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Abstract.  The optimum design of structures with frequency constraints is of great importance in the 
aeronautical industry. In order to avoid severe vibration, it is necessary to shift the fundamental frequency of 
the structure away from the frequency range of the dynamic loading. This paper develops a novel topology 
optimisation method for optimising the fundamental frequencies of structures. The finite element dynamic 
eigenvalue problem is solved to derive the sensitivity function used for the optimisation criteria. An 
alternative material interpolation scheme is developed and applied to the optimisation problem. A novel 
level-set criteria and updating routine for the weighting factors is presented to determine the optimal 
topology. The optimisation algorithm is applied to a simple two-dimensional plane stress plate to verify the 
method. Optimisation for maximising a chosen frequency and maximising the gap between two frequencies 
are presented. This has the application of stiffness maximisation and flutter suppression. The results of the 
optimisation algorithm are compared with the state of the art in frequency topology optimisation. Test cases 
have shown that the algorithm produces similar topologies to the state of the art, verifying that the novel 
technique is suitable for frequency optimisation. 
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1. Introduction 

 

Optimal design against vibrations and noise has been undertaken some decades ago in the form 

of shape optimisation with respect to the fundamental and higher order eigenfrequencies of 

transversely vibrating beams (Olhoff 1976, 1977). Subsequent papers focus on maximisation of 

the separation between two consecutive eigenfrequencies of the beam (Olhoff 1984, Bendsoe 

1985). A survey by Grandhi (1993) covers the early developments in this area. 

Vibration response is a design consideration of a structure subjected to dynamic loads (Bendsoe 

2003). For example, it is advantageous to keep the natural frequencies of the structure away from 

any driving frequencies that may be applied to the structure. Structures with a high fundamental 

frequency result in a stiff design which is good for static loads (Krog 1999). There have been cases 

where designers have underestimated the effects of the dynamic response, the most famous 

example being the Tacoma Narrows Bridge in 1940, which collapsed due to resonance (von 

Karman 2005); the problem being the frequency of the wind's gust differing little from the natural 
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bending and twisting modes of the bridge deck (Blevins 2001). This problem is not confined to 

bridge design. Flutter, a dynamic aeroelastic instability, is characterised by the sustained 

oscillation of structures arising from the interaction of elastic, inertial and aerodynamic forces 

acting on a body (Panda 2009). In aircraft structures the onset of flutter can be a result of the 

coalescence of two natural frequencies resulting in zero damping ratio (Bisplinghoff 1962). 

Therefore it is advantageous to design the supporting structure such that the natural frequencies are 

far enough apart to delay the onset of flutter.      

There are several established structural topology optimisation algorithms in the literature. The 

first to be applied to frequency optimisation is the homogenization method, developed by Bendsoe 

and Kikuchi (1988). This method uses an anisotropic composite with micro-scale voids to 

represent the material. For a given case the optimal design is found by optimising these 

microstructures and their orientations. Diaz and Kikuchi (1992) were the first to extend the 

homogenization method to vibrational optimisation. Subsequently, Ma et al. (1993, 1994, 1995), 

Tenek and Hagiwara (1993), Diaz et al. (1994), Krog (1996) analysed the maximisation of 

multiple frequencies of freely vibrating disks and plates using the homogenization technique. Krog 

and Olhoff (1999) apply a variable bound formulation to facilitate the treatment of multiple 

eigenfrequencies.   

The first continuous structural topology optimisation technique was developed by Bendsoe 

(1989). The Solid Isotropic Material with Penalisation (SIMP) method represents the material 

properties by one design variable per element with a penalisation factor. The SIMP method was 

extended by Kosaka and Swan (1999) to include optimisation of dynamic problems. However, it 

has been demonstrated that the SIMP model is unsuitable for frequency optimisation, as localised 

modes tend to appear in low density regions (Pederson 2000). A modified SIMP model using a 

discontinuous function has been applied to vibrating continuum structures by Pedersen (2000), Du 

and Olhoff (2007), Jensen and Pedersen (2006). Rubio et al. (2011) applied SIMP topology 

optimisation for tailoring vibration mode shapes for the design of piezoelectric devices. These 

methods are derived from the Karush-Kuhn-Tucker (KKT) optimality conditions (Patel 2008).    

A popular non-gradient based optimisation algorithm is the Evolutionary Structural 

Optimisation (ESO) method, which uses a physical response function, such as the von Mises 

stress, to gradually remove regions of inefficient material (Xie 1993). Xie and Steven (1994) were 

the first to extend the ESO method to include frequency optimisation. Xie and Steven (1996) 

analysed dynamic problems using the ESO method. Zhao et al. (1995) looked at frequency 

optimisation with lumped masses. Zhao et al. (1996) performed optimisation for the natural 

frequencies of thin plate bending vibration problems. Yang et al. (1999) applied the hard-kill 

BESO method to frequency optimisation problems. More recently Huang et al. (2010) applied the 

soft-kill penalty based BESO method to frequency optimisation problems.    

A recent structural topology optimisation algorithm, developed by Tong and Lin (2011), called 

the Moving Iso-Surface Threshold (MIST) technique is a hybrid of: the ESO method, using a 

physics based function, the SIMP method, employs a moving level to define the element based 

design variables and the level set method, uses evolving material boundaries expressed as iso-

values or levels. Vasista and Tong (2013) demonstrated this method on pressurised cellular 

compliant mechanisms by adding a mixed u/P finite-element formulation alongside the MIST 

optimisiation. Vasista and Tong (2014) apply the MIST topology optimisation method to aircraft 

structural design and extend the method to three-dimensional „block‟ design. 

This article presents a novel method for the topology optimisation of single and multiple 

eigenfrequencies of continuum structures. The optimisation method is an extension of the MIST 
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algorithm (Tong 2011) to the eigenvalue problem, with an alternative material interpolation 

scheme and level-set method. The objective of the work is to develop an improved optimisation 

algorithm for dynamic structures and compare with the current state of the art. 

 

 

2. Theoretical analysis  

 

This section outlines the optimisation algorithm of the paper. An overview of the MIST 

algorithm is given, followed by the structural model. The modifications to the method made for 

frequency optimisation is described followed by the convergence criteria. 

 

2.1 Overview of optimisation algorithm 
 

The optimisation problem being solved is one of the form 
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The aim is to find the optimum material layout, x values, to minimise the structural objective 

function, J, subjected to given finite element, gr, and material, gs, constraints. A physical response 

function, Φ, is calculated at all nodal points across the design domain. The physical response 

function is determined by the structural objective and gives the relative structural performance of 

all points in the domain. An iso-surface, S, intersects the physical response function forming the 

contour of the structural boundary (Fig. 1). 

 
Fig. 1 Physical response function for clamped beam 
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Weighting factors are applied to the elements to represent the material distribution. Void and 

solid elements are modeled by weighting factors of 0 and 1 respectively. In the optimisation update 

routine, the elements with all nodal physical response functions above the iso-surface move 

towards solid material, and the elements with all nodal physical response functions below the iso-

surface move towards void material. For the elements with nodal physical response functions 

above and below the iso-surface, the weighting factor is a function of the projected area above the 

iso-surface (Section 2.5.). 

 

2.2 Initialisation of structural model 
 

The structural model must be defined before the optimisation can be started. The structural 

model is defined by a finite element mesh. The nodal co-ordinates, element connectivity table, 

node numbers connected to each element, and element areas based on the finite element mesh are 

stored. The global stiffness, K, and mass, M, matrices are extracted from the finite element solver. 

The element stiffness, Ke, and mass, Me, matrices can then be calculated from these.  

The problem of eigenvalue maximisation has a trivial solution: in principle an infinite 

eigenvalue can be obtained by removing the entire structure (Bendsoe 2003). Therefore a volume 

constraint on the amount of material, f, is set. One weighting factor, xi, is used per finite element, 

this is similar to the density design variable in the SIMP gradient based method (Bendsoe 1999). 

For non-design areas, i.e. areas that are classified as either void or solid due to the design problem, 

the weighting factors for these elements are set to either 1 for solid or 0 for void. All the remaining 

weighting factors are initialised uniformly with an intermediate value that satisfies the material 

constraints. All the weighting factors are stored in vector x. The initial penalisation factor β is set. 

The material property model is initialised by defining values for: Esolid, Evoid, ρsolid and ρvoid. The 

stabilisation move limit, m, and filter radius are also defined in the initialisation stage. 

 

2.3 Frequency optimisation problem 
 

In finite element analysis the dynamic response of a structure is represented by the following 

eigenvalue problem 

0)( 2  jnj uMK   (1) 

where K is the global stiffness matrix, M is the global mass matrix, ωnj is the j
th
 natural frequency 

and uj is the eigenvector corresponding to ωnj. The natural frequency and the corresponding 

eigenvector are related to each other by the Rayleigh quotient 

nj

nj

nj
m

k
2  (2) 

where the modal stiffness knj and the modal mass mnj are defined by 

j

T

jnj uuk K  (3) 

j

T

jnj uum M  (4) 

For the topology optimisation problem of maximising the natural frequency, ωnj, the problem 
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can be stated as (Huang 2010, Xie 1997) 
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where Vi is the volume of the i
th
 element and V

*
 is the predefined total structural volume. The 

objective function of the optimisation problem is ωnj. From Eq. (2), the sensitivity of the objective 

function can be calculated by 
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Using the eigenvalue problem (Equation (1)) Equation (5) can be simplified to 
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The sensitivity number (Eq. (6)) is an indicator for the change in the eigenvalue, 2

nj , as a result 

of the removal of the j
th
 element. It is effectively the gradient of the eigenvalue solution of the 

finite element problem. The gradient of each element must be calculated to develop the physical 

response function. 

 

2.4 Alternative material interpolation scheme 
 

To obtain the gradient information of the design variable (Section 2.3.), the material properties 

must be interpolated between 0, void, and 1, solid material. The most simple material interpolation 

scheme is the power law penalisation scheme (Sigmund 1998) 


isolidi xExE )(  (7) 

where β is the penalisation factor, defined in Section 2.2. However, this scheme results in 

numerical difficulties for the eigenvalue optimisation problem (Pedersen 2000). The main problem 

is that the extremely high ratio between mass and stiffness for small xi and large β (greater than 1) 

causes artificial localised vibration modes in the low density regions. A method to avoid this issue 

is to keep the ratio between mass and stiffness constant at low xi values by requiring that 

solidvoidx  )( min  (8) 

solidvoidEExE )( min  (9) 

Therefore an alternative material interpolation scheme can be defined as 

voidsolidii xx  )(  (10) 
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By differentiating Eqs. (10) and (11) the derivatives of the global mass, M, and stiffness, K, 

matrices with respect to the weighting factors can be obtained 
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where 
isolidM  and 

isolidK  are the i
th
 element mass and stiffness matrices when they are solid. Eqs. 

(12) and (13) can be substituted into Eq. (6) to obtain the sensitivity number as a function of the 

material interpolation model. 
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The sensitivity number for elements tending towards solid and void material can be explicitly 

expressed as 
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 (15) 

This material interpolation scheme is a „soft-kill‟ method, where the elements stiffness and 

density are gradually reduced, i.e., elements are not completely removed or included at the end of 

the design iteration. 

 
2.5 Alternative method for calculating the level of the iso-surface and updating 

weighting factors 

 
To calculate the element weighting factors the iso-surface level, t, must first be calculated using 

an iterative bi-section method. In this method the initial value of t is the average of the minimum 

and maximum value of the physical response function Φ. The difference between Φ and t is 

calculated at all nodes in the design domain. All the weighting factors in the design region are 

updated where i is the current element and m, set to 0.1 for the purpose of this study, is a positive 

move limit that ensures the overall topology does not change significantly over one design 

iteration. 
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Fig. 2 3D view of nodal values of (Φ−tk) for element i 

 

 

for (Φ−t)<0 














otherwisemx

mxif
x

i

i

i

1

10
 (16) 

for (Φ−t)>0 
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The amount of material is summed  
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i ii Ax
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)(  where Ai is the area of element i, k is the 

current iteration in the bi-section method and NE is the total number of elements in the mesh. The 

summed material is then checked against the material constraint, fAtotal (where Atotal is the total 

mesh area and f is a volume fraction) and the iso-value, t, is updated 
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after each iteration if the sensitivity numbers are all less than zero the iso-surface for the previous 

iteration is re-calculated by 
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This process is repeated until the summed material is within a small tolerance, ς, of the material 

constraint. For the non-design solid and/or void regions, the value of Φ−tk is set to a positive 

number for solid regions and a negative number for void regions. 

The updating procedure for elements with either all node values of (Φ−tk)>0 or (Φ−tk)<0 is given 

previously, however if (Φ− tk)>0 for some node(s) and (Φ−tk)<0 at other node(s), then  

ki
x is based on the ratio of projected positive area to total element area as seen in Fig. 2.  

 As can be seen from Fig. 2 the positive area of the element is enclosed in the boundary 

outlined by points 1-4. Therefore the weighting factor for the element shown in Fig. 2 is given by 

i

ik
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A
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To calculate the projected positive area,


ikA  the Xv and Yv co-ordinates of the vertex, shown as 

points 1 and 2 in Fig. 2, must be determined. This is done by determining the edge of the element 

that the vertex lies on, by seeing which edge has one node with a positive (Φ−tk) and one node 

with a negative (Φ−tk) value.  

Once the correct edge has been identified the co-ordinates of the vertex can be calculated by 

calculating the ratio of the positive and negative magnitudes 
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the co-ordinates of the vertex can be calculated by 
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)( 121 YYYYv    (23) 

where the values with a subscript of 1 represent the nodes with a positive (Φ−tk) value, and the 

values with a subscript of 2 represent the nodes with a negative (Φ−tk) value. Once the co-

ordinates of all the vertices of 


ikA  are determined, the area,


ikA , is determined by using the 

standard method for determining the area of a non-self-intersecting arbitrary polygon using its 

vertex co-ordinate data (Zwillinger 2003) 
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where Nv is the number of vertices of 


ikA , 1vNX  and 1vNY  are equal to X1 and Y1 in order to 

close the polygon. 
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2.6 Convergence criteria 
 

Standard topology optimisation procedures determine the convergence of the solution when the 

change in the element weighting factor is less than a certain percentage, hence 

 xxx new  max  (25) 

This criterion can be too strict causing the optimiser to run without terminating even though the 

overall topology is unchanged. The convergence criteria can be relaxed by considering the change 

in the element weighting factor as a function of the area of the total design domain such that 
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This criteria (Eq. (26)) is used to determine the convergence of the optimisation algorithm presented in 

this article.   

 

2.7 Filtering schemes for solid-void structures 
 

The algorithm presented is a „soft-kill‟ method, hence a material interpolation scheme is required, i.e. 

elements are not completely removed. Therefore the final topologies produced are not solid-void 

structures. Multiple filtering schemes can be used to transform composite structures into solid-void 

topologies. The two methods used here are: 

 The mean filter 

where x  is the mean value of the weighting function. 

The median filter 

where x~  is the median value of the weight function. Initially a mean filter is used, as it does not 

favor higher or lower densities. However this may result in elements that are not connected to the 

main structure. In this case a median filter is used to remove all outliers. 

Filtering schemes can have a large effect on the result of the optimal topology; therefore 

sometimes it can be beneficial to use a „hard-kill‟ method, which does not require any filtering to 

produce solid-void structures. However, discrete approaches suffer from numerical instabilities 

such as: oscillatory solutions and non-converging topologies. This is because discrete approaches 

are sensitive to parameter variations (Munk 2015, Sigmund 2013). These issues are particularly 

prevalent in dynamic optimization, therefore a „soft-kill‟ algorithm is better suited for this 

application. Further, a volume constraint is applied to the topology optimization problem, this 

reduces the effect of the filter on the final topology of the structure. 
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Fig. 3 Rectangular plate under plane stress conditions 

 

 
Fig. 4 History of the first natural frequency of the rectangular plate 

 

 

3. Results and discussion 
 
 

The results of the optimisation algorithm are presented in this section. To verify the algorithms 

optimality a two-dimensional plane stress rectangular plate is optimised for maximisation of the 

first natural frequency. This example has been optimised by both the ESO (Xie 1996) and 

homogenization techniques (Tenek 1993), hence proving to be a good comparison for the new 

algorithm proposed in this article. Secondly, a swept plate wing is optimised for separation of the 

2
nd

 and 3
rd

 natural frequencies to delay flutter. This is a simple example to verify the algorithms 

ability to increase the dynamic stability of a structure.   

 

3.1 Rectangular plate 
 

Fig. 3 shows the aluminium plate of dimensions 0.15 m×0.1 m. The plate is fixed at two 

corners along its diagonal, with only in-plane vibration considered. Young's modulus E=70 GPa, 

Poisson's ratio ν=0.3, thickness t=0.01 m and density ρ=2700 kg/m
3
 are defined for the plate. The 

domain is divided into 45×30 square plate elements. 

Using the method outlined in Section 2 the first natural frequency is increased until the volume 

constraint is met. As a result the history of the first natural frequency is obtained as shown in Fig. 4. 
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Fig. 5 A new composite design for the rectangular plate with increased first frequency 

  

 

Fig. 6 A new solid-void design for the rectangular plate with increased first frequency 

 
 
After 31 iterations, 60% of the material is removed and the first frequency has been increased 

by approximately 50% from 2439.015 Hz to 3645.046 Hz. The corresponding new design is given 

in Fig. 5. 

Fig. 5 shows the result of the optimisation algorithm for a composite design, i.e., with 

intermediate material. For manufacturing purposes a solid-void or 1-0 structure is required. 

Therefore the design shown in Fig. 5 can be filtered to produce a 1-0 structure as shown in Fig. 6. 

Fig. 6 shows a design which has the same topology as the designs obtained by the 

homogenization method (Tenek 1993) and the ESO method (Xie 1996). Since the ESO method 

only removes 8 elements at every iteration this method is significantly slower, taking 85 iterations 

to remove 50% of the structure compared with 31 for this method. This result gives confidence to 

the method for optimisation of maximum frequency. However, there is no control as to what is 

happening to the other frequencies during the optimization process. This can lead to other 

frequencies dropping below their initial values. Such behaviour is undesirable in structural 

mechanics (see Section I). This can be avoided, or at least delayed, by instead of maximising the 

first natural frequency, maximise the gap between neighboring frequencies. This method will be 

demonstrated in the next section on a wing structure. 

 

3.2 Swept plate wing 
 

Fig. 7 shows the aluminium plate wing of dimensions 0.2 m×0.8 m with a leading edge sweep 

angle of Δ=20
o
. The plate is fixed along one of its edges, to represent a cantilever wing. A Young's 

modulus E=70 GPa, Poisson's ratio ν=0.3, thickness t=0.001 m and density ρ=2700 kg/m
3
 are 

defined for the plate. The domain is divided into 20×80 square plate elements. 
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Fig. 7 Swept cantilever plate wing 

 

 
Fig. 8 Convergence plot for the swept plate wing 

 

 
Fig. 9 A new composite design for the swept plate wing with increased difference between the 2

nd 
and 

3
rd 

natural frequency 
 

 

Since the span and chord dimensions must remain consistent the volume constraint for this 

optimisation problem is set to 85%. The novel optimisation method of this paper is used to 

increase the gap between the 2
nd 

and 3
rd

 natural frequencies, as they are the closest before 

optimisation. As a result the optimisation history of the difference between the 2
nd

 and 3
rd

 natural 

frequencies is shown in Fig. 8. 

After 55 iterations, 15% of the material is removed and the gap between the 2
nd

 and 3
rd

 natural 

frequencies has been increased by over 200% from 3.39 Hz to 8.23 Hz. The corresponding new 

design, before filtering is performed, can be seen in Fig. 9. 
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Fig. 10 A new solid-void design for the swept plate wing with increased difference between the 2

nd 
and 

3
rd 

natural frequency  
 

  
(a) Original model (b) Optimised model 

Fig. 11 Second mode shape for the swept wing model 

 

  
(a) Original model (b) Optimised model 

Fig. 12 Third mode shape for the swept wing model 

 

 

The optimal topology for a composite wing design is given in Fig. 9. For manufacturing 

purposes a solid-void structure is required. Therefore the design given in Fig. 9 can be filtered to 

produce a solid-void structure as shown in Fig. 10. 

Fig. 10 shows an asymmetrical structure that has removed material from the leading and 

trailing edges toward the tip. The second natural frequency corresponds to the second bending 

mode and the third natural frequency corresponds to the first twisting (torsional) mode. Therefore 

the removal of material from either edge is done to increase the frequency of the twisting mode, 

while having minimal effect on the second bending mode. The structure starts to build up again as 

the tip of the wing is approached (Fig. 10) near the trailing edge, this keeps the frequency of the 

second bending mode relatively constant such that it does not approach the first mode. The sweep 

angle couples the twisting and bending modes of the wing, causing an asymmetry to appear in the 

optimum structure, resulting in more material being removed from the leading edge. 

The resulting structure, Fig. 10, differs from conventional wing design. Further, due to the 

discrete nature of the finite element mesh, the structure contains sharp edges, which promote stress 
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concentrations. Therefore to make the final design feasible, manufacturing tolerances must be 

implemented in the optimisation process, either as a constraint (Saleem 2008) or as a post 

processing task. Therefore, the optimised structure is used to guide the final design resulting in a 

superior and innovative topology with enhanced structural performance and stability.    

The 2
nd

 and 3
rd

 mode for the wing before and after the optimisation is performed can be seen in 

Figs. 11 and 12. 

The majority of the removed material in the optimisation process occurs after the minimum 

bending displacement (Fig. 11(a)). This results in minimal change of the 2
nd

 natural frequency, to 

avoid coupling the 1
st
 and 2

nd
 mode. The resulting swept 'I' beam shape towards the tip, reduces the 

inertia in the 'twisting' dimension, thus increasing the 3
rd

 natural frequency (Fig. 12(b)). This 

results in an increased frequency difference between all modes. 

The goal of this problem was to delay the onset of flutter for the plate wing (Fig. 7). The flutter 

velocity of the wing before optimisation is 115.4 ms
-1

. The flutter velocity after the wing has been 

optimised is increased by approximately 3% to 118.3 ms
-1

. Therefore it is clear that the novel 

optimisation method presented in this article is effective for delaying flutter and can be 

successfully used for maximising the difference between frequencies. 

 

 

4. Conclusions 
 

A novel method for the optimisation of the fundamental frequencies of structures has been 

presented. The maximisation of the 1
st
 natural frequency and increasing the gap between two 

coinciding frequencies for increasing dynamic stability has been demonstrated. A novel level-set 

criteria and updating routine for the weighting factors was developed to determine the optimal 

topologies. 

The optimised rectangular plate has an increased 1
st
 natural frequency of approximately 50%, 

3645.046 Hz compared to 2439.015 Hz for the initial design, with a weight saving of 60%. The 

resulting topology is comparable to those determined using the homogenization and ESO 

techniques; proving to be a good test case that verifies the novel method. 

The optimised swept plate wing has an increase of over 200%, 8.23 Hz compared to 3.39 Hz, in 

the difference between the 2
nd

 and 3
rd

 natural frequencies. This resulted in a 3% increase in the 

flutter velocity of the wing, 118.3 ms
-1

 compared to 115.4 ms
-1

. Therefore confirming the novel 

optimisation techniques ability to delay the onset of flutter and create structures that are more 

dynamically stable. These results add to the work done in dynamic optimisation problems (Diaz 

1992, Kosaka 1999, Xie 1994). 
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