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Abstract.  The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally 
graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. 
Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The 
temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt’s 
micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the 
equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D 
isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of 
present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis 
purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, 
numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and 
loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, 
thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of 
functionally graded cylindrical shell structure. 
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1. Introduction 
 

Advanced composites are being utilized in various engineering sectors, such as spacecraft, 
energy, automobile, aerospace, etc., due to their high specific strength. It is evident that 
conventional laminated composites cannot survive under unlike environmental conditions and 
mostly experience delamination phenomenon. In this regard, functionally graded materials 
(FGMs) have drawn attention in various engineering sectors due to their customized properties. In 

FGMs, material properties vary gradually in spatial direction, typically in thickness of the panel, 
between metal-rich to ceramic-rich (Birman and Byrd 2007). The gradual variation results in a 
very efficient material tailored to meet the requirement of high-performance 
structures/components operating in extreme conditions. The use of perforated structures in various 
engineering sectors are being predominant due to their lightweight, high heat-dissipation rate and 
other ergonomic/aesthetic design requirements. These types of structural components are mostly 
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utilised in filters, disc brakes, ventilated casings, automobile silencer, embossed floors in ships, 
etc. 

 Therefore, it is vital to examine high-performance structures/components made of FGM with 
perforations under hostile environmental conditions. Due to complexity and expensiveness in 
synthesis and testing, most of the reported researches on this type of material/structure are limited 
to theoretical examinations. The modelling and analysis of functionally graded (FG) structures has 

been continued from last two decades to come up with the new/modified mathematical model and 
solution techniques to overcome the drawbacks of the former studies (Birman and Byrd 2007, 
Liew et al. 2011, Jha et al. 2013, Alijani and Amabili 2014). Many researchers investigated the 
flexural behaviour of FGM plates and shell panels using different equivalent single-layer theories. 

Ma and Wang (2003) analyzed nonlinear bending behavior of FGM circular plates using 
classical von Karman strains and shooting method. Yang and Shen (2003) investigated nonlinear 
bending responses of FGM plates using higher-order shear deformation theory (HSDT) 

kinematics. Zhao et al. (2009) computed deflection and frequency responses of FGM cylindrical 
panel by adopting Ritz method. Santos et al. (2009) investigated the thermoelastic behavior of 
FGM cylindrical shell under thermal shocks using finite element method (FEM). Shen and Wang 
(2010) examined nonlinear bending analysis of FGM plate using HSDT kinematics. Singh and 
Talha (2010) analyzed the dynamic and free vibration characteristics of FGM plate via HSDT 
kinematics. Brischetto and Carrera (2010) investigated bending analysis of FGM structure using 
advanced mixed theories. Mantari (2011) presented deformation characteristics of functionally 
graded plates using HSDT kinematics. Mechab et al. (2012) studied static and dyanamic analysis 

of functionally graded plates using four variable refined plate theory. Thai and Choi (2013) studied 
about bending and vibration analysis of functionally graded plates using first-order shear 
deformation theory (FSDT). Valizadeh et al (2013) analyzed bending, vibration, buckling analysis 
of functionally graded materials using FSDT kinematics. Shen (2014) analyzed nonlinear thermal 
bending of FGM cylindrical panels using HSDT kinematics. Belabed et al. (2014) studied flexural 
behavior of of FGM plates using HSDT and normal theory. Zhang et al. (2015) analyzed nonlinear 
bending analysis of FGM circular plates via HSDT kinematics. Bellifa et al. (2015) analyzed 

nonlinear bending response of FGM circular plates based on physical neutral surface and HSDT. 
Yang et al. (2018) investigated bending analysis of 2D FGM nanobeams. Vu et al. (2017) 
examined bending and free vibration responses of FGM plates using first-order shear deformation 
theory (FSDT) in conjunction with finite element and mess-free methods. She et al. (2018) 
investigated the nonlinear bending of FGM porous tubes using nonlocal strain gradient theory. 
Babei et al. (2019) reported dynamic behavior of long cylindrical FGM panels using HSDT and 
Donnell’s kinematics. Huang et al. (2020) analyzed bending and free vibration analysis of in-plane 

FGM plates using by high-order Chebyshev expansions combining with Gauss-Lobatto sampling. 
Mudhaffar et al. (2021) analyzed thermo mechanical bending behavior of FGM plate using HSDT. 
Bouafia et al. (2021) studied the bending and free vibration behavior of FGM Plates using quasi 
3D-HSDT. Zaitoun et al. (2022) presented the buckling responses of FGM sandwich plate using 
HSDT. Tahir et al. (2021) analyzed wave propagation analysis of porous FGM sandwich plate 
using Hamilton principle. Bakoura et al. (2021) presented buckling analysis of FGM plates 
through HSDT. 

In continuation to the above, very few attempts have been made by the researchers in past to 

analysis FGM structures with single/multiple cutouts. Fazilati and Ovesy (2013) investigated 
dynamic instability of longitudinal stiffened panel with rectangular internal cutouts using finite 
strip method. Yin et al. (2015) adopted simple and effective isogeometric analysis for buckling and 
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free vibration responses of thin laminated composite plates with cut-outs using NURBS basis 
function. Mehrparvar and Ghannadpour (2018) analyzed the nonlinear behavior of FGM plates 
contains rectangular holes via Ritz method. Zhong et al. (2021) studied thermal bending and 
vibration of FGM plates with various cutouts and complex shapes using isogeometric method.  

It is noted from the above literature that most of the earlier works have been carried out on the 
deformation behaviour of FGM panels without intruding perforations. Based on the authors’ 

knowledge, no work has been reported yet on thermoelastic deformation behavior of FGM 
cylindrical panels with single and multiple perforations. Here, the FGM constituents are 
considered to be temperature-dependent and the overall material properties are evaluated using 
Voigt’s homogenisation scheme via power-law function. During the computations, different 
perforated structures with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations are 
considered. Finally, the influence of various geometrical, material and loading parameters on 
deformation behaviour of perforated FGM cylindrical panel are exhibited through numerous 

examples and discussed in later section.  
 
 

2. Overall material properties of FGM  
 
In this analysis, metal/ceramic FGM is assumed in which elastic and thermal properties vary 

from metal-rich bottom surface to ceramic-rich top surface along thickness direction. Here, FGM 
ingredients are assumed to be temperature-dependent (Reddy and Chin 2007), as 

𝜒𝑐,𝑚(𝑇) = 𝜒0(𝜒−1𝑇
−1 +1 + 𝜒1𝑇 + 𝜒2𝑇

2 +𝜒3𝑇
3)                                 (1)                                   

where, T is elevated temperature. 𝜒𝑐,𝑚 represents material properties of metal (m) and ceramic (c). 

𝜒0, 𝜒−1, 𝜒1, 𝜒2, 𝜒3 are the material constants.  
Through-the-thickness gradation of FGM ingredients from bottom to top surfaces are achieved 

by adopting power-law function (Praveen and Reddy 1998), as  

𝜇𝑐 = (
𝑧

ℎ
+
1

2
)
𝑛

𝜇𝑚 = 1 − (
𝑧

ℎ
+
1

2
)
𝑛}
−
ℎ

2
≤ 𝑧 ≤ −

ℎ

2

0 ≤ 𝑛 < ∞
                                          (2) 

where, n denotes power-law index, and h represents panel thickness. The variation of volume 
fraction of ceramic material along the thickness direction for different values of power-law index 
is illustrated in Fig. 1. 

Now, the overall material properties of FGM ( 𝜒𝐹𝐺𝑀 ) can be computed using Voigt’s 
micromechanical material scheme (Gibson et al. 1995), as 

𝜒𝐹𝐺𝑀(𝑇, 𝑧) = (𝜒𝑐(𝑇) − 𝜒𝑚(𝑇))(
𝑧

ℎ
+
1

2
)
𝑛
+𝜒𝑚(𝑇)                                 (3) 

Here, Eq. (3) can be utilised to evaluate Poisson’s ratio (υ), modulus of elasticity (E) and 
coefficient of thermal expansion (α).   
 

2.1 Geometrical description of perforated FGM cylindrical panel  
 

In this study, FGM cylindrical panel of radius of curvature R and uniform thickness ‘h’ are 
considered in rectangular (a×b) planform with single (1×1) and/or multiple (2×2, 3×3 and 4×4)  
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Fig. 1 Variation of volume fraction through the thickness 

 

 

Fig. 2 Representation of FGM cylindrical shell panel with multiple perforations 

 
 

perforations, as shown in Fig. 2 Here, all the cut-outs are rectangular (c×d) and equispaced.  
 

2.2 2D isoparametric finite element modelling  
 

The kinematics of the present model is based on FSDT mid-plane with five degrees-of-
freedom. The global displacements (𝑢̄1, 𝑢̄2, 𝑢̄3) at any point within the perforated FGM cylindrical 
panel are defined as 
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𝑢̄1(𝑥̄, 𝑦̄, 𝑧̄) = 𝑢1(𝑥̄, 𝑦̄) + 𝑧𝜙1(𝑥̄, 𝑦̄)

𝑢̄2(𝑥̄, 𝑦̄, 𝑧̄) = 𝑢2(𝑥̄, 𝑦̄) + 𝑧𝜙2(𝑥̄, 𝑦̄)

𝑢̄3(𝑥̄, 𝑦̄, 𝑧̄) = 𝑢3(𝑥̄, 𝑦̄)
}                                             (4) 

where, (𝑢1, 𝑢2, 𝑢3) and (𝜙1, 𝜙2) are the mid-plane displacement and rotation terms, respectively. 
The strain tensor for the FG cylindrical panel can be written, as                              

{𝜀} =

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦
𝜀𝑥𝑧
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𝑘𝑥𝑥
1

𝑘𝑦𝑦
1

𝑘𝑥𝑦
1

𝑘𝑥𝑧
1

𝑘𝑦𝑧
1
}
 
 

 
 

                                  

(5)
  

Here, strain terms having superscripts 0 and 1 are membrane and flexural strains, res-pectively.   
Eq. (5) can be rewritten in terms of mid-plane strain vector, as 

{𝜀} = [𝐻]{𝜀̄}                                                                      (6)
                                                                                   

Where, [𝐻] contains thickness coordinates.  
The stress-strain relation of the perforated cylindrical FGM panel can be presented as 

𝜎 = 𝐶(𝜀𝑀 − 𝜀𝑇)                                                                    (7)  

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧}
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−
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𝛼Δ𝑇
𝛼Δ𝑇
0
0
0 }
 
 

 
 

)

  
 

(8)                                   

where [C] is the reduced stiffness matrix and Δ𝑇is the uniform temperature rise.   
The governing equation of perforated FGM panel can be derived through principle of virtual 

work as          

              
𝛿𝑊𝜀 = 𝛿𝑊𝑝+Δ𝑇                                                                  (9) 

Here, 𝛿𝑊𝜀 is the total internal virtual work and is expressed as  

𝛿𝑊𝜀 = ∫ (𝛿𝜀
𝑇𝑅𝜀)𝑑Ω

Ω
                                                           (10)  

The external virtual work (𝛿𝑊𝑓 ) due to the transverse uniform load of intensity ‘q’ and 

temperature rise Δ𝑇, can be expressed as 

                     
𝛿𝑊𝑞+Δ𝑇 = ∫{𝛿𝜆𝜊}

𝑇
{𝑞}𝑑𝐴+ ∫{𝛿𝜀̄}

𝑇
[𝐶]{𝜀𝑡ℎ}𝑑𝐴                                    (11) 

Here, eight noded quadrilateral elements are employed for discretization purpose with five 
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degrees of freedom per node. The field displacements are expressed in form of nodal 

displacements using shape functions (𝑁𝑖), as  

                                
𝜆 = ∑ 𝑁𝑖𝜆𝑖

𝑁𝑁𝐸=8
𝑖=1                                                                (12) 

where, 𝜆𝑖 = {𝑢1  𝑢2  𝑢3  𝜙1  𝜙2}𝑖
𝑇

. The shape functions of eight noded quadrilateral element in 

𝜉, 𝜂 coordinates can be seen in Praveen and Reddy (2007). The strain vector can be presented in 
terms of nodal displacement vector as  

   {𝜀̄} = [∂]{𝜆}                                                                  (13) 

where, [∂] is the differential operator matrix.  

The internal virtual work over an element Ω𝑒 using finite element formulation can be written as 

(𝛿𝑊𝜀)𝑒 = ∫
Ω𝑒

{𝛿𝜆𝑖}𝑒
𝑇[𝐵𝑖]

𝑇[𝑆][𝐵𝑖]{𝛿𝜆𝑖}𝑒{𝛿𝜆𝑖}𝑒𝑑Ω𝑒 = {𝛿𝜆𝑖}𝑒
𝑇[𝐾]𝑒{𝜆𝑖}𝑒 

[𝑆] =

[
 
 
 
 
 
 
 
𝐴11𝐴12𝐴16𝐵11𝐵12𝐵1600
𝐴11𝐴22𝐴26𝐵12𝐵22𝐵2600
𝐴16𝐴26𝐴66𝐵16𝐵26𝐵6600
𝐵11𝐵12𝐵16𝐷11𝐷12𝐷1600
𝐵12𝐵12𝐴16𝐷12𝐷22𝐵2600
𝐵16𝐵22𝐴16𝐷16𝐷26𝐵6600
00000000
00000000 ]

 
 
 
 
 
 
 

= [
𝐴𝐵0
𝐵𝐷0
00𝐴𝑆

] 

                (𝐴𝑖𝑗,𝐵𝑖𝑗, 𝐷𝑖𝑗) = ∫ 𝐶𝑖𝑗(1, 𝑧, 𝑧
2)

ℎ

2
−ℎ

2

𝑑𝑧; 𝐴𝑠𝑖𝑗 = 𝑘 ∫ 𝐶𝑖𝑗

ℎ

2
−ℎ

2

𝑑𝑧                               (14) 

Here, A, B, D and As represent the extensional, coupling, bending, and transverse shear 
stiffness, respectively. However, k represents the transverse shear correction coefficient which is 

taken as same as in (Efraim and Eisenberger 2006).                                                         
[𝐾]𝑒 is the element stiffness matrix which is evaluated numerically using full Gauss quadrature 

integration rule, as 

[𝐾]𝑒 = ∫ [𝐵𝑖]
𝑇[𝑆][𝐵𝑖]𝑑Ω𝑒Ω𝑒

= ∫ ∫ [𝐵]
1

−1

1

−1

𝑇
[𝑆][𝐵]𝐽𝑑𝜉𝑑𝑛 = ∑ ∑ (Φ𝑖Φ𝑗𝐽[𝐵]

𝑇[𝑆][𝐵])
𝑔𝑗
𝑗

𝑔𝑖
𝑖     (15) 

where, [𝐵] is the strain-displacement matrix which comprises different operators and shape 

functions.(Φ𝑖 , Φ𝑗),(𝑔𝑖 , 𝑔𝑗) and J are the weigh factors, number of Gauss points and determinant of 

Jacobian matrix, respectively.  

The external virtual work for an elementΩ𝑒due to uniform load (q) and temperature rise Δ𝑇 can 
be expressed, as    

                  (𝛿𝑊𝑞+Δ𝑇)𝑒 =
{𝛿𝜆𝑖}𝑒

𝑇 ({𝐹Δ𝑇}𝑒 + {𝐹𝑞}𝑒)                                   (16) 

Here, {𝐹Δ𝑇}𝑒 and {𝐹𝑞}𝑒 denote the elemental thermal and mechanical load vectors, respectively. 

Finally, the equilibrium equation of perforated FG cylindrical panel subjected to 
thermomechanical loadings can be governed by invoking principle of virtual work, as 

      [𝐾]𝑒{𝜆}𝑒 = {𝐹Δ𝑇}𝑒 + {𝐹𝑞}𝑒                                                 (17) 

Eq. (17) is further utilized for obtaining the system equations and solved via appropriate finite  
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Table 1 Properties of the metal and ceramic of FGM Constituents (Reddy and Chin 2007) 

Materials 
Properties 

Property T-1 𝑇0 𝑇1 𝑇2 𝑇3 

Ti-6Al-4V 

𝐸(𝑃𝑎) 0 1.225×1011 -4.586×10-04 0 0 

𝑣 0 0.28 0 1.121×10-04 0 

𝛼(𝑘−1) 0 7.5788×10-06 6.638×10-04 -3.147×10-06 0 

Si3N4 

𝐸(𝑃𝑎) 0 3.484×1011 -3.07×10-4 2.16×10-7 -8.946×10-11 

𝑣 0 0.24 0 0 0 

𝛼(𝑘−1) 0 5.872×10-6 9.095×10-4 0 0 

 
Table 2 Mess sensitivity of FGM cylindrical panel with single/multiple perforations  

Number of 

elements 
1×1 

Number of 

elements 
2×2 

Number of 

elements 
3×3 

Number of 

elements 
4×4 

17 0.007291 61 0.007265 119 0.007214 232 0.007263 

42 0.00727 84 0.007268 173 0.007276 249 0.007297 

81 0.00727 120 0.007284 198 0.007289 279 0.007314 

171 0.007232 189 0.00731 282 0.007297 403 0.007317 

554 0.007203 423 0.00729 416 0.007291 544 0.007318 

768 0.007217 705 0.007287 833 0.007274 708 0.007321 

1290 0.007198 1147 0.007264 1037 0.007274 1300 0.007301 

1987 0.007193 1894 0.007266 2540 0.007249 1851 0.007299 

 
 

element scheme to compute the desired flexural responses at various load steps.  

 

 

3. Results and discussion 
 
The deformation behaviour of FG cylindrical panels with single (1×1) and multiple (2×2, 3×3, 

4×4) perforations are examined at various parameters to demonstrate the robustness of the 
developed model. In this section, silicon nitride (Si3N4) and titanium alloy (Ti-6Al-4V) are used as 

ceramic and metal materials, respectively and their properties are mentioned in Table 1. To reduce 
cost of computing and time conduct mesh sensitivity study on FEM related design and analysis.it 
helps to produce more reliable result and improve decision making for quality development cycle, 
mess sensitivity details are mentioned in Table 2. 

For computational purpose, the perforated FG cylindrical panel are computed under clamed 

free (CFFF) support condition, as: 𝑢1 = 𝑢2 = 𝑤3 = 𝜙1 =  𝜙2 = 0 at x=0. Also, the non-

dimensional parameters are adopted for maximum deflection (𝑤̄ = 𝑤/ℎ)  and uniformly 

distributed load (𝑝𝑜 = 𝑝/𝐸𝑚ℎ
4) . Firstly, to check the effectiveness of present model, FG 

(Al/ZrO2) cylindrical panels (a/h=20, CFCF and R/a=5) are analysed at different power-law 
indices (n=0, 0.2, 0.5, 1, 2) as in Table 3. Here, the material properties parameters are taken as 

same as in Zhao et al. (2009). It shows the deviation between the present results and the results of 
Zhao et al. (2009) are very nominal, i.e., ≤1.2%. 
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Table 3 Validation of Non-dimensional maximum deflections of CFCF square (Al/ZrO2) cylindrical panel 

Power-law index (n) Present (Zhao et al. 2009) % difference 

0 0.027609 0.02778 -0.6193 

0.2 0.031206 0.0313 -0.3012 

0.5 0.034998 0.03535 -1.0057 

1 0.039097 0.03956 -1.1842 

2 0.043038 0.04333 -0.6784 

 
Table 4 Contour plot of functionally graded cylindrical panels with multiple perforations at different 

temperature 

Temperature 1×1 Perforation 2×2 Perforation 3×3 Perforation 4×4 Perforation 

300K 

    

400K 

    

500K 

    

600K 

    

700K 

    
 

 
Contour plots display the results of a single data set over the model geometry. The range of 

values in the results set is divided into a number of subrange, and each subrange is assigned a  
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Fig. 3 Variation of non-dimensional maximum deflection of perforated FG (Si3N4/ Ti-6Al-4V) 

cylindrical (a/h=20, a/b=1, n=0.5) panels at various temperature 
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Fig. 4 Variation of non-dimensional maximum deflection of perforated FG (Si3N4/ Ti-6Al-4V) 

cylindrical (a/h=20, T=700, n=0.5) panels at various aspect ratios 

 
 

colour shown in Table 4. 
Fig. 3 shows the non-dimensional maximum deflections of moderately thick (b/h=20, CFFF, 

a/b=1, n=0.5, r=5) perforated (1×1, 2×2, 3×3, 4×4) FG cylindrical panels under different 
temperatures. It is observed that the non-dimensional deflections increase with the temperature rise 

from 300 K to 700 K because stiffness of the structure reduces with the temperature rise. In  
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Fig. 5 Variation of non-dimensional maximum deflection of FG (Si3N4/Ti-6Al-4V) cylindrical 

(T=700 K, a/b=1, n=0.5) panel at different thickness ratios 
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Fig. 6 Variation of non-dimensional maximum deflection of FG (Si3N4/Ti-6Al-4V) cylindrical 

(T=700, a/b=1, n=0.5, a/h=20) panel at different curvature ratios 

 
 

addition to this, the maximum deflection responses at 700 K are almost twice of the responses at 

300 K. From temperature rise 300 K to 600 K, FG cylindrical panels with single cutout (1×1) 
exhibit highest deflection values whereas; perforated (4×4) FG cylindrical panel demonstrates the 
highest response value at 700 K. This mix-type of behaviour is observed because the surface area 
of the FG cylindrical panels with single/multiple perforations are kept constant.      
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Fig. 7 Variation of non-dimensional maximum deflection of FG (Si3N4/Ti-6Al-4V) cylindrical 

(a/h=20, T=700 K, a/b=1) panel at different power-law indices. 

 
 
Fig. 4 shows the non-dimensional maximum deflections of moderately thick (b/h=20, CFFF, 

n=.5, r=5, T=700K) perforated (1×1, 2×2, 3×3, 4×4) FG cylindrical panels at different aspect 
ratios (a/b=1, 1.5, 2, 2.5, 3). The non-dimensional deflection responses are reducing rapidly by 

enhancing the aspect ratios from a/b=1 to a/b=1.5, and then gradually upto a/b=3. Also, FG 
cylindrical panel with single cutout (1×1) exhibits the lowest deflection whereas perforated (4×4) 
FG cylindrical panel has highest deflection values. It is also noted that aspect ratio of panel and 
cutout are identical.  

Fig. 5 shows the non-dimensional maximum deflections of (CFFF, a/b=1, n=.5, r=5, T=700K) 
perforated (1×1, 2×2, 3×3, 4×4) FG cylindrical panels at different thickness ratios (b/h=10, 20, 30, 
40). Here, deflection parameters show the non-monotonous behaviour with respect to thickness 
ratios. However, the significance of number of perforations in moderately thick perforated FG 

cylindrical panels are almost nominal. In all the cases, perforated (4×4) FG cylindrical panel 
demonstrates highest deflection response.  

Fig. 6 shows the non-dimensional maximum deflections of moderately thick (b/h=20, CFFF, 
a/b=1, n=.5, T=700K) perforated (1×1, 2×2, 3×3, 4×4) FG cylindrical panels at different curvature 
ratios (r=5,10, 20, 40, 80). It is observed that the deflection responses decrease as increases of   
curvature ratios, whereas, the deflection responses are maximum in perforation (4×4) and 
minimum in (1×1).  

Fig. 7 shows the non-dimensional maximum deflections of moderately thick (b/h=20, CFFF, 
a/b=1, r=5, T=700K) perforated (1×1, 2×2, 3×3, 4×4) FG cylindrical panels at different power-
law indices (n=0.5, 1, 2, 50). It is analysed that the non-dimensional deflection decreases as the 
power-law index increases. In all the consider cases, perforated FG cylindrical panel demonstrates 
very small changes of perforation effect on FGM cylindrical panel.   
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4. Conclusions 
 

The deformation responses of perforated FG cylindrical panel are examined under thermo-
mechanical loading. Here, single and multiple cutouts (1×1, 2×2, 3×3, 4×4) are considered in 
panels without altering the surface area. The material properties of perforated FG panels are 
graded in the thickness direction according to Voigt’s micromechanical material scheme via 

power-law function. The final responses are obtained using the 2D-isoparametric finite element 
approximations via eight-noded quadrilateral elements. The validation and comparison studies 
have been made with the reported literature. The efficiency of the developed model has been 
checked by computing the deflection responses at various sets of parametric combinations. The 
numerical illustrations reveal the significance of the present analysis, as non-monotonous behavior 
of deflection responses are confirmed for perforated (1×1, 2×2, 3×3, 4×4) FG cylindrical panels at 
various sets of conditions. However, in most of the cases, perforated (4×4) FG cylindrical panel 

demonstrates highest deflection.   
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