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Abstract.  With rapid growth in the complexity of large scale engineering systems, the application of 
multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered 
much attention. MDO addresses the challenge of integrating several different disciplines into the design 
process. Primary challenges of MDO include computational expense and poor scalability. The introduction 
of a distributed, collaborative computational environment results in better utilization of available 
computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based 
network-centric computing platform, enables analyses and design studies in a distributed collaborative 
computing environment. Two different optimization algorithms widely used in multidisciplinary engineering 
design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 
implementation of D. R. Jones‟ algorithm DIRECT, is a highly parallelizable derivative-free deterministic 
global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization 
problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to 
provide load balancing among computational resources, resulting in a dynamically scalable process. Further, 
the federated computing paradigm implemented by SORCER manages distributed services in real time, 
thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 
presents results for aircraft panel design with curvilinear stiffeners. 
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1. Introduction 
 
This paper discusses the integration of two global optimization algorithms, VTDIRECT95 and 

QNSTOP, into a SORCER framework. SORCER is a large-scale, distributed computing 
environment for high fidelity multidisciplinary design optimization (MDO). The algorithms 
VTDIRECT95 and QNSTOP were chosen because of their relevance to aerospace engineering and 
their scalability on distributed computing applications. The integration of VTDIRECT95 and 
QNSTOP with SORCER is illustrated by design studies of panels having curvilinear blade-type 
stiffeners under multiple loading conditions. The mass of the panel is minimized subject to 
constraints on buckling, von Mises stress, and crippling criterion using the algorithms 
VTDIRECT95 and QNSTOP on a SORCER grid. 

 
1.1 Multidisciplinary design optimization 
 
Aerospace systems today exhibit strong interdisciplinary interactions and require a 

multidisciplinary, collaborative approach (Raymer 2006). Aircraft design, an inherently complex 
multidisciplinary process, comprises determining aircraft configuration variables satisfying all the 
design constraints for all the disciplines involved. Multidisciplinary design optimization aims to 
achieve an optimal design over all the disciplines integrated together. The first step in the design 
process, conceptual design, is characterized by an extensive exploration of the design space and 
analyses of a very large number of potential design configurations in order to assess the impact of 
design variables on the aircraft performance. Conceptual design of complex systems requires 
optimization with a large number of design variables belonging to multiple disciplines. 

Traditional conceptual design focuses on low fidelity models, and is carried out in the initial 
design phases when the number of potential design configurations is very large. However, 
traditional approaches based on empirical data and phenomenological formulas suffer from poor 
accuracy. Moreover, such design practices focus on technology assessment using empirical 
relationships and historical data derived from systems developed previously (Kolonay 2013). 
However, many of the technologies and system configurations being evaluated have no historical 
or empirical information associated with them. Hence, the traditional assessment process produces 
inaccurate results, leading to ill-informed decisions. 

The use of physics based high fidelity modeling has received considerable attention by the 
design community. Physics based modeling tools along with high end computing resources 
provide accurate multiphysics analysis and design in the early stages of design. High fidelity 
models that provide better accuracy are used in achieving an optimal design, but high fidelity 
modeling is complex and computationally intensive, often prohibitively so. Current research 
concerns judiciously moving some high fidelity analyses into the conceptual design phase. The 
growing challenges in conceptual design demand a platform to cope with the existing 
computational complexity, and the potential to reduce design cycle time and cost of production. 

Aircraft analysis and design entail complex simulations, some I/O intensive, others requiring 
high floating point performance and high memory bandwidth. High performance computing 
(HPC) systems are critical for large scale design studies (Kodiyalam et al. 2004). While HPC 
systems deliver high computational power (capability computing) or high throughput (capacity 
computing), they are static resources with little scalability or flexibility. Service-oriented 
architecture (SOA) addresses the challenges faced by HPC systems in terms of scalability, 
availability, flexibility, and reliability. SOA not only incorporates the features of HPC systems, but 
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also promises a world of orchestrated services by creating dynamic processes and agile 
applications that span platforms and organizations (Georgakopoulous and Papazoglou 2008). An 
objective of this work is to carry out physics based MDO studies on a distributed computing 
platform that is robust, reliable, and cost effective. 

 
1.2 SORCER 
 
SORCER, a Java based network centric computing framework (maintained by 

SORCERsoft.com, a subsidiary of SMT S. A. group), is a federated service-to-service (S2S) 
metacomputing environment that treats service providers as network peers with well-defined 
semantics of a federated service object-oriented architecture (Sobolewski 2008a). SORCER 
provides a platform for high fidelity multidisciplinary design optimization, combining models 
from various disciplines into one integrated model. SORCER accommodates dynamic distribution 
of service providers and on-demand provisioning of resources, resulting in significant speedups 
and effective utilization of computational resources. 

Relevant work on SORCER includes large scale design space exploration with three layers of 
converged programming languages for transdisciplinary computing (Sobolewski and Kolonay 
2012a). From a software engineering point of view, SORCER’s models are represented in a top-
down var-oriented modeling language (VML) unified with programs in a bottom-up exertion-
oriented language (EOL) (Sobolewski et al. 2013, Sobolewski and Kolonay 2012b). While VML 
accommodates computational fidelity within various types of evaluations, EOL describes 
engineering applications as a federation of local and remote services. 

The Multidisciplinary Science and Technology Center at the United States Air Force Research 
Lab (AFRL) is using and developing SORCER to grapple with the computational complexity of 
physics based modeling in a distributed collaborative design environment (Kolonay 2013). 
Aerospace applications of SORCER include the design of the next generation efficient supersonic 
air vehicle (ESAV) described in (Burton et al. 2012), which employed the SORCER framework to 
automate multidisciplinary analysis (MDA) in a tightly integrated grid computing environment. 
The ability of SORCER to accommodate platform specific executables and integrate a variety of 
computing resources aided the MDA of an ESAV. The SORCER platform with three layers of 
converged programming supports dynamic fidelity for aeroelastic analysis and optimization. This 
capability facilitated the aeroelastic analysis with six different fidelities of induced drag in 
(Kolonay and Sobolewski 2011). SORCER is used as an integration environment for the 
comparison of four approximation techniques for highly nonlinear induced drag functions and 
their sensitivities with respect to control surface settings (Kolonay et al. 2008). The application of 
SORCER in the preliminary design of gas turbines is investigated in (Goel et al. 2005). 

Other major players in the field of grid computing include the Globus Toolkit (Foster and 
Kesselman 1997), Condor (Thain et al. 2005), and Legion (Grimshaw and Wulf 1997). Grid 
middleware is the segment of the overall grid computing market that enables virtual organizations 
and the sharing of heterogeneous resources. The Globus Toolkit, Condor, and Legion can all be 
classified as major grid middleware. Globus is an open source software toolkit that facilitates 
construction of computational grids and grid based applications across institutional and geographic 
boundaries without sacrificing local autonomy. The Globus project involves research and 
development conducted by the Globus Alliance, which includes Argonne National Laboratory, 
Information Sciences Institute, and many others. Condor (name changed to HTCondor in 
September 2012) is an open source high-throughput computing software framework for coarse 
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grained distributed parallelization of computationally intensive tasks, developed and maintained 
by the HTCondor team at the University of Wisconsin, Madison. Legion is a vertically integrated 
object based metasystem that helps in combining large numbers of independently administered 
heterogeneous hosts, storage systems, database legacy codes, and user objects distributed over 
wide area networks (WAN) into a single, object based metacomputer that features a high degree of 
flexibility and site autonomy. Legion, developed and maintained by the University of Virginia, has 
been commercialized by Avaki. 

While Globus and Legion can be classified as compute grids (cGrids), Condor belongs to a 
category of grids called metacompute grids (mcGrids). A compute grid is a virtual federation of 
processors that execute submitted executables with the help of a grid resource broker. A 
metacompute grid is a federation of service providers managed by a metacompute grid operating 
system. SORCER, on the other hand, belongs to a category of grids called intergrids (iGrids); an 
intergrid is a combination of a compute grid and a metacompute grid (Sobolewski 2008a). 

The Federated Intelligent Product Environment (FIPER) is a mcGrid that was developed under 
the sponsorship of the National Institute for Standards and Technology (NIST). FIPER was built to 
form a federation of distributed services that provide engineering data, applications, and tools on a 
network. SORCER layers on top of FIPER a metacomputing OS with basic services, including a 
federated file system to support service-oriented metacomputing. The metacomputing environment 
along with a layer of abstraction (exertion-oriented programming) has been put to use in many grid 
computing projects including systems developed at GE Global Research Center, GE Aviation, and 
the AFRL. 

 
1.3 Algorithms 
 
VTDIRECT95, a massively parallel Fortran 95 implementation of D. R. Jones’ algorithm 

DIRECT, is widely used in multidisciplinary design optimization, e.g., the design space 
exploration of a high speed civil transport (HSCT) (Baker et al. 2000a), for which the parallel 
implementation with load balancing techniques significantly reduced the design space exploration 
time (Baker et al. 2000b). Using polynomial response surface approximations for the MDO of an 
HSCT, DIRECT succeeded in finding the global optimum in every optimization (Baker et al. 
1998). DIRECT was also used to solve an aircraft routing problem involving real terrain data 
(Bartholomew-Biggs et al. 2003). Related applications of DIRECT include the design of a slider 
air-bearing surface (ABS) (Zhu and Bogy 2002), transmitter placement optimization (He et al. 
2004), gas pipeline optimization (Carter et al. 2001), cell cycle modeling (Panning et al. 2008, 
Zwolak et al. 2005), and molecular genetic mapping (Ljungberg et al. 2004). Engineering 
applications of VTDIRECT95 include global and local optimization of the kinematics of flapping 
wings (Ghommem et al. 2012), optimization of drag reduction on a circular cylinder (Mehmood et 
al. 2011), and nonconvex quadratic minimization with either box or integer constraints (Gao et al. 
2013). 

QNSTOP is a class of parallel quasi-Newton methods for stochastic optimization and 
deterministic global optimization. The application of QNSTOP to the global optimization of a 57-
dimensional biomechanics model of human balance utilizing forward dynamic simulations is 
investigated in (Easterling et al. 2012). The application of QNSTOP to eukaryotic cell cycle 
modeling is discussed in (Andrew et al. 2014). QNSTOP for stochastic optimization problems 
synthesizes ideas from numerical optimization and response surface methodology, and 
demonstrates potential for stochastic robust design optimization and stochastic MDO problems. 
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The paper is organized as follows. Section 2 outlines the SORCER framework and the two 
optimization algorithms, VTDIRECT95 and QNSTOP. Section 3 presents details about conversion 
of VTDIRECT95 and QNSTOP to SORCER services. The description of EBF3PanelOpt, a 
framework for optimization of curvilinear blade-stiffened panels, is presented in Section 1 (Part 2). 
Section 2 (Part 2) includes results for optimization of curvilinear blade-stiffened panels using 
VTDIRECT95 and QNSTOP on a SORCER grid. The paper concludes in Section 3 (Part 2) with 
some suggestions for future work in this area of research. 
 
 
2. Background 
 

2.1 Overview of service-oriented computing and SORCER 
 
Service-oriented computing is a computing paradigm that utilizes self-describing, platform-

agnostic services as the fundamental constructs to support rapid, cost-effective composition of 
distributed applications (Papazoglou et al. 2007). Services are self-adapting, dynamic processes 
that effectively communicate with one another to perform user-requested tasks in a distributed 
computing environment. The service-oriented computing paradigm, derived from the SOA model, 
allows interoperability, reusability, and loose coupling of its components in a dynamic 
environment, where computer resources are assigned to services as and when necessary. As 
indicated in Fig. 1, the interaction between software agents is facilitated by message exchanges 
between service providers and service requestors. The service provider determines a description 
for a service and publishes it to a service discovery agency. This, in turn, is made discoverable to a 
service requestor. To invoke a service, the service requestor retrieves the service description from a 
registry and binds with the service provider based on the service description. In short, SOA 
addresses the challenges of distributed computing by enabling service discovery, integration, and 
use (Georgakopoulous and Papazoglou 2008). 

SORCER is based on the concepts of SOA and also incorporates features of the service object-
oriented architecture (SOOA), where service providers are objects accepting remote invocations 
(Sobolewski 2008a). As shown in Fig. 1, the service requestor binds to the service provider by 
creating a proxy for remote communication. SOOA permits great flexibility in terms of 
communication between agents. These proxies, known as smart proxies, grant access to local and 
remote resources, regardless of who initially created the proxy. In SORCER, providers broadcast 
their availability, registries intercept broadcasted announcements and cache proxy objects to their 
service providers (Sobolewski 2012). The SORCER operating system (SOS) looks up proxies by 
sending queries to registries and making selections from the available services. In short, providers 
use discovery/join protocols to publish services in the network, and SOS uses discovery/join 
protocols to obtain services in the network. From an object-oriented programming point of view, 
service providers are represented as independent network objects, locating each other via service 
registries and communicating through protocols such as remote method invocation (RMI), simple 
object access protocol (SOAP), common object request broker architecture (COBRA), etc. 

Further, SORCER introduces three layers of converged programming abstractions: exertion-
oriented programming (EOP), var-oriented programming (VOP), and var-oriented modeling 
(VOM) (Sobolewski and Kolonay 2011). The EOP abstraction manages object-oriented distributed 
system complexity introduced by the complex network of metacomputers. VOP is a paradigm 
based on dataflow principles where changing the value of a var automatically forces recalculation  
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Fig. 1 Service-oriented architecture (SOA) (left) vs. service object-oriented architecture (SOOA) (right) 
 
 

of the interdependent values of vars. VOM, a modeling paradigm using vars, defines 
heterogeneous multidisciplinary var-oriented models in large scale multidisciplinary models. Thus, 
the SORCER framework incorporates the power of object-oriented programming and exertion-
oriented programming to create an infrastructure that is modular, extensible, and reusable. All of 
the above concepts are defined precisely and discussed in more detail in later sections.  

Based on successful implementation of large scale engineering applications with SORCER 
(Kolonay 2013, Burton et al. 2012, Kolonay et al. 2008, Kolonay and Sobolewski 2011, Goel et 
al. 2005, Kolonay et al. 2007, Xu et al. 2008), this section outlines several desirable features 
related to design space exploration pertinent to multidisciplinary aircraft analysis and design 
optimization. 

• Large scale, distributed, decentralized: SORCER dynamically federates processes and smartly 
distributes the load across all machines in the network, thereby resulting in significant 
reduction of design cycle time. 
• Leveraging the power of HPC: SORCER provides the features and computing power of HPC 
and SOA to form a dynamic distributed engineering collaboration platform. 
• Reusability: The incorporation of object-orient modularity enables a high level of reuse when 
moving from one study to the next. 
• Cost effective: SORCER accommodates physics based modeling via HPC for faster 
evaluation of higher fidelity configurations at the preliminary level of design when compared to 
traditional practices. 
• Better utilization of computational resources: SORCER enables collaborative design studies 
across organizational boundaries and maximum utilization of all compute resources on the 
network, ranging from personal computers to high performance computing machines. 
• Distributed resource management: SORCER employs Jini Connection technology (now called 
Apache River) with its JavaSpaces service to implement computational resource management 
across the network. The JavaSpaces technology facilitates the implementation of a self-load 
limiting grid computing system that can dynamically grow and shrink during the course of an 
optimization study (Freeman et al. 1999). The loosely coupled space-based service federation 
allows asynchronous communication between computers in the network in a reliable manner 
(Sobolewski 2008b). 
The above-mentioned features contribute to significantly accelerate design computations via  
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Fig. 2 Essential operations of the algorithm DIRECT 

 
 

distribution of tasks in a network. In (Alyanak 2013), a sequential linear programming (SLP) 
algorithm to minimize the gross take-off weight (GTOW) of a vehicle is implemented on a 
SORCER grid. The SLP method is customized for taking advantage of SORCER’s parallel 
computing capability such that gradient and line search calculations are executed in parallel. This 
methodology resulted in a reduction of the optimization time from 24 hours to two hours. Thus, 
the SORCER framework exhibits a wide range of capabilities that make large scale, 
multidisciplinary design studies feasible. 
 

2.2 VTDIRECT95 
 

VTDIRECT95 is a Fortran 95 software package using massively parallel dynamic data 
structures to implement the algorithm DIRECT by Jones et al. (1993). The algorithm DIRECT 
(DIviding RECTangles) is a deterministic global optimization algorithm that performs Lipschitzian 
optimization without the Lipschitz constant, and can be classified as a derivative free direct search 
algorithm. Each iteration of VTDIRECT95 consists of three essential operations as shown in Fig. 
2: region selection (SELECTION), point sampling (SAMPLING), and space division 
(DIVISION). 

Let En denote real n-dimensional Euclidean space, D={x∈En|ℓ≤x≤u} be a box in En, and f : 
D→E  a Lipschitz continuous function. The problem is to find a global minimum point  of f 
over D, )(min)( xfxf

Dx∈
= . The original (serial) algorithm by Jones et al. (1993) is described in six 

steps as below: 
Step 1 (initialization): Normalize the feasible set D to be the unit hyper-cube. Sample the 
center point 𝑐𝑐𝑖𝑖  of this hypercube and evaluate f(ci). Initialize fmin:=f(ci) evaluation counter m:=1, 
and iteration counter t:=0. 
Step 2 (selection): Identify the set S of “potentially optimal” boxes (subregions) of D. A box is 
potentially optimal if, for some Lipschitz constant, the function value within the box is 
potentially smaller than that in any other box (a formal definition with parameter ε is given by 
Jones et al. (1993)). 
Step 3 (sampling): For any box j∈S, identify the set I of dimensions with the maximum side 
length. Let δ equal one-third of this maximum side length. Sample the function at the points 
c±δei for all i∈I, where c is the center of the box and ei is the ith unit vector. 
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Step 4 (division): Divide the box j containing c into thirds along the dimensions in I, starting 
with the dimension with the lowest value of wi=min{f(c+δei), f(c−δei)}, and continuing to the 
dimension with the highest wi. Update fmin and m. 
Step 5 (iteration): Set S:=S\{j}. If 𝑆𝑆 ≠ ∅, go to Step 3.  
Step 6 (termination): Set t:=t+1. If iteration limit or evaluation limit has been reached, stop. 
Otherwise, go to Step 2. 
VTDIRECT95 has numerous modifications from DIRECT in order to improve performance 

and load balancing on large scale parallel systems. The massively parallel implementation 
VTDIRECT95 distributes data among processors to share the memory burden imposed by storing 
all current boxes. Numerous hierarchical and fully distributed control schemes have been tried, 
with the most effective being that shown in Fig. 3. The parallel scheme for SELECTION 
concentrates on distributing data among multiple masters to share the memory burden. Functional 
parallelism for SAMPLING is achieved by fully distributed control allocating function evaluation 
tasks to workers. 

On the top level, independent optimizations are done in the m subdomains (SDs). Within each 
subdomain, n subdomain masters (SMs) collaborate on SELECTION in parallel. On the bottom 
level, k workers (Ws) in a global pool request function evaluation tasks from all the subdomain 
masters to accomplish SAMPLING. SDi denotes subdomain i, SMi,j denotes subdomain master j in 
SDi, and Wk is worker k that works for all the SMs in active SDs. A detailed discussion of the 
implementation of the serial and parallel subroutines in VTDIRECT95 is presented in (He et al. 
2009). 
 

2.3 QNSTOP 
 

QNSTOP is a class of quasi-Newton methods for stochastic optimization with variations for 
deterministic global optimization (Amos et al. 2014b). The Fortran 2003 implementation of 
QNSTOP consists of serial and parallel codes for the quasi-Newton stochastic optimization 
method of Castle and Trosset (Castle 2012). Both variations are described simultaneously in the 
following. 

In iteration 𝑘𝑘, QNSTOP methods compute the gradient vector kĝ  and Hessian matrix kĤ  of 
a quadratic model 

)(ˆ)(
2
1)(ˆˆ)(ˆ kk

T
kk

T
kkkk XXHXXXXgfXXm −−+−+=−  

of the objective function 𝑓𝑓 centered at 𝑋𝑋𝑘𝑘 , where  is generally not 𝑓𝑓(𝑋𝑋𝑘𝑘).  
In the unconstrained context, QNSTOP methods progress by 

kkkkkk gWHXX ˆ]ˆ[ 1
1

−
+ +−= µ , 

where μk is the Lagrange multiplier of a trust region subproblem and Wk is a scaling matrix. For 
constrained problems with feasible set Θ, the update is 

Θ
−

+ +−= ]ˆ]ˆ[[ 1
1 kkkkkk gWHXX µ , 

where [ ]Θ.  denotes projection on the feasible set Θ. 
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2.3.1 Estimating the gradient 
Regression experiments in QNSTOP are designed in a region of interest containing the current 

iterate. QNSTOP uses an ellipsoidal design region centered at the current iterate Xk∈Ep. Let 

≼ ≼  

for some γ≥1 where Ip is the p×p identity matrix. The shape of the ellipsoidal design regions with 
eccentricity constrained by γ is controlled by the valid scaling matrices represented by the 
elements of the set Wγ. Let the ellipsoidal design regions 

 

where Wk∈Wγ. In the deterministic case, if there is no gain, τk=τ0>0; otherwise, for gain ζ>0, let  

. 

In the stochastic case, the convergence theory entails that τk be decayed according to the 
formula τk=a(k+1)-b, where a>0 and b∈(0,0.5). 

In each iteration, QNSTOP methods choose a set of Nk design sites . 
In this implementation, N=Nk is fixed for each k=1,2,… and  are 
uniformly sampled in each iteration. Let Yk=(yk1,…,ykN)T denote the N-vector of responses where 
yki=F(Xki)+noise. The response surface is modeled by the linear model , 

where εki accounts for the lack of fit. Let 
 

and 

 

be the absolute deviations of Xki. The least squares estimate of the gradient , ignoring the 
estimate for , is obtained by observing the responses and solving 

. 

 
2.3.2 Updating the model Hessian matrix 
In the stochastic context, QNSTOP methods constrain the Hessian matrix update to satisfy 

≼ ≼  

for some η≥0. Conceptually, this prevents the quadratic model from changing drastically from one 
iteration to the next. A variation of the SR1 (symmetric, rank one) update  that satisfies this 
constraint is computed. However, the constraint is simply relaxed in the deterministic case and the 
BFGS update is used. 

305



 
 
 
 
 
 

Chaitra Raghunath, Layne T. Watson, Mohamed Jrad, Rakesh K. Kapania and Raymond M. Kolonay 

2.3.3 Step length control 
QNSTOP methods use an ellipsoidal trust region concentric with the design region for 

controlling step length. In the deterministic case, the trust region ellipsoidal radius ρk is considered 
to be equal to the design ellipsoidal radius τk, and the next iterate Xk+1 is the solution to the 
optimization problem 

. 

In the stochastic case, the trust region ellipsoid radius ρk is different from the design ellipsoidal 
radius τk, and the next iterate  

 

is obtained by directly updating the Lagrange multiplier μk as described in Castle (2012). In both 
cases the computed point Xk+1 is projected onto the feasible set Θ. 
 

2.3.4 Updating the experimental design region 
QNSTOP estimates an ellipsoidal confidence set, and uses this to update the scaling matrix Wk 

to Wk+1 which then defines the next design region centered at Xk+1. The somewhat involved 
statistical details are given in Castle (2012) and Amos et al. (2014b). 
 

2.3.5 Algorithm summary 
In both modes of operation, global and stochastic, it is desirable to run QNSTOP from multiple 

start points. The algorithm outlined below is repeated for each start point. 
Step 0 (initialization): Given a function evaluation budget  per start point and operating 
mode (deterministic or stochastic), set values for τ0>0, μ0>0, γ≥1, η≥0, ζ≥0, N, X0, k :=0, 

. 
Step 1 (regression experiment): Depending on the mode, compute τk. Uniformly sample

. Observe the response vector . Compute . 
Step 2 (secant update): If k>0, compute the model Hessian matrix using BFGS 
(deterministic) or SR1 variant (stochastic) update. 
Step 3 (update iterate): Compute μk depending on the mode as described in Section 2.3.3, 
solve  and compute . 
Step 4 (update subsequent design ellipsoid): Compute an updated scaling matrix Wk+1∈Wγ. 
Step 5: If (k+2)/(N+1)+1<  then increment k by 1 go to Step 1. Otherwise, the algorithm 
terminates. (f is also observed at each ellipsoid center Xk.) 
The algorithm QNSTOP has three significant sources of parallelism: the individual function 

evaluations, the loop over the samples in an experimental design, and the loop over the start 
points. A master-slave paradigm is a reasonable approach if the individual function evaluations are 
large scale parallel simulations. On large shared memory systems, ample parallelism is exhibited at 
the two outer nested loops-the loop over the start points and the loop over the samples f(Xki) in an 
experimental design . 

A detailed discussion of the serial and parallel implementations of QNSTOP can be found in 
(Amos et al. 2014b). An analysis of a serial Fortran 95 implementation of QNSTOP is presented in 
(Amos et al. 2014a). 
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2.4 Discussion 
 
In the context of ever increasing parallelism, higher dimensions, and multidisciplinary design 

optimization, algorithms like VTDIRECT95 (for deterministic global optimization) and QNSTOP 
(for stochastic optimization) are excellent candidates for SORCER services. Objective function 
cost is one of the key parameters that affects the parallel performance under different parallel 
schemes. High parallel efficiency involves balancing communication overhead with the 
distribution of evaluation tasks for good load balancing (He et al. 2009a, 2009b). While SORCER 
has no control of the definition and granularity of the tasks, it can provide robust distributed 
parallelization and load balancing across computational resources, thus significantly speeding up 
the evaluation of objective functions in a dynamically scalable metacomputing environment. 
 
 
3. VTDIRECT95 and QNSTOP as SORCER services 
 

3.1 JNI wrappers for VTDIRECT95 and QNSTOP 
 

The massive growth of the internet and the World Wide Web (WWW) led to the development 
of the Java programming language, a language particularly suited for client-server web 
applications. The power of Java lies in its platform-independent compiled byte code programs 
destined for distribution on the internet. Further, the Java Virtual Machine (JVM), an abstract 
computing machine implemented in the Java Runtime Environment (JRE), helps developers run a 
program in a wide variety of distributed environments. Java code is executed in a sandbox 
environment that prevents the code from accessing the other parts of the machine, hence ensuring 
security. 

SORCER leverages the power of distributed computing through the use of Java 
interoperability, Jini, and web services (Sobolewski 2008a). While the benefits of using Java in 
distributed computing are well known, the adoption of Java as a language for numerical computing 
presents difficulties. Despite a significant improvement in performance of the JVM in the past few 
years, some obstacles still remain: over-restrictive floating point semantics, inefficient support for 
complex numbers and alternative arithmetic systems, and lack of direct support for true 
multidimensional arrays (Boisvert et al. 2001). Moreover, the task of manually converting existing 
code in Fortran to Java-based services is both daunting and expensive (Liang 1999). 

The Fortran 95 implementations of optimization algorithms considered in this paper, 
VTDIRECT95 and QNSTOP, are superior in design and performance to their FORTRAN 77 
counterparts. These implementations incorporate advanced features such as derived data types, 
pointers, dynamic memory allocation, array segments, vector subscripts, modules, etc. These 
features enabled design of dynamic data structures that flexibly organized the data on a single 
machine, effectively reduced the local data storage, and efficiently shared the data across multiple 
processors (He et al. 2009). While Fortran is effective for numerical computing, Java provides 
flexibility and scalability for dynamic grid-based network architectures. In order to cope with the 
heterogeneity imposed by various programming languages, Java wrappers for the existing legacy 
code have been implemented using the JNI (Java Native Interface) libraries. 

The JNI is a powerful feature of the Java platform that lets developers utilize code written in 
other languages such as C, C++, and Fortran. The JNI is a two-way interface that allows Java 
applications to invoke native code and vice versa. The JNI is an interface that is supported by all  
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Fig. 4 Two-way interface provided by JNI 

 
 

Java virtual machine implementations on a wide variety of host environments. One of the most 
important features of the JNI is the flexibility it offers-a single version of native code will run on 
different implementations of the JVM. Fig. 4 shows a block diagram that illustrates the two-way 
interface provided by JNI.  

In developing the wrappers for the existing Fortran 95 implementations of VTDIRECT95 and 
QNSTOP, a feature of the JNI called the invocation interface was used. The invocation interface 
allows a regular non-Java program running on the native operating system to invoke a JVM to gain 
access to Java classes and features (Liang 1999). The invocation interface allows developers to 
embed a JVM implementation into native applications. Native applications can link with a native 
library that implements the JVM, and then use the invocation interface to execute components 
written in the Java programming language (Lindsey et al. 2010). Further, a C or C++ layer is 
required to gain access to codes written in Fortran. Such C or C++ code is often called the “glue 
code” since it is the glue that holds the Java and Fortran code together. 

The motivation for using SORCER for MDO is the extensive exploration of the design space 
and the analyses of a large number of conceptual and preliminary design points during the early 
stages of design. In order to accomplish this, the design variables, objectives, and constraints 
should be made available during every iteration until the optimization algorithm converges to a 
global or local minimum point. In the SORCER environment, the objective function is 
implemented as a service, where the service is being requested by the optimization algorithm at 
every iteration to evaluate the objective function. The JNI wrapper acts as a layer of abstraction 
between the optimization algorithm and the Java block that evaluates the objective for a given 
design point. The block diagram illustrating the implementation of JNI wrappers is illustrated in 
Fig. 5. 

 
3.2 VTDIRECT95 and QNSTOP as SORCER services 

 
The concept of a service provider, or simply ‘provider’, is the crux of an engineering analysis 

or design study using SORCER. A provider is implemented in accordance with principles of 
exertion-oriented programming (EOP) and makes a number of services available to users in a 
distributed computing environment. EOP, a service-oriented programming paradigm using service 
providers and service commands, is a form of distributed programming that describes the 
distributed problem explicitly in terms of the intrinsically unpredictable network domain 
(Sobolewski and Kolonay 2012a). An exertion is an object that represents a process by specifying  
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Fig. 5 Block diagram representing the objective function evaluation through JNI 

 
 

the relationship between services and the information passed between them. In short, an exertion 
defines the collaboration between service-oriented programs. According to the central exertion 
principle, distributed processes are described by the interconnected federation of simple and 
effective service providers that compete with one another to be exerted. Service providers are 
network objects associated with leased network resources, and federate for executing a specific 
network request (exertion). 

Programmatically, a provider is Java code that makes a number of Java methods (services) 
available to users over a network. A provider presents a Java interface to identify the service it 
provides. This Java interface is referred to as a service type. This approach of implementing 
providers not only provides a layer of abstraction from a specific implementation of a service, but 
also enforces polymorphism-multiple providers on the network may have different 
implementations of the same service but they would all implement the same service type 
(interface) (Burton et al. 2012). 
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A user may request a service by specifying the name of the service, the service type for that 
service, and the arguments for the service. An instance of the Task class is used to represent a basic 
unit of work. A ‘task’ is a service command for an individual request to be executed on a single 
service provider. The arguments for all SORCER services are instances of the Context class. A 
context object is a generic container that consists of several name-value pairs to specify input, or 
output, or both. In short, the input/output data associated with a task execution is called a context. 

The provider is published on the network using SORCER. The provider’s service may then be 
accessed via a small Java code called a service requestor. In short, an object that creates exertions 
and submits them to the grid is called a requestor; an object that accepts exertions from requestors 
and performs some calculations is called a provider. 

Providers are of two kinds-analysis providers and model providers. Providers that leverage 
existing domain-specific codes are referred to as analysis providers (Burton et al. 2012). While the 
term ‘analysis’ typically refers to the process of solving a system of equations, an ‘analysis 
provider’ is an entity that neatly wraps the underlying domain-specific code with Java code so the 
domain-specific code can be accessed as a service by a remote user. The domain-specific code is 
generally platform independent and performs the bulk of the engineering-specific computations for 
a given service. A model provider is defined precisely in the following section. 
 

3.3 Implementation of model provider for objective function evaluation 
 

Design of complex systems requires a large number of dependent and independent variables. 
Values of the dependent variables are subject to several recalculations during the course of 
analysis. A change in the value of an independent variable does not necessarily force recalculation 
of a particular dependent variable. Further, the number of variables increases drastically with 
increasing complexity of the problem being solved. SORCER leverages the power of var-oriented 
programming (VOP) to handle large sets of interconnected variables. VOP is a programming 
paradigm using service-oriented variables called vars to design var-oriented multifidelity 
compositions (Sobolewski and Kolonay 2012a). A var is defined by a triplet < value, evaluator, 
filter >, where 

• a value is an expression yielding a valid quantity; 
• an evaluator defines the process of how data is produced via remote services, or produced 
locally; 
• a filter reduces the data generated by the evaluator to the value of the var. 
While VOP focuses on how evaluators calculate, a service-oriented modeling paradigm called 

var-oriented programming (VOM) focuses on how vars connect. VOM is a modeling paradigm 
using vars in a specific way to define large-scale analysis models such as response, parametric, and 
optimization models (Sobolewski and Kolonay 2011). In SORCER terminology, a model is a 
collection of vars. 

In the context of optimization, these vars are the design variables and the implementation of the 
objective and constraint functions. Var instances are used to model both independent and 
dependent variables in SORCER. While independent vars are used as a container to store a value 
and perform no calculations, dependent vars implement mathematical functions. These dependent 
and independent vars that define a specific optimization problem are modeled as an instance of 
OptimizationModel. Such a model, when published on the network, is referred to as a model 
provider. The model provider is characterized by a single state and behaves like shared memory to 
users over the network. There are two ways for users to interact with a published model provider: 
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a) via a single model query; or b) via a table model query. 
At each objective function evaluation, the communication between the optimizer (e.g., the 

Fortran 95 subroutines VTdirect or QNSTOPS) and the model provider is facilitated by 
instantiating the ModelClient class. The ModelClient class is instantiated in the JNI wrapper and 
provides a simple interface for setting design variable values and obtaining responses necessary to 
form the objective and constraint functions (Burton et al. 2012). For each objective function 
evaluation, a query object containing the name of the model provider, the design variable var 
names and values, and the var names of the objective function that the user wishes to calculate is 
constructed. When the query object is executed, the corresponding published model provider 
receives the query object and invokes the setValue method on all the design variables. Once the 
variables are assigned values, the model invokes the getValue method on the user-specified 
objective function. The query object is then returned to the user with the updated values. 

In order to obtain the most recently updated value of the dependent var (the user-specified 
objective function), the model invokes the evaluator instance to check if the value of the var has 
changed since the last invocation of evaluate. The evaluator in turn calls the getValue method on 
its argument vars to ensure their respective values are current before proceeding. If the argument 
vars are current and unchanged, the evaluator returns the dependent var value without further 
processing. This demand driven aspect of EOP ensures that calls to evaluate be made only if the 
evaluator’s arguments have changed since the last invocation of evaluate. Hence, change in value 
of any argument var automatically forces recalculation of the dependent var’s value. Once the 
evaluate method gets a new value, an instance of the filter class is employed to pass the return 
value to an instance of the persister class, which in turn assigns the value to an object (Burton et 
al. 2012). At every objective function evaluation, the value is returned to glue code in C, which in 
turn returns the value to the program carrying out the optimization. 
 

3.4 Serial subroutines VTdirect and QNSTOPS as SORCER services 
 

For the serial implementations (the subroutines VTdirect and QNSTOPS) of the algorithms, 
platform independent executables are implemented using JNI as described in Section 3.1. Next, 
each individual executable is tightly coupled with the provider’s service. As an example, the 
structure of the EO program for the serial VTdirect is: 
 
// Create NetSignature 
String providerName = Sorcer.getActualName("Engineering-
VTdirect"); String serviceName = "execute"; 
NetSignature methodEN = new NetSignature(serviceName, VTdirect.class, 

providerName); 
 
// Create component exertion 
NetTask vtdirectTask = new NetTask("run execute", "Task to run 
VTdirect", methodEN); 
 
// Create context 
VTdirectContext context = new VTdirectContext("VTdirectContext"); 
context.setInputFile(vtdirectInputUrl); 
context.setInputModelFile(modelInputUrl); 
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vtdirectTask.setContext(context); 
 
// Exert collaboration 
Exertion result = vtdirectTask.exert(); 
 

In the above EO program, a signature is defined by the name of the provider, the name of the 
interface, and the operation name used by any remote object to run the service. A task is defined by 
the name of the operation to be executed by a service provider. The input arguments to VTdirect 
are represented by the Context. The corresponding script that calls VTdirect is executed when the 
service composition (exertion) binds at runtime to the corresponding service provider. 

The objective function is implemented as a model provider. For the serial subroutines VTdirect 
and QNSTOPS to avail themselves of required services (namely, objective function evaluations), 
the JNI wrapper interacts with the model provider via a single model query. At each objective 
function evaluation, the JNI wrapper constructs a query object containing the name of the model 
provider, the design variable var names and values, and the var names of the objective function 
that the user wishes to calculate. Once the query is executed, the model provider begins to setValue 
and getValue on the vars as described in Section 3.3. The objective function evaluation is carried 
out sequentially, and at every function evaluation, the value in the object returned by the model 
provider is parsed and returned to the program carrying out the optimization. 
 

3.5 Parallel subroutines pVTdirect and QNSTOPP as SORCER services 
 

3.5.1 SORCER and existing parallel optimization codes 
In addition to (the serial subroutine) VTdirect as a SORCER service discussed in Section 3.4, it 

was intended to provide access to (the parallel subroutine) pVTdirect as a service. Unfortunately, 
parallel results for pVTdirect (the massively parallel implementation of DIRECT in the package 
VTDIRECT95) under SORCER are not presented here, because pVTdirect is fundamentally 
incompatible with efficient usage of the SORCER/JavaSpace/table model query paradigm 
implemented for this work (JavaSpace is described later in Section 4.2), on the hardware used for 
this work. An explanation of this statement follows. Of the several available paradigms for using 
SORCER, the most general and robust is the SORCER/JavaSpace/table model query paradigm, 
which is why this one was chosen here. This SORCER/JavaSpace/table model query paradigm 
tacitly assumes a master-slave parallel computing paradigm, and achieves its parallelism by 
chunking (binning) the function evaluations in function evaluation service calls to SORCER. This 
assumes that concurrent function evaluation points are all known at the same time 
(synchronization point), and that all these points are readily accessible by the master. These 
assumptions are valid for an optimization algorithm using a master-slave paradigm, such as 
QNSTOPP. They are not valid for a fully distributed algorithm such as pVTdirect, which both 
massively distributes all the data (the function evaluation points) and is asynchronous (the 
evaluation points in each iteration are not known at any synchronization point). In fact, these 
properties (fully distributed control, distributed data, and asynchrony) are precisely the reason for 
the massive scalability of pVTdirect. Indeed, a parallel master-slave version of DIRECT, 
compatible with the SORCER/JavaSpace/table model query paradigm, could be constructed, but 
doing so would vitiate all the desirable properties (fully distributed control and data, asynchrony, 
and the resulting scalability) of the sophisticated production code pVTdirect. 

The table could have had just one row, which would then work with pVTdirect via MPI, but the 
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combined overhead of MPI and SORCER results in a parallel slowdown for the test problems and 
hardware used here, and hence this (single table row corresponding to a single function evaluation 
point) was not pursued further. With sufficient hardware (cores to support all the MPI and 
SORCER threads) and sufficiently expensive function evaluations, pVTdirect with SORCER 
would demonstrate parallel speedup. 

 
3.5.2 Modifying parallel subroutine QNSTOPP for SORCER 
The parallel (OpenMP) implementation (subroutine QNSTOPP) of QNSTOP incorporates three 

sources of parallelism: (1) the loop over the start points (of size NSTART), and (2) the loop over 
the experimental design samples i=(1,…,N), or (3) both. For compatibility with SORCER, 
QNSTOPP is modified at the level of the inner loop over the experimental design samples such 
that the function evaluations are chunked in function evaluation calls to SORCER. In this case, 
QNSTOPP interacts with the published model provider via a table model query. Rather than 
passing a single design point to the model provider, the JNI wrapper constructs a table containing 
the name of the design vars and their values for a set of sample points. As with the case of a single 
model query, a query object containing the containing the name of the model provider, the design 
variable var names and values, and the var names of the objective function is constructed. The 
model provider, on receiving the query object, creates new child instances for each row in the table 
for parallel execution of the table row evaluations. The model provider creates a thread for each 
child instance and begins to setValue and getValue on the vars. On completion, the var values for 
each run are then returned to the JNI wrapper in a table object and the child models are discarded. 

This completes the background on SORCER, the algorithms DIRECT and QNSTOP, and the 
details of how those algorithms can be used by SORCER. Part 2 gives performance results for 
SORCER on several wing panel design problems, and draws some general conclusions about the 
suitability of SORCER for MDO involving the parallel optimization codes pVTdirect and 
QNSTOPP. 
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