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Abstract.  In the space industry, structures undergo several vibration and acoustic tests in order to verify 
their design and give confidence that they will survive the launch and other critical in-orbit dynamic 
scenarios. At component level, vibration tests are conducted with the aim to reach local or global interface 
loads without exceeding the design loads. So, it is often necessary to control and limit the input based on a 
load criterion. This means the test engineer should be able to assess the interface loads, even when load 
cannot be measured. This paper presents various approaches to evaluate interface loads using measured 
accelerations and by referring to mass operators. Various methods, from curve fitting techniques to finite 
element-based methods are presented. The methods are compared using signals with known imperfection to 
identify strengths and weaknesses of each mass operator definition. 
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1. Introduction 
 

Spacecraft, their instruments and subcomponent are very often put through several vibration 

tests in order to verify their design and give confidence that they will survive the launch and any 

other critical in-orbit dynamic scenario. At component level, vibration tests are conducted with the 

aim to reach local or global interface loads without exceeding the design loads. Therefore, there is 

often a need to control and limit the input or notch based on a load criterion. However, despite 

having a load criterion, the interface load itself is rarely measured. 

Indeed, to directly or indirectly measure the interface loads one would need to use, for example, 

load cells, strain gages or the shaker’s coil current (ECSS-E-HB-32-26A 2013). These approaches 

present financial, programmatic and technical drawbacks. Load cells are costly, take space not 

taken into account in the design, and will often change the system’s response so they need to be 

accounted for in all test prediction analyses. Strain gages require careful calibration to provide a 

robust indirect measurement of the interface loads. The coil current can only be used for the global 

interface load along the excitation direction and requires access to the coil current information and 
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good knowledge of the shaker dynamic behavior, especially when running through shaker’s 

modes. Hence, loads are seldom measured and it is common practice to notch the input based on 

measured accelerations rather than loads. Unfortunately, this means that the test engineer conducts 

the test with no direct information about the interface load levels.  

One way to check the interface load levels is to use a so called “mass operator” (MOP). The MOP 

is a mathematical tool used to derive loads from measured accelerations. Thus, no additional 

instrumentation is necessary. This requires however additional processing before and during the 

vibration test. 

This paper first presents various approaches to derive interface loads from accelerations. Each 

method is implemented with Matlab® in the modular software Primodal® (Primodal 2015). Then, 

parametric studies are performed to understand the advantages and limitations of each method. 

This paper is a complement to (Olympio et al. 2016) where mass operators were applied to a 

different structure. More information about the implementation of the various mass operators are 

also available in (Olympio et al. 2016). 

 

 

2. Theoretical background 

 

Before performing a vibration test, it is common practice to calculate beforehand the expected 

structural response using the finite element method (FEM). Thus, it would be natural to use the 

corresponding finite element results to define a relationship between one quantity (e.g., loads, 

stresses, or strains) and accelerations at predefined locations on the structure and apply that same 

relationship to real measurements.  

This assumes that the measurement points are well defined and the finite element model 

describes sufficiently well the structure’s behavior. The validity of both assumptions is beyond the 

scope of this paper, and it is assumed in this paper that they are valid. 

Using the linear FEM’s formalism, the relationship between interface loads and acceleration 

can be written as 
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Where: 

- [K], [C] and [M] are the stiffness, damping and mass matrices respectively. 

- {A} is the acceleration vector at given measurement points. 

- {F} is the load vector containing the interface loads. 

 

It can be noted that Eq. (1) may be rewritten to include other types of data (e.g. strain gage 

measurements, stress). For conciseness, this paper is only concerned with interface loads and 

accelerations. 

The following sections describe different methods of deriving the relationships between 

interface loads and accelerations.  
 

2.1 Sum of weighted accelerations  

 

The classical MOP consists in finding a linear relationship between accelerations at given 
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points in the structure to loads (force or moment) at given (local or global) interfaces of the 

structure. This approach is also called sum of weighted accelerations (SWA) technique (Carne et 

al. 1992). For a single set of load and moment, it is expressed as in Eq. (2). 
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Where: 

- Ai are acceleration measurements over the frequency range of interest. 

- mi are weighting coefficients. 

- li is the lever arm between the acceleration point i and the interface point. 

The mi coefficients can be regarded as equivalent dynamic masses. Then Eq. (2) is nothing else 

than Newton’s second law of motion for a rigid set of point masses. This means that stiffness and 

damping are not explicitly taken into account, rather this information are contained in  A . 

The existence and unicity of a set of weighting coefficients mi that satisfies Eq. (2) is dependent 

on the choice of measurement locations. For example, in the case of redundant measurements, an 

infinite number of weighting coefficient sets exists. In the case of poorly defined measurement 

locations, some modes may not be observable so no acceptable solution exists.   

 

2.1.1 Fitted SWA 
The most straightforward method to calculate the weighting coefficients mi of Eq. (2) consists 

in defining them as design variables of a minimization problem or curve fitting problem as in Eq. 

(3). 
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Where: 

- ( )FEMF  is the vector of global or local interface loads calculated with the FEM. 

- ( )MOPF  is the vector of global or local interface loads calculated as the sum of 

weighted accelerations as in Eq. (2). 

The constraints in Eq. (3) are physics-based constraints in that it is assumed that the weighting 

coefficients are equivalent masses. However, these constraints are not always valid for local 

interface loads, sensors oriented in a local coordinate system, etc. Therefore, although constraints 

help reduces the design space, they may also make it harder to find a satisfactory solution.  

 

2.1.2 Max-flat procedure 
Other SWA techniques have been developed in the early 1990s at Sandia National Laboratory 

and other institutions (Dobson et al. 1990, Carne et al. 1991, Carne et al. 1992). Some were 

applied for time signals to determine load during non-harmonic testing (e.g., shock test), other 

were developed for the frequency domain (Carne et al. 1992). One such method is briefly derived 
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here. 

We are looking for frequency-independent parameters to estimate the interface loads from the 

accelerations. This means that the system’s elastic energy is not taken into account and the [K] and 

[C] terms in Eq. (1) must be eliminated.  

If  
rigidk  a rigid body mode vector of the structure, then     0=

rigidkK  and 

    0=
rigidkC . Therefore, let us assume that the acceleration vector is a linear combination of 

the rigid body modes 

( )    ( ) =
i

rigidi qA   (4) 

Where ( ) q is the vector of the second derivatives of the modal coordinates. So, injecting Eq. 

(4) in Eq. (1) and pre-multiplying by  T

rigidk  gives 

  ( )  ( ) kk

T

rigidk qmF .=  (5) 

Where     
rigidk

T

rigidkk Mm = . We are actually looking for a relationship of the form 
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Substituting Eq. (4) into Eq. (6)  
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Then, 

( ) ( )   ( )  AwSq
T

r ==  (9) 

Finally, Eq. (5) becomes 

  ( )    ( )  AwmF
T

r

T

rigidr .=  (10) 

Thus, for a chosen rigid mode 
rigidr , one only needs to define  w that satisfies Eq. (8) to 

estimate the interface loads from Eq. (10).  

The rigid modes can be extracted by performing a modal analysis with the known mass and 

stiffness matrices or by identification from the frequency response functions.  

In general, there are less rigid modes than degrees of freedom so this problem is ill-

conditioned. To improve the accuracy of the solution, it is necessary to have a well-conditioned 
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mode shape matrix. This can be achieved by including elastic modes in the mode shape matrix.  

From the derivation, it is clear that this method is straightforward to apply using finite element 

modal data, but it has the following drawbacks: 

- It is not well suited for local interface loads. 

- It can only be used to estimate the loads for the first few modes. 

- It cannot be applied to other types of measurements. 

 

2.1.3 Frequency dependent SWA 
It has been shown that the approach presented in 0 works well only over small frequency 

ranges with few modes (ECSS-E-HB-32-26A, 2013). The limitation over small frequency range or 

small number of modes of the fitted SWA can be addressed by defining frequency-dependent 

weighting coefficients.  

Let Niii ,1,0, ...    be a subdivision of the frequency range of interest. Ideally, each 

subdivision contains at most one mode. Then the weighting coefficients are calculated over each 

domain as in Eq. (11). 
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The results are also much improved compared because the fitting problem corresponding to the 

fitted SWA (Sec. 0) is divided into smaller and easier to solve fitting problems.  

 

2.2 Artificial neural networks 

 

Although more complex, artificial neural networks (ANN) present a more generalized approach 

to data fitting (Passino 2000). Thus, they appear promising to map directly and accurately interface 

loads to accelerations, or to calculate frequency-dependent weighting factors.  

 
2.2.1 Direct load modeling 
Before a test, an ANN (Fig. 1) would be trained using the FE data from any prediction analysis. 

Then, the trained ANN would be fed with acceleration measurements to give an estimate of the 

loads of interest during the test. 

This straightforward approach presents one significant drawback. Training the ANN with 

unpolluted FE data can result in an over-specialized ANN: it maps perfectly the FE data but 

performs poorly when fed with a set of polluted accelerations (e.g., noisy signals).  

One solution to this problem would be to train the neural network with data containing all 

known sources of uncertainties. The neural network would then perform better at predicting loads 

from contaminated signals. This approach would, in effect, consists in performing stochastic test 

predictions (ECSS-E-HB-32-26A 2013). 
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2.2.2 SWA approach 

 
Fig. 1 ANN for the direct modeling of interface loads 

 

 

ANN can also be used to model the weighting coefficients of Eq. (2). This is then a 

generalization of the frequency dependent SWA of Sec. 0. An example of such a neural network 

with one hidden layer is presented in Fig. 2. The neural network has one input, the frequency, and 

the outputs are the weighting coefficients m1, m2, … mN of Eq. (2). The corresponding cost 

function is given in Eq. (12). 

( ) ( ) ( )
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A new neural network is created for each interface load. This helps reduce the size of the neural 

network and computational cost of training the neural network. 

It can be noted that the fitted SWA of Sec. 0 corresponds to such an ANN with no hidden layer 

and only one neuron with a linear activation function in the output layer. 
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Fig. 2 ANN for the calculation of frequency dependent weights 

For the results presented in this paper, the neurons’ activation function is the radial basis 

function (Passino 2000) and the neural network has only one input: the frequency. One can 

consider adding more inputs to obtain mass coefficients dependent on other meaningful parameters 

(e.g., sweep rate, overall load level), but this is beyond the scope of this paper. 

 

2.3 Super-element model 

 

Eq. (1) is the equation solved by the FE solver when performing a vibration analysis. 

Therefore, the [K] and [M] matrices generated by the solver (e.g., MSC Nastran™) can be used 

directly. Taking the complete mass and stiffness matrix of a fully modeled structure is impractical. 

However, one can reduce these matrices using static reduction method (e.g., Guyan method) or 

dynamic reduction methods (e.g., Craig-Bampton method).  

The matrices of in Eq. (1) can be obtained by performing a dynamic reduction of the FE model 

of the structure to be tested (Eq. (13)). The reduction method is performed with all the acceleration 

points defined as boundary nodes in order to have a well-conditioned problem. 
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Where: 

- Subscript B denotes entities at the boundary nodes. 

-   represents the vector of generalized coordinates. 

- aB represents the vector of boundary accelerations. 

-  2  is the matrix of eigenvalues. 

The damping matrix  C
~

is constructed assuming a modal damping. This allows easy tuning of 

the system’s damping behavior based on measured damping. 

With all the accelerations nodes defined as boundary nodes, the mass, damping and stiffness 

matrices of Eq. (2) are obtained by reducing  M
~

,  C
~

 and  K
~

 to the physical degrees of 

freedom used during the vibration test. The corresponding matrix ( ) T is the inverse of the FRF 

and the loads are obtained by simple matrix multiplication as in Eq. (14). 

  ( )  BB aTF =  (14) 

In a similar manner, the internal loads can be extracted from elements (e.g., springs) using the 

super-element’s element force transformation matrix (MEF) reduced to the relevant degrees of 

freedom 

  ( )  BI aMEFF 
 2

1
−=  (15) 

With this method, one can tune the FE model by adjusting natural frequencies and damping to 
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match the measured responses. This is the clear advantage of this method over the SWA methods 

of Sec. 0 and Sec. 0 which cannot be adjusted based on measurements data without model update 

and new finite element analyses. 

 

 

3. Evaluation 

 

To evaluate the various MOP methods, an instrument and its supporting structure is considered. 

The MOP methods will be applied to calculate the global interface loads at the interface of the 

supporting structure and the local interface loads between the supporting structure and the 

instrument as illustrated in Fig. 3. In the rest of the paper, this instrument is assumed to be excited 

along the X-direction only. 

 

 

 
Fig. 3 Instrument and support 

 

 

3.1 Baseline: Harmonic analysis 

 

Table 1 lists the natural frequencies and effective masses of the baseline system in the 5-

2000Hz frequency range. Figs. 5-7 illustrate the performance of the various MOP approached 

considered in this paper, for local and global interface loads. To evaluate the ability to model loads 

over large and small frequency ranges with numerous modes, the MOPs have been created with 

finite element data in the 5-2000 Hz and 5-500 Hz ranges. 

Table 2 and Table 3 show the normalized root-mean-square deviation (NRMSD) between the 

baseline and the loads calculated with the MOPs considering the response up to 2000 Hz and up to 

500 Hz respectively. The NRMSD is defined as in Eq (16). A value of 0 indicates perfect 

correlation with the baseline.  
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From the results, one can observe that the Max-Flat method estimate correctly only the first 

mode along the excitation direction (X). By definition it cannot be used to estimate local interface 

loads.  
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The other methods work very well over the entire frequency range. The ANN shows sharp 

peaks that could be eliminated by additional training. 
Table 1 Natural frequencies and modal effective mass fraction from the original FE model 

Sum 38.06% 38.69% 37.29% 39.70% 39.94% 44.34% 

Mode No. Freq [Hz] 
Modal effective masses fraction 

Tx [%] Ty [%] Tz [%] Rx [%] Ry [%] Rz [%] 

1 74.90 9.30% 0.11% 4.76% 0.39% 14.78% 0.54% 

2 197.19 0.91% 12.65% 16.30% 9.80% 0.22% 9.68% 

3 316.19 7.75% 0.36% 7.74% 1.12% 12.43% 0.44% 

4 468.00 13.12% 0.64% 0.64% 0.37% 9.77% 0.05% 

5 644.84 3.78% 21.55% 6.03% 24.26% 1.02% 28.88% 

6 727.49 1.14% 2.67% 1.58% 3.27% 0.35% 4.65% 

7 836.33 1.96% 0.56% 0.25% 0.37% 1.32% 0.04% 

8 926.17 0.09% 0.16% 0.00% 0.13% 0.06% 0.06% 

 
Table 2 Correlation table considering the response up to 2000Hz 

 
Internal Fx Internal Fy Internal Fz Global Fx Global Fy Global Fz 

SWA 0.72% 0.53% 0.34% 0.33% 0.28% 0.46% 

Max-Flat 5.60% 5.60% 5.60% 3.87% 8.38% 26.81% 

WNN 0.71% 0.59% 0.49% 0.13% 0.12% 0.84% 

SE 0.68% 0.21% 0.42% 0.11% 0.25% 1.14% 

ANN 8.38% 2.88% 1.03% 0.42% 0.78% 4.47% 

 

Table 3 Correlation table considering the response up to 500Hz 

 
Internal Fx Internal Fy Internal Fz Global Fx Global Fy Global Fz 

SWA 0.55% 0.50% 0.35% 0.11% 0.11% 0.30% 

Max-Flat 5.53% 5.53% 5.53% 3.38% 5.89% 10.96% 

WNN 0.31% 1.37% 0.84% 0.08% 0.04% 0.25% 

SE 0.73% 0.23% 0.47% 0.27% 0.15% 0.36% 

ANN 1.19% 0.79% 0.22% 0.12% 0.28% 1.01% 

 

  
(a) (b) 
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Fig. 4 Baseline-Local interface loads considering the (a), (c), (e) the 5-2000 Hz range and (b), (d), (f) the 5-

500 Hz range 

  
(c) (d) 

  
(e) (f) 

Fig. 5 Continued 

 

  

(a) (b) 
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Fig. 6 Baseline-Global interface loads calculated with each MOP considering (a), (c), (e) the 5-2000 Hz 

range and (b), (d), (f) the 5-500 Hz range 

  
(c) (d) 

  
(e) (f) 

Fig. 7 Continued 

 

 

3.2 Parametric studies 

 

To evaluate the proposed MOPs, baseline accelerations and interface loads were calculated with 

the FEM. Then the baseline data (Sec. 0) was corrupted by adding frequency shifts, damping, 

sensor orientation errors or noise, and the MOP were tested with these corrupted inputs. This 

allows testing the MOPs with complete control on the source of error. The MOP (e.g., weighting 

factors, neural network definition, super-element’s matrices) are not changed in the following 

parametric studies. 

One could also consider evaluating a method when one measurement channel is missing. In this 

situation, it is always better to recalculate the MOP. This task can be considered effortless with a 

fully automated mass operator tool as done in Primodal as part of this study. 
 

3.2.1 Modeling uncertainty  
Stiffness 
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To evaluate the effect of frequency shifts, the material definitions in FE model were modified 

to generate some shift in modal frequencies, the mode order is unchanged. The first 8 natural 

frequencies and effective masses of the modified structure are listed in Table 4 and can be 

compared to those of the baseline structure (Table 1). 

 

 
Table 4 Natural frequencies and modal effective mass fraction from the modified FE model 

Sum 38.16% 38.84% 37.29% 39.84% 40.03% 44.49% 

Mode No. Freq. [Hz] 
Modal effective masses fraction 

Tx [%] Ty [%] Tz [%] Rx [%] Ry [%] Rz [%] 

1 70.19 9.39% 0.09% 4.97% 0.37% 15.01% 0.58% 

2 188.12 0.91% 13.07% 16.13% 10.18% 0.21% 10.08% 

3 300.38 7.57% 0.38% 7.60% 1.16% 12.14% 0.40% 

4 455.85 13.68% 0.54% 0.66% 0.29% 10.20% 0.10% 

5 607.10 4.20% 23.28% 6.92% 26.32% 1.10% 31.57% 

6 714.26 0.54% 0.91% 0.84% 1.18% 0.15% 1.83% 

7 827.23 1.89% 0.58% 0.26% 0.38% 1.25% 0.05% 

8 924.38 0.08% 0.15% 0.00% 0.12% 0.06% 0.06% 

 

 

Fig. 8 shows the performance of each MOP methods with respect to frequency shift between 

the exact interface load and the MOP-derived interface loads. Table 5 provides the NRMSD 

between the baseline and the MOP derived loads. 
 

 

Table 5 Correlation table with incorrect material properties 

 
Internal Fx Internal Fy Internal Fz Global Fx Global Fy Global Fz 

SWA 10.99% 1.91% 2.62% 0.22% 0.39% 1.03% 

Max-Flat 5.49% 5.49% 5.49% 3.21% 5.86% 10.76% 

WNN 6.27% 8.51% 3.99% 0.47% 0.36% 0.83% 

SE 2.05% 2.38% 1.44% 2.33% 131.57% 27.14% 

ANN 16.31% 1.92% 1.87% 0.39% 0.83% 1.71% 

 

 

All the MOPs perform well at identifying the peak responses. However, the reduced model and 

Max-Flat methods perform poorly at estimating the peak responses’ amplitude. This can be 

expected because these methods are derived with the structural matrices. The SWA methods and 

ANN perform well at estimating the first 3 modes’ peaks and match closely the expected loads 

(baseline of the modified model). From these results, none of the MOP can fit the expected 

response beyond the 3rd mode. 

Damping 

To evaluate the effect of damping difference, the baseline harmonic analysis was re-performed 

with a Q factor of 50 instead of 25. 

Fig. 9 shows the performance of each MOP methods with respect to damping difference 
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between the exact interface load and the MOP-derived interface loads. Table 6 provides the 

NRMSD between the baseline and the MOP derived loads.  

  
(a) (b) 

Fig. 8 Effect of frequency shift in the input data on the MOP’s load estimation of (a) Global interface loads 

and (b) local interface loads 

 
Table 6 Correlation table with incorrect damping 

 
Internal Fx Internal Fy Internal Fz Global Fx Global Fy Global Fz 

SWA 0.47% 0.53% 0.39% 0.13% 0.09% 0.23% 

Max-Flat 5.49% 5.49% 5.49% 5.41% 8.69% 12.53% 

WNN 0.24% 0.44% 0.29% 0.06% 0.03% 0.19% 

SE 0.97% 0.27% 0.51% 0.35% 1.07% 2.30% 

ANN 19.48% 2.42% 1.22% 1.58% 1.47% 2.00% 

 

  
(a) (b) 

Fig. 9 Effect of damping difference in the input data on the MOP’s load estimation 

 

 

Except for the ANN method, all the methods perform well and match closely the expected 

loads (baseline of the modified model). This is to be expected for the SWA methods because the 
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damping information is contained in the acceleration measurements.  

The ANN match well up to the exact peak location where the estimated amplitude is off by up  

  
(a) (b) 

 
(c) 

Fig. 10 Effect of uncorrected orientation error in the input data on the MOP’s load estimation 

 
Table 7 Correlation table with sensor orientation error 

 
Internal Fx Internal Fy Internal Fz Global Fx Global Fy Global Fz 

SWA 0.55% 0.50% 0.35% 0.11% 0.11% 0.30% 

Max-Flat 5.53% 5.53% 5.53% 3.47% 5.75% 12.54% 

WNN 0.31% 1.37% 0.84% 0.08% 0.04% 0.25% 

SE 2657.70% 4289.49% 753.93% 3118.76% 12169.52% 686696.50% 

ANN 27.49% 13.15% 3.41% 2.07% 9.07% 37.93% 

 

 

to one order of magnitude. This is expected because the relationship between sensors’ amplitude 

values at various frequencies learned by the ANN is no longer valid. 

 

3.2.2 Sensor orientation uncertainty 
Another source of uncertainty is the sensor orientation errors. Although this can be corrected 
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with sufficient test data, it is important to understand how they affect the loads estimated with a 

MOP. A random orientation uncertainty along all sensor axis and comprised between -10 deg and 

10 deg was added to the acceleration data and fed to each MOP. 

Fig. 10 shows the performance of each MOP methods with respect to sensor orientation error. 

Table 7 provides the NRMSD between the baseline and the MOP derived loads.  

The SWA and Max-Flat methods can correctly estimate the location and shape of the resonance 

peaks. The predictions with these MOPs result in an error on the amplitude over the entire 

frequency range. Thus, when this amplitude error is detected, it can be corrected in a direct 

manner. 

On the other hand, the ANN and the reduced model can’t be used to correctly estimate the 

interface loads. Indeed, load estimation with the ANN or reduced model shows unrealistic load at 

low frequency or the large oscillations even outside resonances.  

 

3.2.3 Noise 
The last source of error considered in this paper is the measurement noise. This usually cannot 

be controlled or easily improved. Fig. Fig. 11 shows the effect of noise (signal-to-noise ratio, 

SNR=20) on the MOP-calculated interface loads. Fig. Fig. 12 shows the effect of filtered noise on 

the loads estimated using the super-element model and the ANN. Table 8 provides the NRMSD 

between the baseline and the MOP derived loads for the unfiltered and filtered signals. 

 

 
Table 8 Correlation table with white Gaussian noise (SNR=20) 

 
Internal Fx Internal Fy Internal Fz Global Fx Global Fy Global Fz 

SWA 84.29% 343.73% 407.32% 0.47% 19.46% 49.12% 

Max-Flat 5.53% 5.53% 5.53% 3.32% 6.33% 45.21% 

WNN 0.54% 1.60% 0.92% 0.15% 0.10% 0.20% 

SE 3276.94% 7411.28% 6116.68% 3182.66% 86191.11% 890591.56% 

NN 16.84% 19.20% 23.52% 0.97% 5.96% 164.71% 

SE (filtered) 0.90% 0.76% 0.68% 0.42% 0.44% 1.49% 

NN (filtered) 2.71% 0.89% 4.79% 0.28% 1.06% 6.07% 

 

 

For global loads in the excitation direction, all the methods, except for the super-reduced model 

approach, perform well with moderate noise. Indeed, for SWA based approaches, the effect of 

noise is proportional to the highest mass coefficients. So in general, the effect of noise on the load 

in the excitation direction remain smalls.  

This is not true for cross-axis loads as seen in Table 8, because for cross axis responses, which 

are generally low amplitude responses, are more sensitive to noise. Further, the importance of 

cross axis responses is greater when estimated cross axis loads, as opposed to loads in the 

excitation direction. 

With the super-element model, any small relative difference between measurements points 

leads to an increase in load levels proportional to the structural stiffness. So, the elastic loads are 

orders of magnitude higher than inertial load, especially, in the quasi-static frequency range where 

elastic loads should theoretically be negligible. This leads to artificial elastic loads in the 

equilibrium equation and overestimation of the interface loads. 
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The neural network approach is affected by noise, but it is still able to predict major peaks in 

the loading direction. The poor performance of the ANN can be attributed to incomplete training. 

Better training (e.g., adding noisy data in the training samples) could make the neural network 

even less sensitive to noise. 

To alleviate the problem of noise, a filter has been applied to the corrupted acceleration signals. 

As shown in Fig. 12, the load estimation by the reduced model is significantly improved. In this 

example, as well as in other trials (Olympio et al. 2016), the implemented filter appears to work 

well and the actual load can be retrieved. 

 

 

  
(a) (b) 

Fig. 11 Effect of noise (SNR=20) in the input data on the MOP’s load estimation 

 

  
(a) (b) 

Fig. 12 Filtering of noisy (SNR=20) acceleration signals 

 

 

4. Conclusions 

 

From the users’ point of view, the ideal mass operator should be easy to use and robust with 

respect to modeling error, noise and instrumentation set up. Also, it should be capable of 
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estimating loads over a wide frequency range to apply it for both sine and random vibrations of 

spacecraft and their instruments. To answer these requirements, several approaches to deriving a  
Table 9 Advantage and limitations of the mass operator approaches 

 

Easy 

creation/ 

update 

Valid over large 

frequency ranges 

Robust 

to 

noise 

Robust to 

sensor dir 

Robust to 

modeling error 
Versatile 

Wide 

frequency 

range 

Fast 

utilizatio

n 

No 

Optimizat

ion 

Can be 

tuned in-

line 

Comments 

Fitted SWA  •  • • • •  •   Only valid 

over a couple 

of modes at 

best. 
Max-Flat •  •  •   • • • 

Frequency-

dependent 

SWA 
• • • • • • • •    

Neural 

Network with 

SWA 

 • • • • • • •   
• Proper 

training can 

be 

challenging. 

• Known 

uncertainties 

can be 

included. 

Neural 

Network 
 •    • • •   

Super-element 

model 
 •     •  • • 

• Slow due to 

multiple 

matrix 

operations 

with dense 

matrices. 

• Natural 

frequencies 

and damping 

can be 

updated with 

minimal 

effort. 

 

 

mass operator have been presented and a tool has been implemented in MATLAB® as a new 

module for Primodal®.  

To estimate the performance of the mass operators with imperfect accelerations measurements, 

FE-based data were modified and fed to various mass operators. This allowed making several 

observations regarding the robustness of the mass operators. The main advantages and drawbacks 

are listed in Table 9.  

Two major issues in the practical use of mass operators were identified: the impact of the 

inaccurate sensor orientation and the signal noise. No solution was investigated for the former. A 

solution would be to correct the measurements using, for example, the measurements in the quasi-

static range, based on test along multiple excitation directions, as implemented in Primodal®’s 

SENSOR module. 

It was also shown that the effect of white Gaussian normal noise can be reduced with an 

appropriate filtering technique. Additional work is necessary to show or propose filters that work 

in a majority of practical cases, and to overcome the issues related to the sensor orientation. 

Although, the behavior of the mass operators was mainly examined in the frame of sine 

excitation, load evaluation under random excitation is also possible as shown with the validity of 
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some MOP up to 2000 Hz. Further verification of the tool via parametric studies and 

improvements of the tool are foreseen in the near future. The capability of the tool to estimate 

other type of data (e.g., stresses) based on measured accelerations is under study.  
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