜈)∫ 𝛼(𝑥)∫ 𝛥𝑇

ℎ
2⁄

−ℎ
2⁄

𝑑𝑧𝑑𝑥

𝑎

0

) (9) 

The effect of thermal moment is expressed as Reddy (2003) 

𝑀𝑥
𝑇 =

1

(1 − 𝜈)

𝛼(𝑥)

∫ 𝐸(𝑥)−1𝑑𝑥
𝑎

0

(∫ 𝛥𝑇𝑧

ℎ
2⁄

−ℎ
2⁄

𝑑𝑧) (10) 

where
 
𝜂

 
is the tensile or compressive force coefficient per unit area on panel boundaries and 𝛥𝑇 

is the rise in panel temperature with respect to the stress-free state (reference temperature 𝑇𝑟𝑒𝑓). In 

fact, a linear temperature distribution across the panel thickness is assumed as 𝛥𝑇(𝑥, 𝑧) = 𝑇 −
𝑇𝑟𝑒𝑓 =

 
𝑇0(𝑥) + 𝑧𝑇1(𝑥) (Abbas et al. 2011, Gee and Sipcic 1999). At high speeds, the panel 

temperature rises to high values and reaches several hundreds of Celsius degrees. This leads to a 

reduction in flutter boundary and an increase in the LCO amplitude of the panel at the same 

dynamic pressure. The thermal effect is included in panel equations for subtle panel flutter 

modeling. 

The temperature distribution for high velocity flights is assumed to be in the steady state while 

temperature variation along the thickness is disregarded. Hence, 𝛥𝑇(𝑥) = 𝑇0(𝑥) and, as a result, 

the in-plane thermal moment is neglected. The panel temperature is described by 𝑇0(𝑥) =

𝑇
∗
 sin(𝜋 (𝑥 𝑎⁄ )) where 𝑇

∗
 is the maximum in-plane temperature when x = a/2. Simply-supported 

boundary conditions are defined as 𝑤0(𝑥, 𝑡) = 0  and 𝑤0,𝑥𝑥(𝑥, 𝑡) = 0 , (Miller et al. 2011). 

Material properties including elastic modulus 𝐸  and thermal expansion coefficient 𝛼  are 

assumed to be temperature-dependent as in (Muc et al. 2019) 

𝐸 = 𝐸0 + 𝐸1𝑇0 = 𝐸0(1 + 𝑒𝑇𝑇0) ,        𝑒𝑇 = 𝐸1/𝐸0 < 0

𝛼 = 𝛼0 + 𝛼1𝑇0 = 𝛼0(1 + 𝛼𝑇𝑇0) ,         𝛼𝑇 = 𝛼1/𝛼0 > 0
 (11) 

where 𝑒𝑇  and 𝛼𝑇  are the thermal variation coefficients for 𝐸  and 𝛼.  Thermoelastic 

coefficients of the material depend on the position and temperature. Therefore, 𝐸 = 𝐸(𝑥, 𝑇) and 

𝛼 = 𝛼(𝑥, 𝑇). 

 

2.2 Aerodynamic loading 
 

Fluid-structure interaction is modeled based on the nonlinear piston theory. 𝛥𝑃𝑎  
is the 

distributed pressure on the panel due to aerodynamic flow over the panel according to 𝛥𝑃𝑎 =
𝑃𝑑(𝑥, 𝑡) + 𝑃𝑠(𝑥) where 𝑃𝑑(𝑥, 𝑡) is the effect of unsteady aerodynamic force and 𝑃𝑠(𝑥) is the 

initial static aerodynamic force. Assuming an isentropic pressure on the panel and using the piston 

theory based on the downwash velocity 𝑉𝑧 in one dimension, one can write (Epreaunu et al. 2019) 

𝑃𝑑(𝑥, 𝑡) = 𝑃∞ (1 +  𝛾
𝑀

𝛽1
(𝜂1

𝑉𝑧
𝑐∞

))    (12) 

where 𝑐∞  is the sound speed and 𝛾  is the isentropic gas constant. Based on a third-order 

expansion of Equation (9), the third-order piston theory is derived as 
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𝑃𝑑(𝑥, 𝑡) = 𝑃∞ (1 +  𝛾
𝑀

𝛽1
(𝜂1

𝑉𝑧
𝑐∞

)   +    [
𝛾 (𝛾 + 1)

4
]
𝑀

𝛽1
(𝜂1

𝑉𝑧
𝑐∞

)

2

 +  
𝛾 (𝛾 + 1)

12

𝑀

𝛽1
 (𝜂1

 𝑉𝑧
𝑐∞

)

3

) (13) 

where 𝜂1 = 𝑀 √𝑀2 − 1⁄ , and 𝑐∞
2 = 𝛾𝑃∞ 𝜌∞⁄  in which ,P 𝜌∞ and 𝑈∞ are the atmospheric 

pressure, air density and free-stream steady velocity, respectively. Also, 𝛾 = 1.4. 

In order to define the aerodynamic pressure on the panel, the downwash velocity (𝑉𝑧) due to 

fluid flow over the panel is defined based on the panel vertical deflection as in (Yang et al. 2012) 

𝑉𝑧 = (𝛽2𝑤0,𝑡 + 𝑈∞(𝑤0,𝑥 + 𝑤̂0,𝑥)) (14) 

where
 
𝑤̂0,𝑥 is the effect of initial imperfection or curvature on the panel. The piston theory is a 

conventional method for aeroelastic analysis of a system in supersonic and hypersonic flows. The 

fluid flow only exists above the panel while the flow velocity below the panel is zero. For the 

Mach number M, the dynamic pressure 𝑞∞, and constants 𝛽1 and𝛽2, the following relations are 

taken into account: 𝑀 = 𝑈∞ 𝑐∞⁄ , 𝑞∞ = 𝜌∞𝑈∞
2 2⁄ , 𝛽1 = √𝑀2 − 1, 𝛽2 = 𝑀2 − 2 𝑀2 − 1⁄ . For 

high Mach numbers, 𝛽1 = 𝑀 and 𝛽2 = 1. 

 

2.3 Nonlinear aero-thermo-elastic equations of the panel 
 

The non-dimensional system variables are defined according to 

𝑊 =
𝑤

𝑎
 ,  𝑊̂ =

𝑤̂

ℎ
 , 𝜉 =

𝑥

𝑎
 ,  𝑡̅ = 𝑡𝛺0 , 𝛺0 = (

𝜋

𝑎
)

2

√
𝐷0

𝜌𝑚ℎ
 , 𝛺̅ = 𝛺0

𝑎

𝑐∞

 , 𝐾 =
𝜔

𝛺0

,

ℎ̅ =
ℎ

𝑎
 , ℎ̂ =

ℎ

𝑅
_
𝑥

 , 𝑃̅𝑠(𝑥) = 𝑃𝑠(𝑥)
𝑎4

𝐷0ℎ
 , 𝑇𝑐𝑟 =

𝐷0

𝐸ℎ𝑎2𝛼0

 , 𝜌̅ =
𝜌𝑚

𝜌∞

 , 𝐻 ≈
𝑎2

8𝑅
_
𝑥

 ,

 𝜏 =
𝑇

𝑇𝑐𝑟

 , 𝑇̅ = 𝜏 sin(𝜋𝜉) , 𝜇 =
𝜌∞𝑎

𝜌𝑚ℎ
 , 𝛽 = √𝑀2 − 1 , 𝜆 =

2𝑞𝑎3

𝛽𝐷0

, 𝑅𝑥 =
𝐸0ℎ𝑎2𝜂1

𝐷0(1 − 𝜈2)
= 𝐶𝑟𝜋

2

 (15) 

where 𝐶𝑟 is the in-plane load coefficient and 𝑅𝑥is the magnitude of in-plane load. Using the non-

dimensional quantities and substituting them in the above equations, the final nonlinear aero-

thermo-elastic equation of the 2D panel is obtained as 

(1 + 𝛿𝑒𝑒𝑇𝑇𝑐𝑟𝜏 sin(𝜋𝜉))𝑊,𝜉𝜉𝜉𝜉 − (1 (∫
𝑑𝜉

1 + 𝛿𝑒𝑒𝑇𝑇𝑐𝑟𝜏
∗
sin(𝜋𝜉)

1

0

)⁄ ) ×

12

ℎ̅2
(𝜂 +

1

2
∫ (𝑊,𝜉)

2
𝑑𝜉

1

0

+
ℎ̂

ℎ̅
∫ 𝑊𝑑𝜉

1

0

) (𝑊,𝜉𝜉 −
ℎ̂

ℎ̅
) −

(1 (∫
𝑑𝜉

1 + 𝛿𝑒𝑒𝑇𝑇𝑐𝑟𝜏sin(𝜋𝜉)

1

0

)⁄ )(
1

1 − 𝜈
∫ (1 + 𝛿𝛼𝛼𝑇𝑇𝑐𝑟 𝜏sin(𝜋𝜉)) 𝜏sin(𝜋𝜉)𝑑𝜉

1

0

) ×

(𝑊,𝜉𝜉 −
ℎ̂

ℎ̅
) + 𝜋4𝑊,𝑡̅𝑡̅ +

𝑀2𝜋4

ℎ̅𝜌̅𝛺̅2𝛽1

𝜂1 (𝐶𝑎1 (𝛽2

𝛺̅

𝑀
𝑊,𝑡̅ + 𝑊,𝜉 + ℎ̅𝑊̂,𝜉) +

𝐶𝑎3

1 + 𝛾

4
𝜂1𝑀 (𝛽2

𝛺̅

𝑀
𝑊,𝑡̅ + 𝑊,𝜉 + ℎ̅𝑊̂,𝜉)

2

+ 𝐶𝑎3

1 + 𝛾

12
𝜂1

2𝑀2 ×

(𝛽2

𝛺̅

𝑀
𝑊,𝑡̅ + 𝑊,𝜉 + ℎ̅𝑊̂,𝜉)

3

) = 𝑃̅𝑠

 (8) 
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where 𝛿𝑒 is the temperature-dependent modulus of elasticity and 𝛿𝛼 is the temperature-dependent 

coefficient of thermal expansion, which are taken as zero or one.  

The effect of curvature is defined using (Abbas et al. 2011) 

𝑤̂
𝐻⁄ = [1 − (𝑥 − 𝑎

2⁄ )
2

(𝑎 2⁄ )
2

⁄ ] (17) 

The above equation is transformed into 𝑊̂ = −(
ℎ̂

2ℎ̄
2)𝜉(𝜉 − 1). 

 

2.4 Galerkin method 
 
The Galerkin method is implemented to solve the integro-differential equation (Eq. (13)) so as 

to evaluate the structural response and the curvature impact on flutter boundary with thermoelastic 
properties. Moreover, simply-supported boundary conditions (𝑊 = 𝑊,   𝜉𝜉 = 0, 𝜉 = 0,1 ) are 
considered. The mode shape functions are defined such that the boundary conditions are satisfied: 

𝑊(𝜉, 𝑡̅) = ∑𝑎𝑖(𝑡̅)

𝑛

𝑖=1

𝜙𝑖(𝜉)

𝜙𝑖(𝜉) = sin(𝜆𝑖𝜉) ,      𝜆𝑖 = 𝑖𝜋

 (18) 

Obviously, the approximate solution is not equal to the exact solution, and residual terms will 

remain. After multiplying the residual term or error by the proposed base function for the system 

mode shapes 𝜙𝑟(𝜉) = 𝑠𝑖𝑛( 𝑟𝜋𝜉), 𝑟 = 1,2, . . . , 𝑛, integrating along the span and setting the result 

to zero, a series of ordinary differential equations are derived according to the number of expanded 

terms. 

The mode shape functions with fixed support conditions are written as 

𝜙𝑖(𝜉) = sinh(𝛽𝑖𝜉) − sin(𝛽𝑖𝜉) +
(sinh(𝛽𝑖) − sin(𝛽𝑖))

cos(𝛽𝑖) − cosh(𝛽𝑖)
× (cosh(𝛽𝑖𝜉) − cos(𝛽𝑖𝜉))

cos (𝛽𝑖)cosh(𝛽𝑖) − 1 = 0

 (19) 

 Equating the residual weight ratio to zero results in 

𝑅𝑒 = ∫ 𝐹(𝜉, 𝑡̅) 
1

0

𝜙𝑟(𝜉)𝑑𝜉 = 0 (20) 

  

2.5 Converting equations into state-space form 
 

A series of nonlinear ordinary differential equations (ODEs) are transformed into the state-

space form and the Jacobian matrix is calculated. Using the resulting matrix, an eigenvalue 

analysis is performed, and the frequencies and damping of the system are plotted to show 

instability conditions. In the eigenvalue analysis, the structure frequencies are affected by thermal 

and mechanical loads. The system aeroelastic frequencies are also studied in order to inspect 

flutter and divergence. The results of such a frequency analysis are investigated for the first time 

and new aspects of the behavior of curved structure under different loads are shown in separate 

and combined forms. 

To transform the first four natural modes of the structure, the equations are written as 

(Kouchkzadeh et al. 2010)  
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𝑎̈1 = 𝑥̇5

𝑎̈2 = 𝑥̇6

𝑎̈3 = 𝑥̇7

𝑎̈4 = 𝑥̇8

 

𝑎̇1 = 𝑥5 = 𝑥̇1

𝑎̇2 = 𝑥6 = 𝑥̇2

𝑎̇3 = 𝑥7 = 𝑥̇3

𝑎̇4 = 𝑥8 = 𝑥̇4

 

𝑎1 = 𝑥1

𝑎2 = 𝑥2

𝑎3 = 𝑥3

𝑎4 = 𝑥4

 (21) 

Also, the Jacobian matrix is written in the form 

𝐴 =

[
 
 
 
 
 
 
 
 
 
𝜕𝑥̇1

𝜕𝑥1
⁄

𝜕𝑥̇1
𝜕𝑥2

⁄ . . . . .
𝜕𝑥̇1

𝜕𝑥8
⁄

𝜕𝑥̇2
𝜕𝑥1

⁄
𝜕𝑥̇2

𝜕𝑥2
⁄ . . . . .

𝜕𝑥̇2
𝜕𝑥8

⁄
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

𝜕𝑥̇8
𝜕𝑥1

⁄ . . . . .
𝜕𝑥̇8

𝜕𝑥7
⁄

𝜕𝑥̇8
𝜕𝑥8

⁄ ]
 
 
 
 
 
 
 
 
 

 (22) 

One can obtain eigenvalues using equation determinants as in 

|𝐴 − 𝜆𝐼| = 0 (23) 

 Thus, the final polynomial equation of degree 8 is generated as 

𝑠8𝜆
8 + 𝑠7𝜆

7 + 𝑠6𝜆
6 + 𝑠5𝜆

5 + 𝑠4𝜆
4 + 𝑠3𝜆

3 + 𝑠2𝜆
2 + 𝑠1𝜆

1 + 𝑠0 = 0 (24) 

The coefficients 𝑠0 to 𝑠8 depend on the mechanical force inside the plate 𝜂1, the heat inside 

the plate 𝜏, the Mach number 𝑀, the height of plate curvature ℎ̂ and the thermal coefficient A2. 

These terms are specified in Appendix. In general, one can write 

𝑠𝑖 = 𝑓(𝑀, ℎ̂, 𝜏, 𝐴2) (25) 

By solving the resulting polynomial equation, the stability conditions and the shell stability 

boundary are determined. 
 

 

3. Verification 
 

A numerical validation of the proposed approach is provided here. Figure 3 illustrates the effect 
of curvature on the non-dimensional flutter dynamic pressure. The results obtained from the 
present analysis using six modes show very good agreement to the four-mode solution of 
Amirzadegan et al. (2019) and the eight-mode solution of Abbas et al. (2019). 

For a nonlinear flat plate with the effect of in-plane load, the present study is compared with 
Epureanu’s research (Amirzadegan et al. 2019). For the compressive load coefficient, -2.8, the 
LCO diagram is shown in Figure 4. The results of the code are fully consistent with Epureanu’s 
research. 

 

 

4. Numerical results 
 

The results are explained in two sections. First, the frequency analysis of the curved panel 

structure is considered. The effect of plate curvature on frequency variations under in-plane load is 

studied. The aero-thermo-elastic analysis of curved panel is discussed in the second section. The 
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Fig. 3 Comparison of non-dimensional flutter dynamic pressure versus curvature ratio 

 

 

Fig. 4 Comparison of the results of the LCO of a nonlinear flat plate with the effect of internal load, with a 

coefficient of -2.8 

 
Table 1 Plate properties 

𝜌𝑚 = 2700  
𝑘𝑔

𝑚3⁄  𝛼0 = 5.7623𝑒 − 6  1
𝑘∘⁄  𝑎 = 1 

𝜈 = 0.33 𝛼𝑇 = 6.074𝑒 − 4  1
𝑘∘⁄  ℎ = 0.01 

𝐸0 = 70  𝐺𝑝𝑎 𝑒𝑇 = −6.941𝑒 − 4  1
𝑘∘⁄  𝐶∞ = 340  𝑚

𝑠⁄  

𝐸𝑠 = 1.183𝐸0 = 82.86 𝐺𝑝𝑎 𝜌∞ = 1.225   
𝑘𝑔

𝑚3⁄  𝛾 = 1.4 

 

 

effect of plate curvature along with different environmental loads on the instability behavior of the 

plate is also investigated. The initial excitation condition for the first mode is assumed to be 0.1. 

Next, the results obtained from the present analysis using four, six and eight modes are compared.  

Aluminum is the material of choice for the 2D curve panel. The mechanical properties and 

geometric parameters as well as flow field characteristics are shown in Table 1. 
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(a) Frequency domain (b) Time domain (analytical and FEM) 

Fig. 5 Comparison of the first to fourth frequencies of curved plate for the in-plane load coefficients 0 and 

−3.6 
 

 

4.1 Structural analysis of the curved panel 
 

The results of this section consist of two parts. The first part is the analysis of structural 

dynamics in both frequency and time domains to determine the vibrational behavior of the 

structure under the effect of small and large initial excitations. Also, the effect of environmental 

conditions on the vibrational behavior of the curved panel in the frequency and time domains with 

the assumption of linear and nonlinear structures is investigated. In the second part, the aeroelastic 

and thermo-aero-elastic behavior of the curved plate in the frequency and time domains are 

examined and compared. 

The comparison of the first to fourth frequencies of the curved plate for the curvature ratio of 

zero to 6, and for the in-plane load coefficients of 0 and −3.6, is shown in Fig. 5(a). The diagram 

shows the frequency domain analysis and the increase of the first and third frequencies with 

increasing plate curvature. The rise in compressive force inside the plate reduces the frequencies. 

Figure 5b compares the frequency domain and time domain analysis using the finite element and 

analytical methods, which shows a complete adaptation of the process of changing frequencies 

with the frequency domain results for small excitation. 

Fig. 6(a) shows the nonlinear frequency changes of the plate in terms of curvature for the 

excitation conditions 0.0001 to 0.01. As the plate curvature increases, the first frequency of the 

structure also increases (except for the excitation 0.002).  As the excitation grows, the frequency 

behavior of the plate changes from increasing to uniform with increasing curvature effect. Figure 

6b compares the change in the first and second frequencies of the plate in terms of curvature for 

the analytical and the nonlinear finite element model. As observed, a good agreement is observed 

between these cases. 

A comparison between the frequency changes of the flat and curved plate structure for 

curvatures 0, 2, 4 and 6 is performed for the first three modes. As shown in Fig. 7(a), the first 

frequency for zero curvature reaches zero at a pressure coefficient of −1. The second frequency for 

the zero pressure factor starts from 16 and reaches zero for the pressure factor of 4. The second 

frequency of the plate with zero curvature is equal to the first frequency of the curved plate with 
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(a) Initial conditions 0.0001 to 0.01 (b) Nonlinear analytical and FEM 

Fig. 6 Comparison of linear and nonlinear frequency changes of curved plate in terms of curvature change 

from 0 to 6 

 

  
(a) H/h = 0 & 2 (b) H/h = 4 & 6 

Fig. 7 Frequencies of the first to third modes of the flat and curved plate with respect to compressive force 
 

 

the curvature 2. The frequency changes of the flat structure are uniform, whereas for the curved 

plate, the second and third frequency reductions have a curved shape, while the trend of changes in 

the second and third frequency is different. With increasing curvature of the structure from zero to 

2, the first and second frequencies increase significantly. 

For higher values of compressive force coefficient, the frequency difference between the 

equivalent flat and curved plate modes with a curvature of 2 grows. For the curvature ratios 4 and 

6, as shown in Fig. 7(b), the first frequency of the structure is the same and the second and third 

frequencies of the structure slightly increase for the curvature ratio of 6. Comparing the curved 

plate frequency for the curvature ratios 2, 4 and 6 shows that as the compressive force coefficient 

increases, the first frequencies remain the same, while the second frequency of the plate with the 

curvature 2 shows more deviations compared with those of the plate with the curvatures 4 and 6. 

The frequency difference in the third mode increases for different curvatures. 
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(a) different initial condition 
(b) Mode numbers 1 to 3 for the initial condition 

0.003 

Fig. 8 Frequency versus compressive load coefficient for H/h = 1 

 

 

With an increase in the camber ratio from 2 to 6 with respect to the in-plane load, the first 

frequency remains similar while the frequency difference is more visible at higher mode numbers. 

Frequency variation of higher camber ratios is more linear unlike that of lower camber ratios. 

Fig. 8(a) shows the changes in the first frequency of the curved plate with a curvature of 1 for 

the initial excitation conditions 0.0001 to 0.01 in terms of the force inside the plate. The diagram is 

based on the nonlinear analysis of the structure. With increasing initial excitation, the system 

dynamic behavior and the frequency variation start to vary. By changing the in-plane load from 

tensile to compressive, for small excitation of the system, first the frequency reduction to the 

buckling limit is shown, then the frequency increase in the post-buckling range is specified. With a 

large increase in initial excitation, due to the increase in frequency and stiffness of the structure, a 

constant decrease in frequency is diverge, and the frequency in the specified compressive load 

range does not approach the buckling conditions. Therefore, regarding the nonlinear analysis, the 

effect of excitation on the dynamic behavior of the curved plane is quite evident. Also, the diagram 

for ic = 0.003 corresponds well with the analysis diagram in the frequency domain up to the 

buckling boundary where the linear behavior of the structure is visible, and the results in both 

analyses confirm each other. Figure 8b shows the frequency changes of the first to third modes of 

the curved plate for the excitation 0.003. All three frequencies have a decreasing trend until the 

buckling limit is reached at a load factor of −5, after which the post-buckling behavior and 

increasing frequencies are observed. 

The nonlinear frequency analysis of the curved plate structure under the initial excitation of 

0.01 is performed in the time domain and the structure vibrations are investigated in this section. 

Figs. 9(a)-9(d) show the vibrations of the plate with the curvatures 0, 1, 3 and 5. In Fig. 9(a), for 

the flat plate, the symmetrical vibration with respect to the equilibrium state of the plate is shown 

in the range of 0.02 > W > −0.02. Fig. 9(b) shows the dimensionless oscillation of the plate with a 

curvature of 1, asymmetrically with respect to the equilibrium state, in the range 0.02 > W > 

−0.04. In Fig. 9(c), the plate oscillation for the curvature 3 is in the range 0.02 > W > −0.065. 

Finally, for the curvature 5 in Fig. 9(d), the oscillation amplitude is in the range 0.02 >W > −0.1 

and the oscillating behavior is irregular. Thus, as the plate curvature increases, the vibrations 
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(a) H/h = 0 (b) H/h = 1 

  
(c) H/h = 3 (d) H/h = 5 

Fig. 9 Nonlinear plate vibration with the curvatures 0 to 5 and the initial condition 0.01 

 

  
(c) H/h = 1 (d) H/h = 5 

Fig. 10 Nonlinear frequency of curved plate with the curvatures 1 and 5 and the excitation 0.01 
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(a) curvature 1 (b) curvature 4 

 
(c) curvature 6 

Fig. 11 Comparison of curved plate oscillation amplitude with different curvatures using finite element 

and Galerkin methods 

 

 

amplitude grows and becomes asymmetric. It also changes from a regular to an irregular 

oscillation . 

Fig. 10 shows the nonlinear frequencies of the plate with the curvatures 1 and 5 for an 

excitation of 0.01. As the curvature increases, the frequencies exhibit no considerable variation 

and remain comparable. However, the excitation of the frequency range for curvature 5 is greater. 

Figs. 11(a)-(c) respectively compare the oscillating behavior of a nonlinear curved plate with 

the curvatures 1, 4 and 6 using the nonlinear finite element and Galerkin methods with a specific 

excitation coefficient to determine the dynamic behavior. Fig. 11(a) shows the regular oscillating 

behavior of the plate for the curvature 1, indicating a very good agreement between the analytical 

and numerical results. In Figs. 11(b) and 11(c), the oscillations of the plate with the curvatures 4 

and 6 are investigated, also exhibiting a very good agreement between the vibrational behavior in 

both numerical and semi-analytic analysis of Galerkin method. Both cases demonstrate chaotic 

behaviors of the system. 
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(c) H/h = 4 (d) H/h = 4 

Fig. 12 Flutter frequency, Kf, versus in-plane load, Cr, for different thermal loads, τ 

 
 

4.2 Aero-thermo-elastic analysis of the curved plate  
 
The frequency of the curved plate flutter is investigated for different curvature ratios by 

changing the expressions of the in-plane load and the temperature of the plate surface in the 

frequency domain solution. In this section, some general results are discussed as follows. 

For the curvatures 1 to 4: 

(A) By changing the in-plane load from tension to compression, the flutter frequency decreases. 

(B) As the temperature inside the plate increases, the flutter frequency decreases due to the 

aerodynamic heating. (C) With increasing plate curvature, the flutter frequency increases. (D) A 

growth in the mechanical compressive load and aerodynamic heating, the decrease in the system 

flutter frequency occurs with a more negative slope. (F) By changing the tensile load to 

compression, the effect of thermal load on the flutter frequency reduction becomes more evident. 

In Fig. 12(a), the effects of in-plane load and plate temperature on the flutter frequency are 

shown for the camber ratio 1. A large reduction in flutter frequency is exhibited with increasing in-

plane compressive load. The flutter frequency is further decreased with increasing temperature. 

The effect of in-plane load on the linear flutter frequency reduction for the camber ratio of 4 is 

depicted in Fig. 12(b). It is evident that the reduction in flutter frequency is more pronounced at a 

higher camber ratio.  

To have a clear and accurate view of the complex behavior of the aeroelastic system, the non-

dimensional flutter and divergence dynamic pressure boundary with respect to in-plane load for 

different thermal loads are also presented.  

Some specific results observed in Figs. 13 and 14 are detailed as follow. 

(a) The stability domain is small for the camber ratios 1 to 2, while it becomes larger for the 

camber ratios between 3 and 5. The stability domain for the camber ratio 6 shrinks. 

(b) The boundaries of flutter and divergence are very sensitive to the variations in camber ratio, 

and a sudden change in plate aeroelastic instability behavior is observed. 

Fig. 13(a) shows the static divergence of the panel for the camber ratio 1 and Cr = −2. The 

panel instability boundary is changed to flutter with increasing in-plane load (Cr > −2). For larger  

C

K

-2 0 2 4

1

2

3

4

5

H/h=1 , =

H/h=1 , =

H/h=1 , =

H/h=1 , =

H/h=1 , =

f

r Cr

K

-4 -2 0 2 4
2

4

6

8

H/h=4 ,=

H/h=4 ,=

H/h=4 ,=

H/h=4 ,=

H/h=4 ,=

f

360



 

 

 

 

 

 

Two-dimensional curved panel vibration and flutter analysis in the frequency … 

  
(a) H/h = 1 (b)

 
H/h = 1.5 

Fig. 13 Non-dimensional dynamic pressure, , versus in-plane load coefficient, Cr, for different thermal 

load coeffiencents
 
τ 

 

  
(a) H/h = 3 (b)

 
H/h = 4 

Fig. 14 Non-dimensional dynamic pressure, λ, versus in-plane load coefficient, Cr, for different thermal 

load coefficents
 
τ 

 

 

values of λ and larger thermal load coefficients ( ), the flutter boundary increases. For zero 

thermal load case ( 0 = ), the variation of flutter boundary with respect to in-plane load is linear 

while nonlinearity is observed for other thermal loads. λf 

Fig. 13(b) shows that the flutter and divergence dynamic pressure (λf , λd) decrease with 

increasing Cr values between −5 and 0 for the camber ratio 1.5. A further increase in Cr reverses 

the flutter boundary. With increasing   from 0 to 10 for a fixed non-dimensional dynamic 

pressure, the flutter instability boundary decreases for Cr
 
values between −5 and 0, then increases 

for Cr values between 0 and 5. The divergence boundaries increase for Cr
 
values between −5 and 

0 and increasing τ from 0 to 10. A further growth in Cr
 
reverses the flutter boundary. 
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Fig. 15 Non-dimensional flutter dynamic pressure of the curved plate with the curvature 1 in terms of in-

plate load 

 

 

Fig. 14(a) shows that λd declines with increasing in-plane load for the camber ratio 3. However, 

λf  boundary increases with increasing in-plane load from −5 to 0 and decreases with increasing in-

plane load from 0 to 5. With increasing thermal load coefficient from 0 to 20 for a fixed λ, the 

panel divergence instability boundary increases. With increases λ for a fixed compressive load, the 

thermal load increases the flutter boundary and vice versa. 

Fig. 14(b) shows that λd is reduced with increasing in-plane load for the camber ratio 4. In 

contrast, λf boundary increases with increasing in-plane load. With increasing thermal load 

coefficient from 0 to 20 for a fixed λ, the panel divergence instability boundary increases. With 

increasing thermal load coefficient for a fixed in-plane load, the flutter boundary decreases. With 

increasing compressive in-plane load, the flutter and divergence boundaries converge. According 

to the results, with increasing value of in-plane load, the flutter boundaries for different thermal 

load coefficients converge. 

The combination of curvature with a constant in-plane load is influential in the regular and 

irregular behaviors as well as in the amplitude of plate vibrations. 

Fig. 15 shows the dynamic pressure of a nonlinear curved plate flutter with the curvature 1 in 

terms of increasing compressive in-plane load. As the in-plane load increases, the flutter velocity 

decreases continuously and remains almost constant for the coefficients −4 to −6. Therefore, the 

compressive force inside the plate brings about the aeroelastic instability of this flutter type for the 

curved plate with a curvature of 1. A comparison of the changes of flutter boundary in the 

nonlinear analysis of time domain (Fig. 15) with the linear analysis of frequency domain (Fig. 

13(a)) is also carried out. One observes that changing the in-plane load coefficient from 1 to 0 and 

−2 in the frequency analysis decreases the flutter velocity from 220 to 180 and 60. In the nonlinear 

analysis, however, the flutter velocity changes from 270 to 250 and 220. Therefore, the decrease in 

the flutter velocity occurs much more slowly in the nonlinear analysis, and the nonlinear terms of 

the structural equations increase the flutter boundary and structural stability . 

Figs. 16(a) and 16(b) show the oscillation amplitude and frequency of the curved plate flutter 

with a curvature of 1 in terms of in-plane load for dimensionless dynamic pressure 275. As the 

flutter oscillation amplitude of the curved plate increases, the f lutter frequency decreases.  
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(b) Non-dimensional flutter frequency (a) Nondimensional flutter oscillation amplitude 

Fig. 16 Oscillation amplitude and frequency of the curved plate with the curvature 1 in terms of in-plane 

compressive load for the dynamic pressure 275 

 

  
(b) Curvature 2 (a) Curvature 1 

Fig. 17 Stability, flutter, and divergence range of the plate based on dimensionless dynamic pressure in 

terms of heat for a given compressive load 
 

 

Therefore, with increasing compressive force for a curvature of 1, while the oscillation amplitude 

grows, the flutter frequency decreases and the structure behavior softens. 

The curvature effect exhibits special and distinct changes in the analysis of flutter phenomenon. 

In fact, the effects of plate curvature and aerodynamic loading creates a complex combination, and 

the results include certain subtleties. Figs. 17 and 18 show the range of plate stability, flutter, and 

divergence. The dimensionless dynamic pressure diagram in terms of temperature is also plotted 

for different curvatures and in-plane loads. Several general results can be obtained. (A) For a 

certain amount of in-plane load, by increasing the curvature of the plate from 1 to 4, an increase in 

the stability range can be observed. (B) At the curvature ratio of 1 for the compressive force 

coefficient of −2.43, the divergence region of the small plate resides in the temperature range of 16 

to 20 and the dynamic pressure is 0 to 60. By increasing the plate curvature to 2–4, while the 
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(b) Curvature 4 (a) Curvature 3 

Fig. 18 Stability, flutter, and divergence range of the curved plate based on the dimensionless dynamic 

pressure in terms of heat for a given compressive load 

 

  
(b) Damping map (a) Frequency map 

Fig. 19 Frequency and damping diagrams of the plate with the curvature 5 and the conditions of 

combination of higher modes 
 

 

compressive force coefficient is −3.64, the divergence region is quite large and almost similar. (C) 

For the curvatures 2 to 4, with increasing plate curvature, the flutter boundary shifts to a higher 

dynamic pressure and the stability zone expands. (D) with increasing curved plate temperature, the 

stability zone shrinks (One should note that for the curvature 3, compressive force coefficient 

−4.86, and growing temperature to more than 15, the divergence zone decreases unlike higher 

curvatures and the stability zone becomes larger).   

Figs. 19(a) and 19(b) show the frequency and damping diagram of the system in terms of 

dimensionless dynamic pressure, in the eigenvalue analysis, for the curvature 5 and force 

coefficients of 0 and −2.43. For a force coefficient of 0, the flutter occurs at the dynamic pressure 

of 470. For a compressive load factor of −2.43, the third and fourth modes at a dynamic pressure 

of 300 are combined to show the plate flutter. Therefore, increasing the plate curvature results in 
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(b) Curvature 0 and 1, third-order piston theory (a) Curvatures 0 and 1, first-order piston theory 

  
(d) Curvature 3 (c) Curvature 2 

 
(e) curvature 4 and 5 

Fig. 20 Limited and turbulent curved plate oscillation for H/h 0 to 5, using first- and third-order piston 

theory 
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(b) Curvature 1 (a) Flat plate 

Fig. 21 LCO and turbulent behavior of flat and curved plates with the effect of in-plane load factor −2.43 
 
 

an earlier occurrence of stimulation and combination of higher modes than those observed at lower 

modes while reducing the flutter boundary. 

The analysis of the aeroelastic behavior of the curved plate is investigated by changing the 

curvature and the effect of in-plane and thermal load on the plate. Figs. 20(a) and 20(b) show the 

LCO behavior of the flat and curved plate (H/h = 1) using the first- and third-order piston theory, 

respectively. For both plates, the flutter behavior is LCO, although the finite cycle shape has 

changed according to the plate curvature and aerodynamic theory. The range of fluctuations for 

both theories is almost in the same range. For the curvature 1, two-period behavior is observed 

using the first-order piston theory and one-period behavior is observed using the third-order piston 

theory. 

Figs. 20(c) and 20(d) show the chaotic behavior of the plate with the curvatures 2 and 3, 

respectively. As the plate curvature grows, the oscillation amplitude increases. Furthermore, as the 

plate curvature increases to 4 and 5, the oscillation amplitude grows, while the structural behavior 

finds the form of a fixed finite cycle oscillation band.    

Figs. 21(a) and 21(b) show the LCO of flat plate and the chaotic behavior of curved plate for a 

curvature 1 considering the effect of a compressive load factor −2.43. For a curved plate of 

curvature 1, with increasing in-plane load from 0 to −2.43, the system behavior changes from LCO 

to chaotic. The fluctuation range also increases. 

Fig. 22(a) shows the panel flutter dynamic pressure versus panel camber ratio obtained using 

the first-order piston theory (PTA1) and third-order piston theory (PTA3). With increasing panel 

curvature, λf 
is reduced. With the use of PTA1, λf decreases from 350 (flat panel) to 80 (curved 

panel with the camber ratio of 5). This clearly emphasizes that PTA3 reduces the flutter dynamic 

pressure. This reduction is more significant for the flat panel at higher dynamic pressures. With 

increasing panel camber ratio, λf 
decreases and the dynamic pressure difference between PTA1 and 

PTA3 decreases and vanishes. 

Fig. 22(b) shows the panel flutter dynamic pressure versus panel camber ratio found using 

PTA1 and PTA3. Simulations are conducted for τ = 5, δe = 1 and δα = 1 in this case. With 

increasing panel camber ratio to 1 for PTA1, λf 
is reduced from 300 (flat panel) to 180, then 

increase to 230 for a camber ratio of 1.5. As the camber ratio increases from 1.5 to 5, λf 
decreases 

to 70. This clearly shows that PTA3 reduces the flutter dynamic pressure although the trend of 
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(b) Curvature 1 (a) Flat plate 

Fig. 21 LCO and turbulent behavior of flat and curved plates with the effect of in-plane load factor −2.43 

 

  
(b) Thermal load effect (a) Zero in-plane load 

  
(d) Thermal load with thermal-dependent material (c) In-plane load effect 

Fig. 22 Comparison of flutter dynamic pressure in terms of curvature for the first- and third-order piston 

theory 
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flutter dynamic pressure variation is similar. One concludes that the thermal load decreases λf 
with 

respect to the camber ratio. 

Fig. 22(c) shows the panel flutter dynamic pressure versus panel camber ratio found using 

PTA1 and PTA3. Simulations for this case are conducted for the in-plane load effect (Cr = −2.43). 

With increasing panel camber ratio up to 1, λf 
increases from 160 to 230 based on PTA1, and with 

increasing panel camber ratio from 1 to 5, λf 
decreases to 70. It is evident that with the use of 

PTA3 instead of PTA1, the flutter dynamic pressure decreases. On the contrary, with increasing 

panel camber ratio from 0 to 5, the difference between PTA1 and PTA3 diminishes. By 

considering the effect of mechanical in-plane load, the variation of flutter dynamic pressure with 

respect to panel camber ratio changes alongside Figs. 22(a) and 22(b) with and without thermal 

effects. 

Fig. 22(d) highlights the impact of temperature in conjunction with the thermal degradation of 

the thermo-mechanical properties of panel material on the flutter dynamic pressure. With 

increasing panel curvature, the temperature dependency of structural properties leads to a 

reduction in the dynamic pressure instability. For a camber ratio of 2, the maximum difference 

between λf 
of thermal-dependent and thermal-independent materials is shown. 

 

 

5. Conclusions 
 

The supersonic flutter behavior of 2D curved panels is studied using the Galerkin method 

which considers the structural nonlinearities. Numerical studies of the aero-thermo-elastic system 

including curvature ratio, in-plane load, thermal load distribution on the panel as a function of 

length, thickness ratio, temperature dependency of material properties, first and third order piston 

theory, and the structural analysis in the frequency and time domain approaches are conducted. 

The following results are obtained. 

In the frequency domain: 

(1) Structural frequency reduction is dependent on thermal effects. (2) Temperature dependent 

materials can decrease the structural frequency. (3) Compressive load reduces the structural 

frequency and buckling load. (4) With increasing in-plane tensile load at the boundaries, λf 

increases. (5) With increasing in-plane temperature, λf decreases. (6) With increasing in-plane 

compressive load, the panel flutter frequency decreases continuously. (7) With increasing thermal 

and in-plane loads, divergence becomes more critical. (8) With increasing panel curvature, 

structural and panel flutter frequencies increase. (9) With an increase in panel curvature, the 

structural stability domain shifts from higher to lower temperature. (10) With increasing plate 

camber, stability increases. (11) For curved panels, at low values of λ and high temperatures, 

divergence conditions are observed more frequently. For high values of λ in different temperature 

regions, the flutter is observed more recurrently. (12) With increasing panel curvature to higher 

ratios (H/h > 4), there is an increase of higher mode combinations and lower λf. (13) A 

complicated unstable aeroelastic behavior of the panel is observed with the combined effects of 

higher panel curvatures, in-plane loads and heat. 

In the time domain: 

A nonlinear analysis is performed in the time domain to study the vibration and flutter behavior. 

(1) As the plate curvature grows, the frequencies of linear structure increase. The nonlinear 

frequencies of the first to third modes increase slightly for a curvature ratio of less than 3, then 
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decreases to some extent. In general, the plate frequency variations in the nonlinear analysis are 

much more limited than those observed in the linear mode. 2) As the plate curvature increases 

from 0 to 3, the phase diagram changes from LCO to chaotic motion, and a further increase in 

curvature exhibits a definite band of LCO. 3) With increasing compressive load in the plate, the 

oscillation amplitude increases and the flutter frequency decreases, demonstrating a softness in the 

structural behavior. (4) Based on the third-order piston theory, the flutter boundary is more critical 

than that observed for the first-order piston theory. 5) As the plate curvature increases, the flutter 

velocity decreases and the results of the first- and third-order piston theory converge. 6) By 

increasing the plate curvature to the values of 4 and 5, the flutter velocity becomes almost uniform.  
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Nomenclature 
 

panel thickness h 

curvature height ĥ  

curvature changes H/h 

out-of-plane displacement w0 

plate width a 

tension or compression force coefficient   

plate stiffness D 
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elastic modulus E 

Poisson’s ratio V 

radii of curvature Rx 

aerodynamic pressure aP  

dynamic flow pressure above the plate Pd 

Low static pressure  Ps 

speed of sound c  

Free-stream steady velocity U   

virtual strain energy 𝛿𝑈 

virtual work 𝛿𝑉 

virtual kinetic energy 𝛿𝐾 

stress tensor   

strain tensor   

external distributed force vector p  

displacement vector u  

velocity vector ,tu  

in-plane axial force resultant Nx 

in-plane thermal force resultant T

x
N  

bending moments resultant Mx 

thermal moments resultant T

xM  

modulus of elasticity and thermal expansion e ,   

rise in plate temperature T  

free stream temperature T 
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atmospheric pressure P  

plate density 𝜌𝑚 

air density   

isentropic gas constant   

Mach number M 

dynamic pressure q
 

comparison functions ( )r   

non-dimensional frequencies K  

reference temperature refT  

maximum in-plane temperature T


 

thermal variation coefficients for E  Te  

thermal variation coefficients for   T  

thermal expansion coefficient   

in-plane load coefficient rC  

magnitude of in-plane load xR  

first frequency  0  

non-dimensional frequency   
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