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Abstract.  Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for 
the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, 
disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from 
Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to 
mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) 
model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails 
incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. 
The imposition of realizability constraints is investigated through the introduction of penalization terms. The 
assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample 
flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and 
produce physically realistic predictions. 
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1. Introduction 
 

Several problems in the field of aerospace engineering require reliable tools for turbulence 

modeling to develop more efficient systems. However, a dilemma must be faced: either accurate 

models such as direct numerical simulations (DNS) or large-eddy simulations (LES) are used, 

which are very expensive in terms of computational time, or less accurate but faster models such 

as Reynolds-averaged Navier-Stokes models (RANS) can be adopted. RANS models reach their 

limits when considering flows characterised by separations or transition. It is therefore necessary 

to improve these models, and one promising way is to use data-driven approaches with modern 

assimilation tools. 

One of the strengths, but also one of the limiting factors, of RANS models is that they use the 
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Boussinesq approximation as a closure model. This approximation is convenient because it is easy 

to compute since it states that the anisotropic part of the Reynolds stress tensor is linearly 

dependent on the strain rate tensor. However, when looking at high-fidelity data, it can be shown 

that this approximation is not always verified. A way to improve this approximation was proposed 

by Pope (1975) and was exploited for the development of a new family of non-linear closure 

models known as explicit algebraic Reynolds stress models (EARSMs). This approach uses a 

tensor basis that enforces Galilean invariance. The invariance is an essential property since it 

ensures that the results of the experiments and observations should be the same regardless of the 

coordinate system or observer motion. Various machine learning techniques have been used to 

improve Pope’s assumption. In general data-augmented turbulence models involve compensating 

for model errors by incorporating high-fidelity data to train correction terms as suggested by Xiao 

and Cinnella (2019). Ling and Templeton (2015) introduced classifiers that can identify regions 

where turbulence models exhibit low accuracy or violate model assumptions by using direct 

numerical simulation (DNS) and large eddy simulation (LES) solutions. Wang et al. (2017) 

employed machine learning to directly correct the Reynolds stress tensor based on mean flow 

features, leading to improved accuracy even on different test cases. Similarly, Sandberg and 

Michelassi (2019) and Sandberg and Weatheritt (2014) used an evolutionary algorithm to obtain 

the coefficients within the framework of the EARSM model. In another approach, Wu et al. (2017) 

utilized a random forest model to estimate the confidence of RANS solutions before prediction. 

Similarly, Ling et al. (2016) proposed a method to correct the Reynolds stress tensor using a 

neural network structure with embedded invariance properties. This concept was later extended to 

a more comprehensive, albeit computationally expensive, framework by Wu et al. (2018). 

However, a limitation of the aforementioned methods is that they learn corrections directly from 

high-fidelity data, which may lead to inconsistencies with RANS model structures. To address this 

issue and ensure consistency, data-assimilation (DA) techniques based on inverse methods have 

been employed for inferring model parameters as suggested by Foures et al. (2014). Parish and 

Duraisamy (2016) developed the field inversion and machine learning approach using Bayesian 

inference and machine learning to enhance RANS model predictions, achieving success in 

applications involving airfoils with separation (Singh et al. 2017). This approach was also applied 

in the framework of transition modeling in turbomachinery by Ferrero et al. (2020). Along these 

lines, the aim of this work is to improve the predictive capabilities of the SST RANS model by 

adding non-linear correction terms which increase the accuracy of the Boussinesq assumption. 

This is done by testing different formulations which allow to express the non-linear correction as a 

function of invariants. In order to improve the robustness of the model with respect to previous 

approaches, two different contributions are proposed: first of all, some simplified but robust 

relations between non-linear correction and invariants are discussed. Secondly, physical 

constraints have been introduced by means of penalizations during the training of the model. The 

proposed approach can be applied to both compressible and incompressible flows and represents 

an effort to increase the reliability of data-driven RANS models. 

 

 

2. SST RANS model 
 

The present work is focused on the SST k-ω model by Menter (1994). It is a two-equations 

model based on the eddy-viscosity approach which combines the best properties of the k-ω and k-ε 

models. The use of a k-ω formulation in the inner parts of the boundary layer makes the model 
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usable directly down to the solid wall through the viscous sublayer, so that the SST k-ω model can 

be used as a low-Reynolds turbulence model without additional damping functions. However, the 

k-ω model is very sensitive with respect to far field boundary conditions and this amplifies the 

uncertainty from the boundary conditions to the results. On the contrary, the k-ε model is not so 

sensitive to far field boundary conditions but it requires special treatment for integration close to 

solid walls. The SST formulation represents a continuous blending between k-ω and k-ε models, 

which uses k-ω close to the body and reverts to k-ε model in the free flow, avoiding the usual k-ω 

problems related to high-sensitivity to the inlet free-stream turbulence properties. The SST model 

is based on two transport equations for turbulent kinetic energy k and specific dissipation ω: 

𝜕(𝜌𝑘)

𝜕𝑡
+
𝜕(𝜌𝑢𝑗𝑘)

𝜕𝑥𝑗
= 𝑃 − 𝛽∗𝜌𝜔𝑘 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
] 

𝜕(𝜌𝜔)

𝜕𝑡
+
𝜕(𝜌𝑢𝑗𝜔)

𝜕𝑥𝑗
=
𝛾

𝜇𝑡
𝑃 − 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)

𝜌𝜎𝜔2
𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 

Production term: 𝑃 = τ𝑖𝑗
∂𝑢𝑖

∂𝑥𝑗
 

Turbulent eddy viscosity: 𝜇𝑡 =
ρ𝑎1𝑘

max(𝑎1ω,Ω𝐹2)
 

Where 𝜇 , 𝜇𝑡 , 𝜏𝑖𝑗 , 𝜌  represent dynamic viscosity, dynamic eddy viscosity, Reynolds stress 

tensor and density, respectively. The blending function 𝐹1 allows to modify the behavior of the 

model from k-ω (close to solid walls) to k-ε (in the far field). The coefficients 𝛽, 𝛽∗, 𝜎𝑘, 𝜎𝜔, 𝛾 and 

𝜎𝜔2 assume the values suggested by Menter (1994). 

In this framework, the Boussinesq assumption is used to evaluate the anisotropic part of the 

Reynolds stresses. That assumption links linearly the anisotropic part of the Reynolds stress tensor 

𝑎𝑖𝑗 to the strain rate tensor 𝑆𝑖𝑗  

τ𝑖𝑗 = 𝑎𝑖𝑗 −
2

3
ρ𝑘δ𝑖𝑗 = 2μ𝑡𝑆𝑖𝑗 −

2

3
ρ𝑘δ𝑖𝑗                                                (1) 

where k is the turbulent energy and 𝑆𝑖𝑗 is the strain rate tensor defined as follows: 

𝑘 =
1

2
𝑢𝑖
′𝑢𝑗
′ 

𝑆𝑖𝑗 =
1

2
(
∂𝑢𝑖
∂𝑥𝑗

+
∂𝑢𝑗

∂𝑥𝑖
) 

The Boussinesq assumption plays a crucial role in this model and is widely used in RANS 

turbulence modeling because of its simplicity. However, extensive analysis based on high-fidelity 

data shows that the Boussinesq assumption introduces a significant error. Using DNS (or 

experimental) data, it is possible to quantify the error by examining the alignment between the 

strain rate tensor and the anisotropic part of the Reynolds stress tensor. It is possible to calculate 

the following quantity, which corresponds to a normalized scalar product between the anisotropic 

part of the Reynols stress tensor and the strain rate tensor: 

θ =
𝑎𝑖𝑗𝑆𝑖𝑗

√𝑎𝑘𝑙𝑎𝑘𝑙𝑆𝑚𝑛𝑆𝑚𝑛
 

𝑎𝑖𝑗 = τ𝑖𝑗 +
2

3
ρ𝑘δ𝑖𝑗 
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This indicator varies between -1 and 1. If 𝜃 is equal to 1, this means that the anisotropic part of 

the Reynolds stress tensor and the shear rate tensor are aligned and therefore that Boussinesq 

hypothesis is valid. If 𝜃 is equal to 0, this means that the two tensors are orthogonal, and if this 

value is equal to -1, then the two tensors are aligned, but in the opposite direction with respect to 

the Boussinesq hypothesis. 

 

 

3. Non-linear correction 
 

Pope (1975) introduced a nonlinear correction to address the discrepancy between the Reynolds 

tensor obtained through DNS/experiment and the one calculated using the Boussinesq 

approximation. This correction enhances the linear Boussinesq approximation by incorporating 

additional terms, creating a nonlinear constitutive stress-strain relationship. The model was based 

on the weak equilibrium hypothesis for the anisotropic part of the Reynolds tenso (𝑎𝑖𝑗): this 

hypothesis assumes that 𝑎𝑖𝑗  is approximately constant following a fluid particle. Pope (1975) 

identified the non-linear correction as a finite tensor polynomial by using dimensional analysis, 

imposing invariance under coordinate-transformation, and using physical arguments to limit the 

number of quantities which appear in the expression. The non-linear correction for general 3D 

flows is expressed by means of a tensor basis 𝑉𝑘 and scalar invariants 𝐼𝑘 

τ𝑖𝑗 = 2μ𝑡𝑆𝑖𝑗 −
2

3
ρ𝑘δ𝑖𝑗 − ρ𝑘∑α𝑘𝑉𝑖𝑗

𝑘

10

𝑘=1

                                         (2) 

𝑉𝑘 are basis functions formed from polynomials of non-dimensional strain rate 𝑆̃𝑖𝑗 = 𝛿𝑆𝑖𝑗 and 

rotation rate 𝑅̃𝑖𝑗 = 𝛿𝑅𝑖𝑗, where 𝛿 is the turbulent timescale. 𝑆𝑖𝑗 is the previously defined strain rate 

tensor and 𝑅𝑖𝑗 is the rotation rate tensor 

𝑅𝑖𝑗 =
1

2
(
∂𝑢𝑖
∂𝑥𝑗

−
∂𝑢𝑗

∂𝑥𝑖
)                                                            (3) 

 

𝑉1 = 𝑆̃ 𝑉6 = 𝑅̃2𝑆̃ + 𝑆̃𝑅̃2 −
2

3
𝐼Tr (𝑆̃𝑅̃2) 

𝑉2 = 𝑆̃𝑅̃ − 𝑅̃𝑆̃ 𝑉7 = 𝑅̃𝑆̃𝑅̃2 − 𝑅̃2𝑆̃𝑅̃ 

𝑉3 = 𝑆̃2 −
1

3
𝐼Tr (𝑆̃2) 𝑉8 = 𝑆̃𝑅̃𝑆̃2 − 𝑆̃2𝑅̃𝑆̃ 

𝑉4 = 𝑅̃2 −
1

3
𝐼Tr (𝑅̃2) 𝑉9 = 𝑅̃2𝑆̃2 + 𝑆̃2𝑅̃2 −

2

3
𝐼Tr (𝑆̃2𝑅̃2) 

𝑉5 = 𝑅̃𝑆̃2 − 𝑆̃2𝑅̃ 𝑉10 = 𝑅̃𝑆̃2𝑅̃2 − 𝑅̃2𝑆̃2𝑅̃ 

 

The coefficients 𝛼𝑘 are functions of the non-dimensionnal invariants 𝐼𝑘 formed by 𝑅̃ and 𝑆̃: 

𝐼1 = 𝑇𝑟(𝑆̃
2), 𝐼2 = 𝑇𝑟(𝑅̃

2), 𝐼3 = 𝑇𝑟(𝑆̃
3), 𝐼4 = 𝑇𝑟(𝑅̃

2𝑆̃),          𝐼5 = 𝑇𝑟(𝑅̃
2𝑆̃2)  

In its original work, Pope suggested two possible ways to evaluate 𝛿 as: 

δω =
𝑘

ϵ
=
1

ω
  or  δ𝑣 = (

∂𝑢𝑖
∂𝑥𝑗

∂𝑢𝑖
∂𝑥𝑗

)

−1/2
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where the turbulence dissipation ϵ  and the specific dissipation ω  are related by the following 

expression: 𝜔 = 𝜖/𝑘 . In this work, the first approach 𝛿 = 𝛿𝜔  is adopted, following the 

recommendation by Pope (1975). A possible motivation to choose 𝛿𝜔 instead of δ𝑣  is that in a 

turbulence homogeneous flow, 𝛿𝜔 is defined while δ𝑣 is not. 

Finally, Pope (1975) showed than for 2D flows it is possible to reduce the tensor basis which 

appears in Eq. (2) to the first three terms and the coefficients 𝛼𝑘 can be computed as a function of 

the first two invariants. 

 

 

4. Realizability conditions 
 

In order to obtain a physically realizable model, it is important to impose some constraints to 

the Reynolds stress tensor. The Reynolds stress tensor is by definition symmetrical semi-definite 

negative. 

{
−ρ𝑢𝑖

′2 ≤ 0

(ρ𝑢𝑖
′𝑢𝑗
′)
2
≤ ρ𝑢𝑖

′2 ρ𝑢𝑗
′2
                                                           (4) 

The first inequality is referred to as the linear or diagonal constraint. Since the Reynolds stress 

tensor is negative semi-definite, the diagonal elements must be less than or equal to zero. In 

addition, each element of the diagonal should be greater than or equal to the trace of the Reynolds 

stress tensor. Otherwise, this would mean that at least one element of the diagonal would have to 

be positive. The second inequality is known as the quadratic constraint or the Cauchy-Schwarz 

inequality. This condition can be expressed as the requirement that the square of the covariance 

must not exceed the product of the variances. Another way of considering these realizability 

conditions is to look at the eigenvalues of the Reynolds stress tensor, which must all be negative. 

These conditions are not necessarily met by the k-omega SST model and by the non-linear 

corrections that are investigated in the present work. This aspect will be taken into account by 

introducing these constraints in the following. 

 

 

5. Non-linear model training on DNS data 
 

 

The first step of the proposed methodology is focused on the analysis of high-fidelity data 

(from DNS or experiments) to identify the coefficients of the non-linear correction reported in Eq. 

(2). Ideally, the coefficients α1 should be expressed as a function of the invariants: Sandberg and 

Michelassi (2019) identified this relationship by means of gene expression programming and they 

proposed to consider a truncated expansion in which only the leading terms of the function are 

evaluated and only the first two invariants are considered.  During the initial phase of this work, 

the use of neural networks was investigated as a possible way to obtain the coefficients 𝛼𝑘 as a 

function of local flow features. However, the coefficients produced by these networks exhibited 

strong oscillations, resulting in instabilities when implemented in the RANS CFD code. For this 

reason, we did not use artificial neural networks, but an alternative strategy was investigated. 

In a preliminary step of this work, the non-linear models provided by Zhao et al. (2020) was 

tested on the periodic hill test case by Xiao et al. (2020): the results showed that the coefficients 
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𝛼𝑘 remained almost constant through the domain, with small variations induced by the invariants. 

For this reason, in the present work the possibility of using constant coefficients 𝛼𝑘 is investigated. 

The use of constant values for 𝛼𝑘 significantly improves the robustness of the subsequent RANS 

simulation since it avoids the development of non-physical values during transients in predictive 

simulations. The coefficients 𝛼𝑘  are obtained by solving an optimization problem in which the 

goal function is represented by the L2 norm error between the Reynolds stresses computed by the 

nonlinear model applied to the DNS field and the Reynolds stresses obtained from the DNS. 

Furthermore, the goal function is augmented by a penalization term which measures the violation 

of the realizability conditions. As a result, the considered goal function is defined as 

𝑓(α1, α2, α3) = |τ
𝐷𝑁𝑆 − τ𝑅𝐴𝑁𝑆| + η𝑔                                      (5) 

where 

{
 
 
 

 
 
 τ𝑖𝑗

𝐷𝑁𝑆 = −ρ𝑢𝑖
′𝑢𝑗
′

τ𝑖𝑗
𝑅𝐴𝑁𝑆 = 2μ𝑡𝑆𝑖𝑗 −

2
3
ρ𝑘δ𝑖𝑗 − ρ𝑘 ∑ α𝑘𝑉𝑖𝑗

𝑘3
𝑘=1

𝑔 =∑max(𝜆𝑖 , 0)
2

2

𝑖=1

,  λ = eigen value of τ𝑅𝐴𝑁𝑆

 𝜂 =  1000

 

The optimisation problem is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method described by Broyden (1969). The value of the penalization constant 𝜂 can be identified by 

a trial-and-error procedure which aims to make the error term and the penalization term of the 

same order of magnitude. 

Furthermore, a potentially more accurate correction is investigated by assuming that the 

coefficients 𝛼𝑘  are linear functions of the first two invariants. In this case, the optimization 

problem is solved in order to find nine coefficients, 𝛼𝑘
𝑖 , (1 ≤ 𝑘 ≤ 3, 0 ≤ 𝑖 ≤ 2). 

𝑓(α1, α2, α3) = |τ
𝐷𝑁𝑆 − τ𝑅𝐴𝑁𝑆| + η𝑔                                       (6) 

{
 
 
 

 
 
 

α𝑖 = (α𝑖
0, α𝑖

1, α𝑖
2)

τ𝑖𝑗
𝐷𝑁𝑆 = −ρ𝑢𝑖

′𝑢𝑗
′

τ𝑖𝑗
𝑅𝐴𝑁𝑆 = 2μ𝑡𝑆𝑖𝑗 −

2

3
ρ𝑘δ𝑖𝑗 − ρ𝑘∑(α𝑘

0 + α𝑘
1𝐼1 + α𝑘

2𝐼2)𝑉𝑖𝑗
𝑘

3

𝑘=1

𝑔 = ∑ max(𝜆𝑖 , 0)
22

𝑖=1 ,  λ = eigen value of τ𝑅𝐴𝑁𝑆

𝜂 = 1000

 

 

 

6. Characteristic time correction in RANS simulations 
 

The non-linear model obtained by training on the DNS data can then be implemented and 

tested in the RANS solver. Some preliminary tests on the same geometries used for the training of 

the non-linear model showed a significant effect of the non-linear terms on the RANS results: in 

particular, the non-linear terms introduce an excessive correction as will be clarified in Section 8.2 

for the periodic hill test case. This can be explained by the fact that the non-linear correction was 
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trained on the averaged DNS field which cannot be exactly reproduced by the RANS simulation. 

In particular, there is a significant uncertainty on the time scale 𝛿 = 1/𝜔 used to normalize the 

tensor basis. This uncertainty lies in the very definition of the specific dissipation: ω is related to 

turbulence dissipation 𝜖 by means of dimensional analysis. However, dimensional analysis does 

not provide any scale factor. 

For this reason, the turbulence characteristic time obtained by the DNS and the turbulence 

characteristic time estimated from the field in the RANS can be quite different. In order to solve 

this problem, Parneix et al. (1998) proposed to integrate the RANS ω equation up to steady state 

while keeping all the other flow variables frozen to the average values provided by the DNS. The 

resulting field can be used in the training to estimate a turbulence characteristic time which will be 

coherent with the RANS model in which the non-linear terms will be used. In the present work, 

this procedure is avoided and substituted by an alternative approach. In particular, the evaluation 

of the turbulence characteristic time 𝜏 = 1/ω  is improved by introducing a correction factor 

computed through an Artificial Neural Network 𝐾𝐴𝑁𝑁 

τ̃ = τ𝐾𝐴𝑁𝑁(𝑥1, 𝑥2)                                                                  (7) 

where the following inputs are considered 

𝑥1 = min(2, ρ√𝑘𝑑/μ) ,   𝑥2 =
δ𝑣

δ𝑣 + δω + 10
−10

                               (8) 

The first input is the wall distance-based Reynolds number which is limited to two according to 

Wang et al. (2017). The second input represents a measure of the discrepancy between two 

alternative definitions of the characteristic time. Both inputs are defined in a limited range. The 

ANN architecture was chosen after some preliminary investigations: a very small ANN with two 

inputs and one hidden layer with two neurons is considered. The weights and biases of the ANN 

are computed through an optimization problem which requires to introduce the RANS solver in the 

loop. In particular, an optimization problem is defined by considering the following goal function 

𝑓 = ∫ (𝑢𝑅𝐴𝑁𝑆 − 𝑢𝐷𝑁𝑆)
2

𝐶𝑆

𝑑𝑦 + 𝜑𝑌                                                 (9) 

where 𝑢𝑅𝐴𝑁𝑆 and 𝑢𝐷𝑁𝑆 are the velocity profile in some control stations CS in the computational 

domain. The penalization function Y is computed as an integral of the realizability error 𝐸𝑟𝑒𝑎𝑙  on 

the entire domain Ω 

𝑌 = ∫𝐸𝑟𝑒𝑎𝑙𝑑Ω
Ω

                                                                (10) 

𝐸𝑟𝑒𝑎𝑙 =
|τ − τ̃|

ρ𝑏𝑢𝑏
2                                                                         (11) 

where 𝜏 represents the Reynolds stress tensor computed by the RANS model and 𝜏̃ represents its 

limited version which satisfies the realizability conditions. The Frobenius norm is applied to the 

difference between the two tensors and the results is normalized with respect to a reference 

pressure obtained from bulk density 𝜌𝑏 and bulk velocity 𝑢𝑏 (the approach will be applied to a 

channel flow and so the bulk values are chosen). The tensor 𝜏̃ is computed in the following way 

𝜏̃𝑖𝑗 = min(0, τ𝑖𝑗)  if 𝑖 = 𝑗                                                               (12) 
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𝜏̃𝑖𝑗 = {
𝑠𝑖𝑔𝑛(𝜏𝑖𝑗)√𝜏̃𝑖𝑗 𝜏̃𝑖𝑗         𝑖𝑓 𝜏𝑖𝑗

2 > 𝜏̃𝑖𝑖 𝜏̃𝑗𝑗   and 𝑖 ≠ 𝑗

𝜏𝑖𝑗                                 𝑖𝑓 𝜏𝑖𝑗
2 ≤ 𝜏̃𝑖𝑖𝜏̃𝑗𝑗   and 𝑖 ≠ 𝑗

                                 (13) 

The penalization constant  𝜑 is chosen in order to make the error on the velocity profile and the 

penalization function Y of the same order of magnitude. A possible choice is to evaluate these two 

terms on the solution obtained at the beginning of the optimization process and to evaluate the 

constant  𝜑 as the ratio between these two terms 

𝜑0 =
[∫ (𝑢𝑅𝐴𝑁𝑆 − 𝑢𝐷𝑁𝑆)

2
𝐶𝑆

𝑑𝑦]
0

𝑌0
                                            (14) 

The optimization problem is solved by a simple gradient descent approach and the iterations are 

arrested when the gradient magnitude becomes negligible. It is important to remember that 

including the RANS in the optimization loop helps in improving the robustness of the model since 

this approach can put in evidence any numerical instability or stiffness in the non-linear correction. 

Furthermore, the optimization procedure will improve the prediction by including in 𝐾𝐴𝑁𝑁 the 

corrections for different error sources, not just for the turbulence characteristic time. Finally, it is 

important to observe that performing the optimization directly on the coefficients of the ANN 

allows to obtain a data-driven model which can be immediately employed in a RANS simulation 

since the RANS was included in the optimization loop and the obtained correction is defined as a 

function of the chosen flow features: this property is not guaranteed in the field inversion and 

machine learning approach because it could be impossible to describe the correction field provided 

by field inversion as a function of local flow features. The approach used in the present work is in 

line with the strategy proposed by Ferrero et al. (2019) where an optimization was performed on 

the weights of an ANN to identify a correlation for a closure model. 

 

 

7. RANS solver 
 

In the following the results provided by the RANS equations with different closure models will 

be discussed. The governing equations are discretized by means of the finite volume approach 

implemented in a research code for compressible turbulent flows. The flow field considered in this 

work is incompressible (periodic hill test case) or with negligible compressibility (NASA hump 

test case). The incompressible flow is simulated by setting the Mach number to 0.1. This value 

makes the effects of compressibility negligible without the need to introduce preconditioning for 

low Mach number flows. The domain is discretized through a structured mesh obtained by the 

Gmsh opensource tool described by Geuzaine and Remacle (2009). The parallelization is managed 

through the DMPlex class of the PETSc library described in the PETSc User manual (2023) and 

by Balay et al. (1997): the library is available from the PETSc website (2023). The spatial 

discretization is second order accurate and it is limited following the approach of Barth and 

Jespersen (1989). Convective fluxes are computed by means of a hybrid approach proposed by 

Ferrero and D’Ambrosio (2020) which performs a blending between the local Lax-Friedrichs or 

Rusanov flux (1962) and an upwind flux based on an approximate solution of a Riemann problem 

described by Pandolfi (1984). The gradients required to compute diffusive fluxes are obtained by 

means of the weighted least squares approach. The governing equations are integrated in time by 

means of a linearized implicit Euler scheme: the resulting linear system is solved by the GMRES  
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Fig. 1 Computational domain for the baseline geometry 

 

 

algorithm with the Additive-Schwarz preconditioner. 

 

 

8. Flow on a periodic hill 
 

8.1 Preliminary analysis and training on DNS data 
 

The flow over a periodic hill is a reference test case for evaluating the predictive capability of 

RANS models on separated flows. This configuration is characterised by complex flow features 

which include separation on the curved surface, reattachment on the flat surface and an unstable 

shear layer around the main recirculation bubble. Furthermore, high-fidelity results obtained 

through DNS are available for this case. Recently, Xiao et al. (2020) carried out 27 DNS on this 

test case by varying several geometric parameters while keeping the Reynolds number fixed at 

5600. In particular, they varied the geometry by scaling the width of the hill by a coefficient 

𝛼=0.5, 0.8, 1.0 (baseline), 1.2, 1.5 and 3.0 while setting the length of the flat section equal to  𝜉= 

2.142, 5.142 (baseline) or 8.142. This geometry variability allows to observe incipiently separated, 

mildly separated, and vastly separated flow configurations. 

The baseline periodic-hill geometry is represented as piecewise third-order polynomial 

functions. It represents a channel with a curved hill of height h and periodic streamwise boundary 

conditions, as can be seen in Fig. 1. The channel height is 𝐿𝑦=3.035 h and the horizontal length is 

parametrized by 𝛼  as 𝐿𝑥 = (3.858𝛼 + 𝜉)ℎ  . Furthermore, three different height are considered 

𝐿𝑦/ℎ = 2.024, 3.035, 4.048. Non-slip boundary conditions are applied at the walls. The flow in 

the streamwise direction is driven by a uniform body force, which is implemented as a forcing 

term in the x-momentum equation to ensure the specified bulk Reynolds number: 

𝑅𝑒𝑏 =
𝑢𝑏ℎ

ν
= 5600  with   𝑢𝑏 =

1

2.035ℎ
∫ 𝑢1(𝑦)𝑑𝑦
3.035ℎ

ℎ

 

Since the spanwise direction is homogeneous then the mean flow is two-dimensional. The 

database provided by Xiao et al. (2020) includes: 
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Fig. 2 Alignment of anisotropic part of Reynolds stress tensor with the strain rate tensor (𝜃) using DNS data 

of the flow over a periodic hill at Re=5600 from Xiao et al. (2020) 

 

 

• Mean pressure field 

• Mean velocities fields 

• Second order statistics of velocities 

• Mean dissipation rate 

First of all, a RANS simulation with the standard SST model is performed on the baseline 

geometry. The simulation is performed on a structured mesh with 512×256 cells: this mesh 

resolution was chosen after a grid refinement study and it is expected to provide grid converged 

results. The same mesh resolution is adopted for all the simulations reported in this work. The 

steady solution is obtained by means of time-marching with a linearized implicit Euler scheme: the 

CFL number, initially set to 1, is increased up to 1000 during the numerical transient. 

The obtained Reynolds stress tensor is compared to the DNS data by Xiao et al. (2020) in terms 

of the alignment sensor 𝜃, defined by Eq. (2). The results of the comparison are reported in Fig. 2 

which shows the presence of large portions of the domain in which the Boussinesq assumption is 

not valid. 

This preliminary check motivates the introduction of the non-linear correction. The approach 

described in Section 3 is applied to the test case. First of all, a subset of the DNS data provided by 

Xiao et al. (2020) are used to identify the coefficients of the non-linear correction reported in Eq. 

(2). When the penalization term on the realizability conditions is deactivated (e.g., 𝜂=0) the 

following coefficients are obtained 

α1 = −8.484,   α2 = −5.956,   α3 = 0.021                                 (15) 

When the penalization term is active (𝜂=1000) the following coefficients are obtained 

α1 = −5.456,   α2 = −19.999,   α3 = 19.999                                (16) 

In this last case, the optimization problem seems to have several local minimum and, for this 

reason, a genetic algorithm described by Holland (1992) is adopted to minimise the goal function. 

This method provided better quality results than other classic optimization algorithms tested in this 

study (Broyden 1969, PowellPowell 1964, Nelder-MeadNelder and Mead 1965). 

Finally, the non-linear correction with coefficients expressed as linear functions of the 

invariants 𝐼1 and 𝐼2 (see Eq. (6)) is evaluated. Also in this case the use of a genetic algorithm helps 

in avoiding local minima. The following coefficients are obtained 
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(a) Boussinesq assumption 

 
(b) Boussinesq assumption corrected with constant 𝛼𝑘 found without the penalization term 

 
(c) Boussinesq assumption corrected with constant 𝛼𝑘 found with the penalization term 

 
(d) Boussinesq assumption corrected with linear 𝛼𝑘(𝐼1, 𝐼2) found with the penalization term 

Fig. 3 Frobenius norm of the error on the Reynolds stress tensor 
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(a) DNS results 

 
(b) RANS SST results 

Fig. 4 Characteristic time field obtained from DNS and RANS SST simulations on baseline geometry 

 

 

{

α1 = (−6.568,−18.128,−93.892)

α2 = (−34.643,15.834,49.487)

α3 = (53.297,67.308,8.101)
                                              (17) 

The performance of the different models is evaluated by computing the Frobenius norm of the 

difference between the Reynolds stress tensor provided by the DNS and the one computed from 

the RANS. This comparison is reported in Fig. 3: it is possible to observe that, when the non-linear 

correction is active, the average error is reduced with respect to the original SST model described 

in Section 2. However, there is a limited portion of the domain near the exit where the non-linear 

correction introduces an error larger than SST and so the norm-infinite error is larger with the non-

linear correction. This could be related to the fact that the optimization procedure used for finding 

the coefficients of the non-linear correction is driven by the L2 norm of the error and not the L-∞ 

norm. 

 

8.2 Characteristic time correction with RANS in the optimization loop 
 

The characteristic time, computed as the inverse of the specific dissipation rate, is evaluated 

from the DNS data and from a RANS simulation with the original SST model described in Section 

2. The characteristic time field, normalized with respect to bulk velocity and height of the hill, is 

reported in Fig. 4 for DNS and SST. The results show clearly that the two approaches lead to  
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Table 1 Properties of investigated non-linear corrections 

MODEL 𝜏̃/𝜏 𝜂 𝛽 Coefficients 𝛼𝑘 

A 1 0 - Constant (Eq. (15)) 

B 𝑘𝐴𝑁𝑁(𝑥1, 𝑥2) 0 𝛽0 Constant (Eq. (15)) 

C 𝑘𝐴𝑁𝑁(𝑥1, 𝑥2) 1000 𝛽0 Constant (Eq. (15)) 

D 𝑘𝐴𝑁𝑁(𝑥1, 𝑥2) 1000 𝛽0 𝛼𝑘 = 𝛼𝑘
0 + 𝛼𝑘

1𝐼1 + 𝛼𝑘
2𝐼2 

 

 
(a) DNS data 

 
(b) RANS SST results 

 
(c) RANS SST+model D results 

Fig. 5 Axial velocity field 

 

 

significant differences: this is a critical point since the characteristic time is required to normalize 

the strain rate and rotation rate tensors on which the non-linear correction is based. The flow field  
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Table 2 Velocity error on the profiles at x/h=2 and x/h=4 for the different models for baseline geometry 

MODEL 𝜀 at x/h=2 𝜀 at x/h=4 

SST 9.80e-03 2.94e-02 

A 5.43e-03 1.25e-02 

B 2.07e-03 3.19e-03 

C 2.04e-03 2.76e-03 

D 2.52e-03 3.97e-03 

 

 

on the baseline geometry is computed with different models and compared with the DNS results. 

In particular, the non-linear corrections listed in Table 1 are considered. The model A is obtained 

by adding the nonlinear correction with constant coefficients 𝛼𝑘  obtained from the DNS data 

without the penalization for the realizability conditions: it does not include any correction on the 

characteristic time. The model B uses the same 𝛼𝑘 coefficients of model A but the characteristic 

time is corrected by an ANN. The model C is based on constant coefficients 𝛼𝑘  obtained by 

training on the DNS data with a penalization on the violation of realizability conditions: it includes 

an ANN for the correction of the characteristic time. Finally, the model D is based on coefficients 

𝛼𝑘 which are linear functions of the invariants: realizability conditions are taken into account by 

means of penalization both in the DNS training and in the identification of the ANN correction for 

the characteristic time. 

The axial velocity field (normalized with bulk velocity) obtained by the DNS, the original SST 

model and the model D is reported in Fig. 5. It is possible to observe that the original SST model 

tends to overpredict the size of the recirculation region. The turbulent kinetic energy normalized 

with the square of the bulk velocity is reported in Fig. 6 for the same models. A more quantitative 

comparison can be performed by plotting the axial velocity profile in some control sections. In 

particular, the axial velocity profiles at x/h=2 and x/h=4 are reported in Figs. 7 and 8. It is possible 

to observe that the model A, which was trained on the DNS data but does not include the 

correction on the characteristic time, tends to underpredict the velocity profile. 

On the contrary, the models B, C and D, which include the RANS characteristic time 

correction, provide similar results which are in better agreement with respect to the DNS data. The 

Table 2 shows the velocity errors of the different models at x/h=2 and x/h=4.  

The L-2 norm of the velocity error is computed as follows 

ϵ = ∫ (𝑈𝐷𝑁𝑆 − 𝑈𝑚𝑜𝑑𝑒𝑙)
2𝑑𝑦                                                      (18)

𝐶𝑆

 

Finally, a measure of the error on the realizability conditions is reported in Fig. 9. The error is 

computed according to Eq. (11). It is important to observe that the original SST model introduces 

negligible violations on the realizability conditions in this test case: they are localized in a very 

thin layer close to the wall which cannot be observed from the picture. However, if a non-linear 

correction is applied to the Boussinesq assumption without any control on the realizability 

conditions then it is possible to achieve large violations, as shown by the results provided by 

model A. For this reason, it is important to introduce a penalization term on the realizability 

conditions as shown by the results provided by models C and D which are characterised by small 

violations of the realizability conditions but provide a better prediction of the velocity profile with 

respect to the original SST model, as shown in the following. It is interesting to see that the non- 
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(a) DNS data 

 
(b) RANS SST results 

 
(c) RANS SST+model D results 

Fig. 6 Turbulent kinetic energy normalized with the square of the bulk velocity 

 

 

linear model D trained on the DNS and with the characteristic time correction provided by the 

ANN obtains a good performance, predicting a velocity profile which is closer to DNS data with 

respect to the original SST model. 

 

8.3 Predictions on different hill geometries 
 

The neural network used to correct the characteristic time was trained on the baseline 

geometry. In this Section, predictive results on other hill geometries will be reported. As done 

previously, DNS, RANS SST and model D are compared looking to the axial velocity profile at  
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Fig. 7 Axial velocity profile at x/h=2 for baseline geometry 

 

 

Fig. 8 Axial velocity profile at x/h=4 for baseline geometry 

 

 

two control stations, x/h=2 and x/h=4. The first test is performed on the geometry corresponding to 

the value 𝛼=1.5, 𝛽=5.142 and Ly/h=2.024 (this configuration will be denoted in the following as 

Test 1). The velocity profile provided by the different models is reported on Fig. 10 for the control 

section x/h=2 and Fig. 11 for the control section x/h=4. These two Figures show that the model D  
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(a) SST 

 
(b) Model A 

 
(c) Model C 

 
(d) Model D 

Fig. 9 Error on realizability conditions on baseline geometry 
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Table 3 L-2 norm velocity error for SST model and SST+model D on Test 1 geometry 

MODEL 𝜀 at x/h=2 𝜀 at x/h=4 

SST 2.38e-02 8.07e-02 

D 3.97e-02 1.70e-02 

 
Table 4 L-2 norm velocity error for SST model and SST+model D on Test 2 geometry 

MODEL 𝜀 at x/h=2 𝜀 at x/h=4 

SST 2.22e-01 2.98e-01 

D 1.79e-01 1.87e-01 

 

 

Fig. 10 Axial velocity profile at x/h=2 for Test 1 geometry 

 

 

is a clear improvement on the RANS model. In order to perform a more quantitative comparison, 

the Table 3 groups together the errors calculated on this test case. 

The second test (Test 2 in the following) is performed on a geometry corresponding to the 

value 𝛼=1.5, 𝛽=8.142 and Ly/h=3.036. The velocity profile of the three models used on this 

geometry is reported on the Fig. 12 for the control point x/h=2 and the Fig. 13 for the control point 

x/h=4. Both graphs show an improvement when model D is used. However, this improvement is 

less significant than in the baseline geometry and in test 1. The error on the velocity profile is 

reported in Table 4. 

 

 

9. Prediction on NASA hump test case 
 

The original SST model and the model D are tested on the 2D NASA wall-mounted hump 

separated flow validation case described by Greenblatt et al. (2006). This test case was introduced  
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Fig. 11 Axial velocity profile at x/h=4 for Test 1 geometry 

 

 

Fig. 12 Axial velocity profile at x/h=2 for Test 2 geometry 

 

 

to assess the ability of turbulence models to predict 2-D separation from a smooth body and 

subsequent reattachment. The working conditions and geometry are reported on the NASA 

Turbulence Modeling Resource website by Rumsey et al. (2010). The far field Mach number is 0.1 

and the Reynolds number based on the chord of the hump is 936000. The original experimental 

setup included a plenum which was used for flow control. The present work is focused on the case  
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Fig. 13 Axial velocity profile at x/h=4 for Test 2 geometry 

 
Table 5 Prediction of reattachment position in NASA hump test case 

SOURCE Reattachment position (x/c) 

Experiment 1.10 

RANS SST 1.26 

RANS SST+ Model D 1.10 

 

 

Fig. 14 Detail of the Mach number field for the NASA hump case with SST model 

 

 

without flow control and so the plenum is not included in the computational domain. The 

simulations are performed on a structured mesh with 409×109 cells obtained from the NASA 

Turbulence Modeling Resource website. The Mach field obtained with the SST model is reported 

in Fig. 14 which clearly shows the large separation and the reattachment. The Mach field allows to 

perform only a qualitative comparison and it is difficult to evaluate the quality of the prediction 

from this picture. A more objective comparison between SST and SST+model D is performed by 

comparing the wall pressure coefficient provided by these two models with the experimental 

results, as reported in Fig. 15: the results suggest that model D performs better than the original 

SST model. This is confirmed by the prediction of the reattachment position which is reported in  
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Fig. 15 Wall pressure coefficient on the NASA hump case 

 

 

Table 5: the axial position x is normalized with respect to the axial length of the hump c. The 

prediction of the reattachment position, which is identified by a sign change in the wall friction 

coefficient, is significantly improved when the model D is introduced. 

 

 

10. Conclusions 
 

In this work, we studied a method for correcting the Reynolds stress tensor using Pope’s 

approach and DNS data. This new method comprises two stages: (i) data assimilation is used to 

identify a non-linear correction to the Boussinesq assumption, (ii) a neural network is trained to 

correct the characteristic time using RANS simulations to minimize the prediction error. The 

RANS model including the neural network augmented turbulence model and the non-linear 

Reynolds stress correction is then used to perform out-of-sample simulations. The presented 

method underwent validation on multiple geometries of a periodic hill configuration while 

maintaining a constant Reynolds number, in addition to being applied to the NASA hump test 

case. These flow configurations show significant separation phenomena, making them ideal 

benchmarks for assessing the predictive capabilities of the newly developed model for fully 

developed turbulent flows. The results obtained from out-of-sample configurations demonstrate a 

notable enhancement in the velocity profiles of RANS simulations, achieved through the 

implementation of the new correction in comparison to the standard SST model. A crucial aspect 

of our study focused on the integration of realizability conditions during the training process of the 

data-augmented model. Through rigorous testing, we found that overlooking this aspect during 

training could result in significant violations of the realizability conditions during the prediction 

phase. To address this issue, we introduced realizability constraints by means of penalization in 

both steps (i) and (ii) of the proposed procedure. By carefully considering the realizability 
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conditions and incorporating the penalization method, our approach ensures the validity and 

accuracy of the predictions, leading to more reliable and consistent outcomes in RANS 

simulations. Despite these encouraging results, data driven turbulence modeling comes with 

challenges, particularly concerning numerical stability issues. The complex interplay between the 

Reynolds stress corrections and the numerical integration scheme requires careful consideration to 

ensure that the coupling is stable and that the simulation results remain physically meaningful. The 

use of RANS simulations in the optimization loop to identify the correct characteristic time 

mitigate these difficulties. However, our future efforts will be dedicated to exploring techniques to 

address these stability challenges, with the ultimate goal of achieving more reliable and accurate 

predictions in turbulent flow simulations for a wide range of applications. 
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