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Abstract.  This paper presents the flutter analysis and optimum design of axially functionally graded box beam 
cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations 
of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on 
extended Hamilton’s principle. By expressing the lift and pitching moment in terms of plunge and pitch 
displacements, the resultant two continuous equations are simplified using Galerkin’s reduced order model. The 
flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are 
conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material 
volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by 
training the radial basis function network with the parametric data. The optimized material and geometric parameters 
of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that 
employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section 
design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with 
silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization. 
 

Keywords:  aeroelastic tailoring; axial functional grading; cantilever wing; flutter boundary; firefly 

algorithm 

 
 

1. Introduction 
 

Aeroelastic instability in aircrafts is the most important threatening aspect resulting in the 

riding discomfort and final structural failure. Especially, for a highly flexible, long slender aircraft 

wing structures, the static divergence and dynamic flutter speeds are to be regularly monitored and 

controlled. Aircraft wing system subjected to active lift forces and moments has coupled bending-

torsion motions. Dynamics of such a system is expressed in terms of plunge (bending) and pitch 

(twisting) displacements with self-excited lift force and pitching moments. The flutter speed can 

be enhanced remarkably by minimizing the inertial, elastic and aerodynamic coupling terms. The 

flutter requirements are to be satisfied at the initial design stages of wings itself. Several earlier 
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studies focused on the use of composite materials for different kinds of wing designs. The 

structural properties of high aspect ratio composite wings were optimized by reducing the overall 

weight of the system (Liu and Lin 1991). The aeroelastic optimization of laminated swept 

composite wing structure was studied so as to achieve different system requirements (Weisshaar 

1981). A procedure for enhancement of flutter stability in box type laminated composite wing 

system was given by   Patil (1997). The ply lay-up, orientation and directional property of a 

composite wing were found to be the effective design parameters in improvement of flutter 

velocity (Wan et al. 2005, Guo et al. 2003, Qin and Librescu 2003). The flutter onset speed has 

increased considerably in composite laminated plate by maximizing the eigenfrequency that 

provoked the flutter (De Leon et al. 2012). It was found that the flutter boundary of the wing 

idealized as a composite beam under the follower force with engine mass was highly influenced by 

ply orientation (Amoozgar et al. 2013). The effect of crenellation parameters such as orientation, 

width and thickness of wings on the aeroelastic stability was addressed by Francois et al. (2017). 

In a more recent work, structural and aeroelastic responses like strength, mass, divergence etc. 

were optimized by selecting the lamination thickness of composite wing system (Dillinger et al. 

2019). 

A new class of composites known as functional graded materials (FGM) has attracted several 

research groups over the last decade because they can improve the structural and aerodynamic 

characteristics more effectively. This is possible by tailoring the continuous variations of material 

and geometric properties of the system along the thickness or axial directions. FGM have 

controlled volume distribution patterns inside the matrix phase. Librescu and Maalawi (2007) 

developed an analytical formulation to improve the aeroelastic stability of FGM wing by 

improving the torsional stability. Here, continuous linear, parabolic and piecewise volume 

distributions were employed. Dunning et al. (2014) presented Pareto optimization procedure of a 

functionally graded cantilever plate wing system made of two metallic substances. The aeroelastic 

instability region was identified with material and geometric grading and the effect of both on the 

stability boundary has been studied in the subsonic conditions. James et al. (2014) carried out the 

structural and aerodynamic optimization of box wing to achieve the maximum stable region and 

the result was compared with the sequential optimization. The natural frequencies of the structure 

have strong coherence with the flutter instability of structures. Maalawi (2011) presented optimum 

design of axially functional graded (AFG) continuous bar section to maximize its frequencies. The 

effect of material grading in thickness direction on the free vibration characteristics of both thin 

and thick walled box beam cross-sections was studied by Ziane et al. (2013). Tsiatas and 

Charalampakis (2017) illustrated the design of AFG beams and arches for maximizing the natural 

frequencies via differential evolution method. Asadi and Wang (2017) presented the effect of 

functional grading volume distributions along the thickness on the flutter boundaries in carbon 

nanotube reinforced composite beams. As an extension, Mehri et al. (2017) studied such a grading 

using conical curved panel subjected to aerodynamic and axial loads concurrently. Recently, Song 

et al. (2019) conducted optimal panel flutter analysis by axially varying the geometry and material 

parameters with the help of three arbitrary thickness functions.   

In aerodynamic modeling and optimization, surrogate models are employed to minimize the 

computational cost of fluid dynamics. Sommerwerk et al. (2016) presented a surrogate model to 

replace computational fluid dynamics calculations in aircraft wings. Radial basis function (RBF) 

network with transient nonlinear computational data was used as training sets. Brouwer and 

McNamara (2020) proposed surrogate modeling to predict aeroelastic load in wing panel.      

Gao et al. (2019) considered the dynamic characteristics of FGM porous beams using surrogate 
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modeling. Optimization for required aerodynamic and structural features using efficient numerical 

schemes is another topic of interest. Burdette and Martins (2018) performed multi-point 

optimization of morphed wing system at different flight conditions. 

For enhancement of flutter stability in aircraft wings made of FGM, several optimization 

criteria can be imposed. In the present work, the box beam hollow section of cantilever wing is 

considered as the load carrying structural member with axial functional graded distributions along 

the span. The dynamic equations are derived for coupled bending-torsional motion of wing using 

extended Hamilton’s principle. The reduced order model is obtained from Galerkin’s 

decomposition scheme and the resulting eigenvalue problem is solved to predict the flutter 

velocities. The parametric analysis is conducted to study the effect of important structural and 

geometrical parameters on the flutter velocity. Furthermore, the functional relationship between 

the output flutter velocity and input variables is generalized using radial basis function neural 

network model. After validating the network model with sufficient testing examples, it is used to 

estimate the flutter velocities for the optimization problem. In order to maximize the flutter 

velocity, new metaheuristic scheme known as firefly algorithm (FA) is employed. The structural 

mass is given as a constraint. The flutter boundary of optimized design is presented. Remaining 

part of the paper is organized as follows: section-2 describes the mathematical model of 

continuous wing system with plunge and pitching degrees of freedom for box beam section of 

wing. Further, the solution scheme and optimization problem are briefly described. In section-3, 

introduction to neural network model and firefly algorithm are presented. Section-4 explores the 

results and discussion of a case study of functionally graded wing section.  
 

 

2. Mathematical modeling 
 

A simplified model of FGM wing consists of a cantilever beam of variable cross-section and 

material properties.  
 

2.1 Equations of motion 
 

Fig. 1(a) shows the cantilever wing with sweep angle and taper effects. The axially functionally 

graded box beam section is shown in Fig. 1(b), which is the primary load carrying member of 

wing and other two parts (i) onward of the front spar and (ii) aft of rear spar are to give 

aerodynamic shape and are assumed to associate with mass and inertia terms. Therefore, the box 

beam portion alone is of interest. 
 

 

 

 

(a) (b) 

Fig. 1 (a) Cantilever wing with sweep and taper and (b) box beam wing cross-section 
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The material properties of the trapezoidal box beam section are considered to vary continuously 

in the axial direction according to a non-negative power law index (Alshorbagy et al. 2011). 

 

(1) 

where PR and PL are the corresponding material properties at the right and left side of the beam, 

and k is the power law index.  

The kinetic energy of tapered wing section in terms of plunge (h) and pitch () degrees of 

freedom and density ρ(y) is given as: 

 
(2) 
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where    yJyGAA   
and    yIyEBB  are bending rigidity, and torsional rigidity 

respectively. Further, the variations in the energy terms are 
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Here, again m = (y)A0 is mass per unit length and the dash over refers to the partial derivative 

with respect to y. The work done by aerodynamic forces is expressed as: 
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where L and M are the quasi-steady aerodynamic lift and moment terms which are defined in terms 

of sweep angle () as (Mazidi and Fazelzadeh 2010): 
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(8) 

where a, b, and U are the non-dimensional distance of elastic axis from mid-chord, semi-chord and 

freestream velocity respectively.  

The extended Hamilton’s principle can be written as: 

 

(9) 

By substituting Eqs. (4)-(6) in Eq. (9), the following equations of motion are obtained: 

 (10) 

 
(11) 

The variable h and t are made dimensionless by using l and characteristic time EIml 4

(inversely proportional to systems natural frequency). Now, the dependent variables and system 

parameters are non-dimensionally written as: 

, , , , ,  

 

2.2 Solution of dynamic equations 
 

To obtain the solution of these aeroelastic equations, an approximation technique using 

Galerkin’s method (Fletcher 1984) is employed. The variables h and α in Eqs. (10) and (11) are 

expressed in terms of modal functions as (Hodges and Pierce 2011): 
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The modal functions of cantilever end conditions are given as: 
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(16) 

where η = y/l and βi is a non-dimensional frequency parameter. By substituting the user defined 

number of modes i into equations of motion and applying the Galerkin’s technique, the reduced set 

of differential equations in time domain are obtained, which can be written in a matrix form as: 

 (17) 

where, [M], [C], [K] are the mass, damping, and stiffness matrix respectively, while  T

ii srq 

is a displacement vector. The equations are further transformed into state-space form as: 

 (18) 

where,  T
qqQ  is resultant displacement vector and   












 ][][][][

][]0[
11 CMKM

I
A is the 

system matrix. The eigenvalues obtained from the system matrices have real and imaginary parts 

respectively representing damping coefficients and the natural frequencies. The flutter speed (Uf) 

is identified as the flow velocity at which a real part of eigenvalue changes its sign. 

 

2.3 Formulation of optimization 
 

In order to achieve an optimal box section for the wing, the optimization problem is formulated 

as: 

Maximize f(X) = Uf (19) 

subjected to 
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min  , are the design variables which include 

geometric and material parameters. Here, mt is the scaling maximum mass of the wing. 

 

 

3. Present approach 
 

Artificial neural networks are widely used in several engineering applications today as 

surrogate models, where the experimental and computational difficulties are involved in the 

system. Radial basis function is one kind of function-approximation supervised neural networks 

(Guan et al. 2016) and has an advantage of limited network parameters along with good reliability 

in output performance. The RBF is a feed-forward three-layer network with input, output and 

radial basis (hidden) layers making use of nonlinear radial basis activation functions. Fig. 2 shows 

the block diagram of the RBF.  

The hidden nodes are not weighed from the input side, however, each hidden node receives a 

central vector radially. The sum of the weighted outputs at a hidden layer is defined as: 
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Fig. 2 RBF neural network topology 

 

 

 (21) 

where X is the input vector, W is connection weight from hidden nodes to outputs, C is a central 

vector, and φ is radial basis function which in most of the cases is a Gauss function defined by: 

 
(22) 

where σ represents the width or spread factor and the central vectors are usually selected as subsets 

of input vector for simplicity. Thus, during the training process, a correct set of connection weights 

W are obtained to achieve the outputs Y close to the target values.  

To achieve the optimal geometry of the box section, a non-conventional firefly optimization 

scheme is employed. 

 

3.1 Firefly optimization algorithm 
 

Firefly algorithm is a metaheuristic optimization scheme, which is based on the flashing nature 

of fireflies. FA is employed to group the parts based on their similarities (Sayadi et al. 2013). FA 

was used effectively to solve a constrained optimization problems in several engineering 

applications. The algorithm is framed based on three simple rules (Basu and Mahanti 2012, Shukla 

and Singh 2017): 

1. All fireflies are unisex so that one will be attracted to other irrespective of their sex. 

2. Attractiveness is proportional to brightness, so less bright firefly will move towards the 

brighter one. However, the light intensity (Ii) (apparent brightness) is inversely proportional to 

distance between the fireflies (rij).  

3. The brightest one move randomly as no other firefly is to attract it. 

The brightness should be associated with objective function of the system. The pseudo-code of 

firefly algorithm based on above rules is given below: 

Begin 

Objective function f(x), x=(x1,…,xn)
T 

Generate initial population of fireflies xi (i=1,2,….,n) 

Light intensity Ii, at xi is determined by f(xi) 
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Define light absorption coefficient γ 

While (t<Max Generation) 

for i=1:n all n fireflies 

for j=1:d loop over all d dimensions 

If (Ii<Ij), Move firefly i towards j; end if 

Vary attractiveness with distance r via exp(-γr2) 

Evaluate new solutions and update light intensity 

end for j 

end for i 

Rank the fireflies and find the current global best 

end while 

Post process results and visualization 

End 

 

The Ii decreases as rij increases and additionally, the air absorbs light which further reduces the 

value of Ii as the distance increases. So the light intensity is defined as: 

 
(23) 

where I0 is intensity at rij is zero and γ is light absorption coefficient. Attractiveness (β) is 

proportional to Ii seen by adjacent fireflies and it is given as 

 
(24) 

Also, β0 is attractiveness at rij=0. The movement of firefly is based on the attractiveness and the 

firefly i is being moved towards the brighter firefly j as 

 
(25) 
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Here, and εi are the parameter controlling the step size and random vector respectively. To 

obtain the optimum solution using the constraint in the firefly algorithm, selection criteria are to be 

incorporated based on the feasibility to narrow down the search into the feasible region.  

In present context, initially random population of design variables is generated and the function 

estimation is performed with trained neural network model, which is called surrogate model. By 

applying various steps in FA, the initial population is updated successively based on the function 

values of a population. The procedure is repeated till convergence is achieved. 

 

 

4. Numerical simulations 
 

The coupled analysis program and optimization modeling are implemented in Matlab. By 

suitably selecting the number of modes, the resultant matrix sizes are decided. Initially, the flutter 

speed of straight clean wing geometry is obtained. It is found as 27.1 m/s which is close to the 

value 26.35 m/s obtained earlier (Abbas et al. 2008). For FGM analysis, the materials used are  
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Table 1 Material properties (Dunning et al. 2014) 

Property Al-alloy AlSiC 

Density (kg/m3) 2768 2800 

Young’s modulus (Gpa) 69 107 

Poisson's ratio 0.33 0.33 

 
Table 2 System parameters 

Parameter of wing Value 

Chord (c) 0.15 m 

Semi chord (b) 0.075 m 

Span (l) 1 m 

Centre of mass (Xcg) 49.9491% of chord 

Wing mass (m) 0.6972 kg/m 

Elastic axis (a) 48.2569% of chord 

Mass moment of inertia (Iy) 0.0041 kg/m 

Bending stiffness (EI) AlSiC 475.1336 Nm2 

Bending stiffness (EI) Al-alloy 306.3945 Nm2 

Torsional stiffness (GJ) AlSiC 801.097 Nm2 

Torsional stiffness (GJ) Al-alloy 516.5417 Nm2 

Clα 2π 

Cmα0 -0.125 

 

 

aluminium alloy (Al-alloy) and aluminium with silicon carbide particulates (AlSiC). The material 

data considered is depicted in Table 1. 

The stability region of the straight untapered wing is determined using the geometric data given 

in Table 2. 

The width of the box beam section considered for flutter study is 18% of chord and the front 

spar is located at 43% of chord. The flutter velocities for wing system made of AlSiC and Al-alloy 

are found independently as 48.95 m/s and 39.31 m/s respectively via the eigenvalue prediction 

approach. 

 

4.1 Influence of geometrical parameters and AFG on the stability boundary 
 

The parametric study is conducted to predict the most influencing parameters on the flutter 

speed. The geometrical and material parameters taken into account in this study are sweep angle 

(SA), mass centre position from leading edge (Xcg), thickness of the box beam (TH), taper ratio 

(TR) and power law index (PL). The bounds of the geometrical parameter considered are shown in 

Table 3. The power law index is varied from zero. 

The density of both the materials is almost similar, so the average density is considered as the 

constant in this analysis. The study is carried out with AlSiC and Al-alloy at the left and right sides 

respectively as depicted in Fig. 3. 
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Table 3 Parametric bounds 

 Parameters 

 SA in deg TR TH in m Xcg × 100 in % 

Case 1 0 to 50 0.5 to 1 0.02 0.49949 

Case 2 0 0.5 to 1 0.02 0.485 to 0.49949 

Case 3 0 1 0.01 to 0.02 0.485 to 0.49949 

 

 

Fig. 3 Axial material grading: AlSiC at left and Al-alloy to the right 
 

 
 

(a) PL = 0 (b) PL = 0.5 

 
 

(c) PL = 1 (d) PL = 2.5 

Fig. 4 Contour plots of flutter velocities against SA and TR 
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(a) PL = 0 (b) PL = 0.5 

  
(c) PL = 1 (d) PL = 2.5 

Fig. 5 Variation of flutter velocities against Xcg and TR 

 

 

Case 1: The instability boundary for the range of parameters SA and TR is identified by 

maintaining a constant TH and Xcg and is shown in Fig. 4. For PL value equal to zero, the flutter 

boundary increases proportional to SA and inversely proportional to TR. When PL is increased to 

0.5, the flutter velocity decreases till TR = 0.8 and then the flutter boundary increases. 

For PL = 1, the same trend is observed, but the flutter velocities are found to be higher than the   

PL = 0.5 case. From Fig. 4, for PL = 2.5, the flutter boundary is found to be well enhanced 

compared to PL = 0, 0.5, and 1. For all TR values, the flutter velocity is increasing as the SA 

increases and the same is observed for all PL values. This shows the sweep angle is the dominant 

parameter over flutter instability. 

Case 2: In this case, the effect of centre of mass and taper ratio on the flutter instability is 

studied with TH and SA as constant. For a wing, the flutter boundary is enhancing as the Xcg is 

moved towards the leading edge and TR is decreased. When the blending of materials comes into 

the picture, the enhancement of flutter velocity follows the same trend as in case 1. Here the flutter  
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(a) PL = 0 (b) PL = 0.5 

  
(c) PL = 1 (d) PL = 2.5 

Fig. 6 Variation of flutter velocities against Xcg and TH 

 

 

boundary has increased drastically compared to TR against SA as shown in Fig. 5. From case 2 

results, Xcg is found to be the dominant parameter compared to SA and TR. 

Case 3: The effect of thickness of the box beam section is important on the flutter velocity. The 

variable parameters in this case are TH and Xcg. The flutter velocity increases as Xcg distance 

decreases (from the leading edge) and TH value increases. For PL values 0.5 and 1, the flutter 

boundary diminishes compared to PL = 0, but for PL = 2.5 the flutter boundary is augmented as 

shown in Fig. 6. Again the Xcg is a dominant parameter compared to TH. 

 

4.2 Surrogate model 
 

The training sets consist of SA, TR, TH, Xcg, and PL as input and Uf as output. The spread 

parameter is set as 1 and the Matlab toolbox is used for training with 1010 training sets. The output 

computed versus target values is shown in Fig. 7. The flutter velocity obtained from trained RBF 

for different configurations are depicted in Table 4. 
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Table 4 Comparison of RBF and analytical flutter velocities 

SA in deg TR TH in m Xcg x 100 in % PL RBF-Uf in m/s Analytical-Uf in m/s 

27.3246 0.075 0.0175 0.485 2.71226 104.23 103.28 

18.6695 0.0705 0.0176 0.485 1.8211 101.58 102.83 

 

 

Fig. 7 Regression plot 

 

 

Fig. 8 Computational time 

 

 

The average error in output of trained surrogate model and the analytical method are in the 

acceptable range. The computational time of the analytical and surrogate model is 9.87 and 2.1 

seconds respectively as shown in Fig. 8. 

 

4.3 Optimized configuration 
 

By using the trained neural network model, the objective function is evaluated for every 

individual in the population during firefly implementation. The main motive is to reduce the mass 

of the wing without compromising the flutter boundary. The initial desired weight of the wing is 

selected as 0.61 kg. Initially, 20 fireflies are generated randomly within the bounds and their 

aeroelastic characteristics are evaluated. The penalty approach is used to handle the constraints 

with an effective objective function according to     ))(( XgRXfXf  , where ))(( Xg is 

the penalty function. Also, R is a high penalty value, which is here taken as 10,000. Here, a vector 

of design variables  PLXcgTHTRSAX  . The penalty function is taken as 
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Fig. 9 Fitness convergence trend 

 

 

Fig. 10 (i) Velocity-frequency (U-f) plot and (ii) velocity-damping (U-g) plot of initial and optimized wing 

 

 

=

 

(27) 

After several trials, the following parameters of firefly optimization are considered: γ = 1 and   

α = 0.25. The lower and upper bounds of the five variables selected are  500SA degrees, 

 15.0TR ,  02.001.0TH  m, Xcg  49949.0485.0 ,  50PL . The error 

convergence is shown in Fig. 9. 

The initial parameters before optimization are SA = 44.4o, TR = 0.075, TH = 0.02 m,      

Xcg = 49.94% of chord, and PL = 0.5, while the optimized parameters predicted are SA = 

27.7714o, TR = 0.075, TH = 0.0177 m, Xcg = 48.5% of chord and PL = 2.8745. The corresponding 

flutter velocity identified by RBF neural network is 108.41 m/s which is higher than the initial 
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flutter velocity of 67.6 m/s. Furthermore, the actual values of flutter speeds with the analytical 

method are found to be 64.55 m/s and 105.1 m/s respectively as seen in Fig. 10 where the damping 

term (real part) changes sign. Therefore, the approach is reliable. 

 

 

5. Conclusions 
 

The aeroelastic characteristics of a cantilever wing made up of axially functional graded box 

beam cross-section was studied in detail. The equations of motion of the system with continuously 

varying material and geometrical properties were derived. The numerical results show that 

geometric parameter mass center position from leading edge Xcg is the most influencing out of all 

five selected design parameters. The flutter boundary shrinks with lower power law indices (0.5, 1) 

compared to the PL = 0. Flutter onset increases as the TR decreases and Xcg moves towards the 

leading edge. Flutter velocity was proportional to the thickness of the box beam and sweep angle 

of the wing. For AFG wing, the stable zone has improved as compared to the base materials. The 

radial basis function in conjunction with firefly optimization algorithm effectively maximizes the 

flutter velocity under mass constraint. The 3-D model of the optimized wing section in the air 

stream is to be tested in order to identify the changes in natural frequencies as a function of 

freestream velocity. 
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