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Abstract. In this work, the static behavior of FGM macro and nano-plates under thermomechanical loading.
Equilibrium equations are determined by using virtual work principle and local and non-local theory. The novelty of
the current model is using a new displacement field with four variables and a warping function considering the effect
of shear. Through this analysis, the considered sandwich FGM macro and nanoplates are a homogeneous core and P-
FGM faces, homogeneous faces and an E-FGM core and finally P-FGM faces and an E-FGM core. The analytical
solution is obtained by using Navier method. The model is verified with previous published works by other models
and very close results are obtained within maximum 1% deviation. The numerical results are performed to present
the influence of the various parameters such as, geometric ratios, material index as well as the scale parameters are
investigated. The present model can be applicable for sandwich FG plates used in nuclear, aero-space, marine, civil
and mechanical applications.

Keywords: functionally graded material; local and nonlocal theory; nanoplate structure; new plate
displacement field; sandwich structure; static analysis

1. Introduction

Functionally graded materials (FGMSs) are a type of composite materials that have material
properties change continuous with specific function between two surfaces without interruption,
eliminating the phenomenon of stress concentration encountered in composite materials layers.
Due to their lightness, high rigidity and energy absorption capacity, sandwich structures are
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increasingly used in various industries such as automotive, aerospace, civil engineering, and
mechanical structures, aeronautics and nuclear, (Lindstrom and Hallstrom 2010, Dean et al. 2011,
Sekkal et al. 2017a, Hamed et al. 2020, Eltaher and Mohamed 2020, Daikh et al. 2021, Ramteke et
al. 2021a). Currently, sandwich nano/micro scale structures can be used of in various industries,
such as nano-plates and nano-beams in nano-electro-mechanical (NEMS) and micro-electro-
mechanical (MEMS) instruments, (Eltaher et al. 2018, Karamanli et al. 2023)).

It is necessary to understand the response of these nano/microstructures due to the scaling
effect We can find several types of sandwich structures. Often used structures are sandwich
structures with homogeneous core and FGM faces, homogeneous faces and FGM core and finally
FGM faces and FGM core (Librescu and Hause 2000). The gradation of FGM may be described
by power function (P-FGM), exponential function (E-FGM), Sigmoid function (S-FGM), (Hamed
et al. 2016, Eltaher et al. 2022, Attia et al. 2022).

The need to develop mathematical models to predict the response of FGM sandwich plates is
due to the increasing use of FGM sandwich structures as a structural element. Various models
have been developed based on plate theory have been developed to accurately study their bending,
stability, and vibration behaviors. In general, these theories are classified into three categories:
classical plate theory (CPT), first order shear strain theory (FSDT), and Higher Order Shear
Deformation Theory (HSDT). The simplest theory is the classical plate theory (CPT) it is a theory
which is based on the assumptions of Kirchoff (1850), it neglects the effect of the transverse shear
strain, this theory gives precise results for thin plates (Javaheri and Eslami 2002). Reissner (1850)
and Mindlin (1851) developed the First Order Shear Deformation Theory (FSDT) which accounts
for the effect of transverse shear by means of a linear variation of the displacement in the plane
through the thickness (Nuguyen et al. 2008, Zhao et al. 2009, Mantari 2015). This theory gives
sufficiently precise results for thick and moderately thick plates but requires the determination of a
shear correction factor. Many high order plate shear strain theories have been developed for to
avoid the use of the shear correction factor, such as Reddy's third order plate shear strain theory
(TSDT) (Reddy (1997)), the sinusoidal shear strain plate theory (SSDT) (Touratier 1991) and the
exponential shear strain plate theory (ESDT) (Karama et al. 2003).

In recent years, several high order HSDT theories have been proposed to study the response of
structural elements. Three categories of theories are defined as follow: high order theories without
thickness stretch effect and theories with thickness stretch effect, these theories are called quasi 3-
D theories. Reddy and Chen (2001) presented a 3D model for an FG plate subjected to applied
mechanical and thermal loads. The bending behavior of sandwich plates subjected to mechanical
loads using several HSDT theories, Xiang et al. (2009). Boussoula et al. (2020) investigated
thermo mechanical analysis of the bending of sandwich plates made of a functional gradation
material with a P-FGM face sheets and E-FGM and symmetrical S-FGM core using a shear strain
theory of order n. Merdaci et al. (2011), Ameur et al. (2011), Abbas et al. (2020) developed a high
order shear strain theory (HSDT) with four unknowns for FG sandwich plates and FG plates using
the sinusoidal function with hypotheses similar to those of Shimpi (2009). This theory was used by
Tounsi et al. (2013) for the analysis of the thermoelastic bending of sandwich plates and the
bending response of FG plates under thermo mechanical loading Zidi et al. (2014).
Otherresearchers (Ait Yahia et al. 2015, Mahi et al. 2015, Zine et al. 2018) have applied the
refined theory of high order shear strain (HDST) for bending and free vibration analysis of plates
isotropic, functionally graded, sandwich and laminated composites and have obtained precise
results. A simple plate shear strain theory for the analysis of buckling, bending and free vibration
of functionally graduated (FG) plates has been proposed by Bellifa et al. (2016, 2017a). Belabed et
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al. (2018) presented a vibratory analysis of FG sandwich plates using a novel three-unknown
hyperbolic shear strain theory. Chikh et al. (2017) analyzed thermal buckling using a simplified
higher order shear strain theory (HSDT) for cross-ply laminated plates. Malhari et al. (2022)
studied numerically by finite element method, the nonlinear vibration of multidirectional porous
FG panel under thermal environment using HSDT. Effect of grading pattern and porosity on static
bending, eigen characteristics and natural frequencies of porous functionally graded structures are
presented by Ramteke et al. (2019, 2020a, b, 2021b, c). However, the nonlinear mechanical
response of multi-directional functionally graded porous panels are investigated by Ramteke et al.
(2022a-c). Melaibari et al. (2022, 2023) developed mathematical and physical analyses of
middle/neutral surfaces formulations in studing static response of 2D FGM plates with
movable/immovable boundary conditions. Mohamed et al. (2022). Assie et al. (2023) investigated
the static bending analysis of 2D FG plate on the basis of unified higher order shear deformation
plate theories.

The study of the mechanical behavior of plates of different geometries and sizes presents a
great importance in the design.In addition to the theories developed concerning macrostructures,
several investigations have been carried out on the study of behaviors of these nanostructures
resulting from new class materials such as functional grade materials (FGM structures) whose
material properties gradually vary and continuously in each direction. The results of the
experimental simulation on these structures showed a significant effect of the size on the
mechanical properties and consequently on the static and dynamic response of micro and nano
structures.Several non-local theories taking into account the scale effect have been proposed: the
strain gradient theory (Aifantis 1999), the micro-polar theory (Eringen 1967) and the non-local
theory of elasticity (Eringen 1972). The influence of the size is taken into account by the
introduction of the intrinsic scale length in the constitutive relations.Several authors have used the
non-local model to predict the mechanical responses of nanostructures (Zenkour and Abouelregal
2015, Li et al. 2016a, Besseghier et al. 2015, Abdelrahman et al. 2021a, b, ¢, Alazwari et al.
2022a, b, Esen et al. 2021, 20223, b, Hendi et al. 2021). A dynamic and static analysis of macro
and nano FGM plates was presented by Dastjerdi et al. (2017) using an exact three-dimensional
elasticity considering thermal effects. A study of the characteristics of free vibration of FG plates
at the nanoscale using a novel hyperbolic non-local refined plate theory is carried out by
Besseghier et al. (2017).

In this paper, based on the proposednew model of the displacement fieldwith four variables and
a warping function taking into account the effect of shear, the static behavior of FGM macro and
nano-plates under thermomechanical loading using virtual work principle and local and non-local
theory to determine equilibrium equations is presented.

2. Theoretical formulation
2.1 Geometrical configuration

In this study, a rectangular FG sandwich plate has dimensions “a” as length, “b” as width and
“h” as thickness is considered (axbxh). Only “Plate A” has P-FGM face sheets and an E-FGM
core is studied. Its configuration is given in Fig. 1.

The median plane of the FGM sandwich plate is defined by z=0 and its free surfaces are
defined by (the lower surface, ho=—h/2) and (the upper surface, h3=+h/2), the two interfaces
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Fig. 1 Sandwich plate with FGM face sheets and FGM core

between the core and sheet faces (41, 42) vary according to the configuration of the plate as:

- Sandwich plate in FGM (1-0-1): The plate is symmetrical, it consists only of two layers of
FGM of the same thickness. That is, the central isotropic layer in ceramic is absent: 4:1=0, 42=0.

- Sandwich plate in FGM (1-2-1): The plate is symmetrical. The thicknesses of the central layer
equal the sum of two layers (upper and lower): h1=—hl4, ho=+hl4.

- Sandwich plate in FGM (1-1-1): The plate is symmetrical and consists of three layers of same
thicknesses: h1=—h/6, ha=+hl6.

- Sandwich plate in FGM (1-3-1): The plate is symmetrical. The thicknesses of the central layer
equal three times upper or lower layer: 711=—3A/10, h2=+3h/10.

- Sandwich plate in FGM (2-1-2): The plate is symmetrical. The thickness of the central layer is
half of thickness of both upper and lower layer: 71=—h/10, h2=+h/10.

- Sandwich plate in FGM (3-1-3): The plate is symmetrical. The thickness of the central layer is
one-third of thickness of both upper and lower layer: hi=—h/14, ha=+h/14.

In this current investigation, the studied plate is under a thermal load varying through the
thickness and a transverse mechanical load applied at the top surface.

2.2 Materials properties of the FG face sheets

The volume fraction of the FG- faces sheet are assumed varies as following relations (1) and
(2) (Bensaid et al. 2020, Daikh et al. 2020a, b).

Vi(z) = (:1__}1;0)19 for z € [hy, hy] (1)
V3(z) = (:2‘_“;3)’” for z € [hy, hs] 2)

Where V1 and V3 are the volume fractions of the lower and upper layers, p is a material index
of the faces sheets (p = 0). The material properties (Young’s modulus E(™ | v Poisson
coefficient, « ™ thermal expansion) of the two faces (lower and upper layers) at one point can be
determined by the mixture law (Kettaf et al. 2013)

p(n) (Z) = Pm(Ec - Em)V(n) (3)

Where m and c are index represented metal and ceramic respectively.
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2.3 Materials properties of the sandwich core
The volume fraction of the sandwich core (plate A) is given by the relation

V3(z) = (ﬂ)k for z € [hy, h;] “4)

k > 0 is material index for the sandwich core (plate A). The material properties (Young’s

modulus EM™ , v(™ Poisson coefficient, ™ thermal expansion) vary exponentially along the
thickness of the layer and is expressed by the relation (5) Zenkour and Alghamdi (2010)

P@(z) = PmeBV(Z) (5)
WMﬁ=m§

m

3. Kinematics and constitutive equations
3.1 Displacement fields

The displacement field of the higher order shear deformation theory is expressed by

ulx,y,z) =ug(x,y)—z aw‘;—ix'y)+k1f(z)f9dx (6)
v(6,y,2) = vo(x,y) = 2 PR+ k, £(2) [© dy (7)
W(X, }’: Z) =Wy (X:Y) (8)

Where u, v, w, 8 are displacements of the medium fiber of plate and f(z) indicates the function
of the shape determining the distribution of transverse shear deformations and stresses in the
direction of thickness. The function shape f(z) is chosen as Chikh et al. (2017).

f@)=1-¥(2) )
2
Zzsin(z—z)
— 10
lI/(z) 2 sinhG)+coshG) ( )
The strain can be expressed by

2
e(x,y,7) = TUED _ ;TN 4k £(2)0 (1)

2
&y (x,,2) = P9 20 — 7 TN 4k, f(2) (12)

oug(x,y) |, 9vp(x,y) 92w, (x,y)
ny(x; Y, Z) = ( an + Oax ) -2 a;ay

; ; (13)
+ky f(z)afedx +k, f(z)afedy
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Vyz = ka2 g(2) [ Ody (14)

Yxz = k1 g(z)fedx (15)

The integrals used in the above equations must be solved by a Navier type solution and can be
written as follows (Boussoula et al. 2020).

920

d — A 9%e i — ! — A’ 3_9 = R/ 6_6
afedx =A S50y’ axfedy =B 253y Odx =A'-,0dy =B ay# (16)
The coefficients 4" and B’ are formulated according to the Navier method and defined by

' 1 5 1
A =_Z_Z’B =_F,k1=lz,k2=ﬂ2 (17)

3.2 Constitutive equations

The constitutive law takes into account the traverse shear deformation and the thermal effect of
n™ layer: of the FG sandwich plate can be given by relation (18) and (19)

o\t [ci1(2) cip(z) 0 T (e —aTy"
{ Oy } = [c12(2) ¢32(2) 0 {gy - aT} (18)
ny 0 0 666(2) ny
Vyz )" i (Z) 0 n Vyz )"
bt =™ 055(2)] () (19)

Where n=1, 2, 3, and (0, 0y, Oxy, Oxz, 0y, ) are the components of normal and tangential
stresses and (&, &y, Yxy» Yxz» Vyz ) are the strains components.

The stiffness coefficients () are given by the expressions (20) and (21)

E(n)()
C11(n)(Z)=sz(n)(Z)= _ (nZ)Z
1-(vim) (20)
(m
Clz(n) (z) = v® 11 (2)
W (N () = . W) = EME@ 21
c4s ™ (2) = ¢55 ™ (2) = c6s™ (2) = 5703 @b

3.2 Governing equations
The equilibrium equations are determined using the principle of virtual work (Boussoula et al.
2020). The total potential energy for FG plates U can be expressed by

U =2, [0 (ex = a)® + 0, (g, = a1)™

(22)
+0yy (n) Yy () 4 Oyz (n)yyz ™ +g,.,My., (n)]dV

The principle of virtual work can be rewritten as follows
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NyxG25° + Nyy 8y, 0 + Ny 86,00 +
My *Ske” + Moy " Sk” + M, P Sk, P +
b
My, "Skyy” + Myy Sk + My, Sk, ° +
Mxy s5kxys + Qyzs6yyzs + szsayxzs

With
hn
(Nij;Mbij, Msij) =¥3_, fhn—l(l’ z, f(Z))Gij(“)dz
hn
Q°,, QSyZ) =Yoot fhn_l 2(z) (0xg Gyz)(n)dz

Where M, N and Q are the resultants of constraints, /4. and /.1 are the top and bottom
coordinates of n layers. The governing equations are obtained by integrating Eqs. (23) and (24) by
parts

(24)

ONyy , ONxy

Sug: o +7 =0,
vy m{;’% ag;y 0,
2
Swy: azgf;x" + 626”;2” + a;xa;y +q= )
80: —lesM® = KoMy, = (el + kB ZI02 ey 4 2052 4 by 252 =

4. Nonlocal elasticity theory

In the nonlocal elasticity theory, the stress field at any point of continua body depends on the
strain field at all neighboring points (Eringen 1967). For the case where the thermal effect is taken
into account, the constitutive law in nonlocal elasticity is expressed by the following expression
(Eringen 1972)

[1 - (eol0)*P{oi}™ =[] fery = aP@T® ()} (26)
Where V2 the Laplacian operator which is defined by: V2= %ﬂL;—; , a is the coefficient of

thermal expansion, and (eyl,)? is the scale parameter.
The stress resultants can be written in contracted as follows

{N — (eolp)*V*N} {4y} By} {6} (e {NT}
(M" = (eolo)*V?M"} o = |{By;} {Dij} {Fy}|§{kP}(— (M7 27)
{MS - (eOIO)ZVZMS} {CLJ} {FU} {HU} {ks} {MST}
{Qyz - (eOIO)ZVZQyZ}} _ j44 0 y}’Z
{{sz - (eOIO)ZVZsz} B [ 0 jSS] {yxz} (28)

Where A;j,B;,C;;, Fij and H;; are the stiffness and are defined as follows by relation (29) and
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(30)
{44, Bij, Dij, Gy, Fip Hig} = T oy 6710, 2,2%, £ (2),2f (2), £2(2)} dz (29)
With: (i,j=1,2,6)
= Tima fon P lg(2))? dz, (i = 45) (30)
The stress and moment resultants {N7}, {M?T} and {M*T} to loading thermal are defined as
follows
{NT}={N{ NJ 0}
{MPT} = {MET  MET 0} (31)
MsTy={MiT M7 0}
The resultants of stresses and thermal loading moments are defined by the relation (32)

NI (c11 + c10)aT)™
{5 R ST s 2

MmRr (c11 + cip)aT ™
2
{MbT} Zn= 1fhn_1 {(Clz + sz)aT} zdz (326)

MST ) ) m
{MST} Y1 fhn—l{gé I 2232;} f(z)dz (32¢)

The variation of the loading mechanical loading according to the thickness of the FGM
sandwich is given by expression

q(x,y) = qo sin(Ax) sin(uy) (33)

T(x,y,2) = T,(6y) + 2T, (6 y) + L2 T3 (x, y) (34)

Where qq is the mechanical loading intensity, T;, T, and T; are linear and nonlinear thermal
loading according to the thickness of the plate.

5. Analytical solution for FGM plates

In this study, we present a simply supported plate of which the boundary conditions at the four
edges are defined as follows:

At x=0,aN, =M? =M =v,=wy=6=0

At y=0,bNy =M} =My =uy=wy=60=0

From Navier’s solution, one can solve the problem of the thermo mechanical behavior of the
sandwich plate in FGM. The displacement for the plate is written as follows (Daikh and Zenkour
2020)
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Uy = Uy cos(Ax) sin(uy)
Vo = Vi sin (Ax) cos(uy)

wo = Wiy sin(Ax) sin(uy)
0 = Oy, sin(Ax) sin(uy)

(35)

Where U, Vi, Winn et ©,,y, are arbitrary parameters represent each of the terms in the serie
for Navier solution determined under the condition that the solution of equation (35). The thermal
loading is presented in trigonometric form

T; = t; sin(Ax) sin(uy) (36)
i=123
Where t;,t,t5 are constants. A = g S U= %
We obtain the operator

|KI{A} = {P} (37)
Where {A} = {U,V,W,0}" and |K| is a symmetric matrix with
Kiy = A1 A + Agelt® K1z = Apu(Arz + Age),
K1z = Au(A12 + Age),
Ki3 = —A[B11A* + (B2 + 2Bge) 1],
K14 = A[ky A" C11 A% + (ko B'Cip + (kg A’ + k3 B) Cog) ],
Kzz = Ageh* + Apa?,
Ka3 = —u[Byop® + (Byz + 2Bge) %), (38)
Ko4 = pulk,B' Copp® + (k1 A'Cip + (kA" + kaB')Co6) A%,
K33 = D11A* + 2(Dyp + 2Dge)A*u? + Dypu*
K34 = =k A'Fy A% — [(k A" + kyB))Fy + 2(k A" + ky B ) Fgg|A2u? — k,B'Fypu
Kug = —ki*A"*Hi12* + [(kyA'k,B')Hp + (k1A' + kyB')?Hegl A2u% + ky*B'? Hopu +
ky? A% J55A% + Ky’ B'?Jyqut?
The components of the generalized loading {P} = {P;, P,, P3, P,}" are given as follows
P, =—A(ATt; + BTt, + CTty)
P, = —u(ATt, + BTt, + CTt3)

Py = (1 + A*(eplo)? + u?(eolo))qmn + h(A2+p*)((B"ty + DTt, + F't3) e
P,=hA?+pu®)((CTt; + FTt, + GTt3)
Where
{AT,BT,CT} = Z%:lf:n_l E(n)(z)2 (1 + V(n))a(n){l' 7,72} dz (40)
n=l1-(v()
(€T, FT,GT} = ¥3_, f::_l%@ +v®)a®F(2){1,2, f(2)} dz 1)
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Table 1 Properties of the material

Properties MetalTi-6A1-4V Ceramic ZrO2
Young’s modulus E; (GPa) 66.2 117.0
Poisson coefficient v; 0.33 0.33
Thermal expansion « (10°%/K) 10.3 7.11

the =2 f(g) =L@
Wlth.z—h f(2) = -

6. Results and discussion

The numerical outcomes are given in terms dimensionless deflection, normal and tangential
stresses. The dimensionless parameters are defined as follows

W= 103 w (a b)
- qmna4/ +10%agtza?, 272 (42)
(Eoh®) h
5 = 10 o (a b Z)
x = a? 10Egagt,a? xi\33’ 43
Amn /h2+ 0Qol2 /h2 2°2 (43)
_ 1 0.2
Txz = Gmna +10E0a0t2a/ Tz \Ur502 (44)
h (10h)

With E, = 1 GPa,ay, = 107¢/K
The material properties used in this study are shown in Table 1.

6.1 Local approach

In this first part, numerical results for local approach are presented to investigate thermo
mechanical flexural response of simply supported FGM sandwich plate (Type A) using the
proposal theory with four variables and a warping function taking into account the effect of shear.
The results are examined and compared with those obtained by Zenkour and Alghamdi (2010)
using the First Shear Deformation Theory, Li ef al. (2017) using the refined plate theory and the
theory developed by Boussoula et al. (2020).

In first time, bending analysis of FGM sandwich plate with face sheets and homogenous core
k=0 under thermomechanical loads is studied by considering varying different parameters such
power index p, different layer thickness ratios, geometry ratios and variation of the dimensionless
deflection.

Table 2 presents the values of the dimensionless deflection (w) of simply supported thick
square sandwich plate (a/h=10, Type A) with FGM face sheets and homogeneous core under
thermo-mechanical load for several values of material index (p) and different layer thickness ratios
(1-0-1, 3-1-3, 2-1-2 and 1-1-1) for various values of power index p (0,1,2,3,4,5). The results
obtained are in good agreement with those obtained by Zenkour and Alghamdi (2010) , Li et al.
(2017), Boussoula et al. (2020). For p=0, when the plate is entirely ceramic, the values of the
dimensionless deflection are the same for all the layer thickness ratios.
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Table 2 Variation of the dimensionless deflection (w) square sandwich plate (a/h=10, Type A) with FGM
face sheets and homogeneous core (k=0) under thermo-mechanical load for several values of power index
and various values of layer thickness ratios

_/ab
p Theory W (E'E)
1-0-1 3-1-3 2-1-2 1-1-1

(Zenkour and Alghamdi (2010) 0.895735 0.895735  0.895735 0.895735
0 (Li et al. 2017) 0.864140 0.864140  0.864140 0.864140
nth order SDT (Boussoula et al. 2020)  0.864140 0.864140  0.864140 0.864140
Present 0.865438 0.865438  0.865438 0.865438
FSDT (Zenkour and Alghamdi 2010) 1.190728 1.170533 1.160568 1.132449
1 RPT (Li et al. 2017) 1.149038 1.130125  1.120741 1.094113
nthorder SDT (Boussoula et al. 2020) 1.149038 1.130125 1.120741 1.094113
Present 1.151643 1.132899  1.123595 1.097162
FSDT (Zenkour and Alghamdi 2010) 1.257304 1.238234  1.227765 1.195703
5 RPT (Li et al. 2017) 1.210756 1.193444  1.183826 1.154061
nth order SDT (Boussoula et al. 2020)  1.210756 1.193444  1.183826 1.154061
Present 1.213078 1.196018  1.186589 1.157163
FSDT (Zenkour and Alghamdi 2010) 1.280741 1.264724  1.255041 1.223232
3 RPT (Li et al. 2017) 1.231675 1.217447  1.208690 1.179518
nth order SDT (Boussoula et al. 2020)  1.231675 1.217447  1.208690 1.179518
Present 1.233787 1.219801  1.211193 1.182506
FSDT (Zenkour and Alghamdi 2010) 1.290961 1.277527 1.268689 1.237931
4 RPT (Li et al. 2017) 1.240542 1.228791  1.220879 1.192880
nth order SDT (Boussoula et al. 2020)  1.240542 1.228791 1.220879 1.192880
Present 1.242584  1.230959 1222890 1.195172
FSDT (Zenkour and Alghamdi 2010) 1.296101 1.284626  1.276497 1.246833
5 RPT (Li et al. 2017) 1.244905 1.234980  1.227750 1.200876
nth order SDT (Boussoula et al. 2020)  1.244905 1.234980 1.227750 1.200876
Present 1.247118 1.239013  1.229562 1.243555

Table 3 shows the influence of the dimension ratio (a/b) on the variation of the dimensionless
deflection of a square sandwich plate (type A) with two upper and lower faces in FGM and a
homogeneous core (k=0) subjected to a thermo mechanical load (a/h=10, p=3) for different layer
thickness ratios. It can be noted that the deflection central (w) decreases with increasing aspect
ratio/a b and the lowest values lowest non-dimensional deformation are obtained for the thickness
ratio layer (1-1-1). For the same thickness ratio, when p increases the stress decreases, this can be
explained by the fact that the plate becomes flexible.

Table 4 present the variation of dimensionless normal stress as a function of the power index p
and different layer thickness ratios for a square sandwich plate (type A) with two upper and lower
faces in FGM and a homogeneous core (k=0) subjected to a thermomechanical load (a/h=10).
When the thickness of the core increases the normal stress increases. The lowest values of normal
stress are obtained for the FGM plate (1-0-1). When p=0, the layer thickness ratio has no effect on
the dimensionless normal stress because the plate is entirely ceramic.

In this section, an analysis dimensionless deflection of sandwich plate with two faces in FGM
(p=0) and an homogeneous core subjected to loads thermomechanical is considered. The variation
of the dimensionless deflection as a function of the power index k and different layer thickness
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Table 3 Influence of the dimension ratio (a/b) on the variation of the dimensionless deflection of a square
sandwich plate (type A) with two upper and lower faces in FGM and a homogeneous core (k=0) subjected to
a thermomechanical load (a/h=10, p=3) for different layer thickness ratios

_/ab
Scheme Theory v (5’5)

a/b=1 a/b=2 a/b=3 a/lb=4 a/b=5

FSDT (Zenkour and Alghamdi 2010) 1.280741 0.503607 0.250355 0.146917 0.095948
RPT (Li et al. 2017) 1.231675 0.492573 0.246212 0.144771 0.094608

nth order SDT (Boussoula et al. 2020) 1.231675 0.492573 0.246212 0.144771 0.094608
Present 1.233787 0.493208 0.246357 0.144715 0.094455

FSDT (Zenkour and Alghamdi 2010) 1.264724 0.497383 0.247274 0.145112 0.094770
RPT (Li et al. 2017) 1.217447 0.486952 0.243459 0.143199 0.093619

nth order SDT (Boussoula et al. 2020) 1.217447 0.486952 0.243459 0.143199 0.093619
Present 1.219801 0.487849 0.243873 0.143415 0.093735

FSDT (Zenkour and Alghamdi 2010) 1.255041 0.493613 0.245406 0.144017 0.094055
RPT (Li et al. 2017) 1.208690 0.483486 0.241757 0.142222 0.093002

nth order SDT (Boussoula et al. 2020) 1.208690 0.483486 0.241757 0.142222 0.093002
Present 1.211193 0.484548 0.242341 0.142605 0.093288

FSDT (Zenkour and Alghamdi 2010) 1.223232 0.481212 0.239259 0.140414 0.091704
RPT (Li et al. 2017) 1.179518 0.471920 0.236060 0.138942 0.090916

nth order SDT (Boussoula et al. 2020) 1.179518 0.471920 0.236060 0.138942 0.090916
Present 1.182506 0.473497 0.237168 0.139843 0.091714

1-0-1

3-1-3

2-1-2

1-1-1

Table 4 Variation of the dimensionless normal stress as a function of the power index p and different layer
thickness ratios for a square sandwich plate Type A with two upper and lower faces in FGM and a
homogeneous core (k=0) (a/h=10)

& (Y. 075,

p Theory
1-0-1 3-1-3 2-1-2 1-1-1

FSDT (Zenkour and Alghamdi 2010) -3.597007 -3.597007  -3.597007  -3.597007
0 RPT (Li et al. 2017) -2.911440  -2.911440  -2.911440  -2.911440
nth order SDT (Boussoula et al. 2020)  -2.911440  -2.911440 -2.911440  -2.911440
Present -2.925320  -2.925320  -2.925320  -2.925320
FSDT (Zenkour and Alghamdi 2010) -3.471099  -3.569762  -3.618476 -3.756017
1 RPT (Li et al. 2017) -2.892290  -2.985255  -3.031378  -3.162208
nth order SDT (Boussoula et al. 2020)  -2.892290  -2.985255  -3.031378  -3.162208
Present -2.904108  -2.997086  -3.043215  -3.174085
FSDT (Zenkour and Alghamdi 2010) -3.145662  -3.238636  -3.289757  -3.446485
5 RPT (Li et al. 2017) -2.589234  -2.674492  -2.721838  -2.868271
nth order SDT (Boussoula et al. 2020)  -2.589234  -2.674492  -2.721838  -2.868271
Present -2.600772  -2.685990  -2.733307  -2.879662
FSDT (Zenkour and Alghamdi 2010) -3.031284 -3.109180 -3.156414 -3.311823
3 RPT (Li et al. 2017) -2.486287  -2.556476  -2.599635 « -2.743281
nth order SDT (Boussoula et al. 2020) -2.486287 -2.556476 -2.599635 -2.743281
Present -2497773  -2.567929  -2.611036  -2.754493
FSDT (Zenkour and Alghamdi 2010) -2.981507  -3.046666  -3.089733  -3.239941
4 RPT (Li et al. 2017) -2.442566  -2.500626  -2.539661  -2.677611

nth order SDT (Boussoula et al. 2020) -2.442566 -2.500626 -2.539661 -2.677611
Present -2.454111  -2512531  -2.551052  -2.691585
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Table 4 Continued
FSDT (Zenkour and Alghamdi 2010) -2.956534  -3.012040 -3.051612 -3.196423

5 RPT (Li et al. 2017) -2.421017  -2.470126 -2.505817 -2.638388
nth order SDT (Boussoula et al. 2020)  -2.421017  -2.470126 -2.505817 -2.638388
Present -2.431299  -2.470615 -2.515466 -2.707588

Table 5 Variation of the dimensionless deflection as a function of the power index k and different layer
thickness ratios of square plate sandwich (type A) with two homogeneous upper and lower faces (p=0) and
an FGM core (a/h=10)

_/ab
k Theory v (2 ’ 2)
2-1-2 1-1-1 1-2-1 1-3-1

FSDT (Zenkour and Alghamdi 2010)  0.960453 0.960453 0.960453 0.960453
0 RPT (Li et al. 2017) 0.864140 0.864140 0.864140 0.864140
nth order SDT (Boussoula et al. 2020)  0.864140 0.864140 0.864140 0.864140
Present 0.865438 0.865438 0.865438 0.865438
FSDT (Zenkour and Alghamdi 2010)  0.961067 0.963305 0.970187 0.977474
1 RPT (Li et al. 2017) 0.864623 0.866466 0.872221 0.878396
nth order SDT (Boussoula et al. 2020)  0.864623 0.866466 0.872221 0.878396
Present 0.865937 0.867767 0.887704 0.879592
FSDT (Zenkour and Alghamdi 2010) 0.961375 0.964745 0.975191 0.986392
5 RPT (Li et al. 2017) 0.864867 0.867635 0.876353 0.885834
nth order SDT (Boussoula et al. 2020)  0.864867 0.867635 0.876353 0.885834
Present 0.866185 0.868934 0.877579 0.886997
FSDT (Zenkour and Alghamdi 2010)  0.961565 0.965637 0.978325 0.992040
3 RPT (Li et al. 2017) 0.865018 0.868359 0.878938 0.890547
nth order SDT (Boussoula et al. 2020)  0.865018 0.868359 0.878938 0.890547
Present 0.866337 0.869655 0.8801530 1.182506
FSDT (Zenkour and Alghamdi 2010)  0.961696 0.966250 0.980491 0.995971
4 RPT (Li et al. 2017) 0.865121 0.868855 0.880725 0.893831
nth order SDT (Boussoula et al. 2020)  0.865121 0.868855 0.880725 0.893831
Present 0.866441 0.870149 0.881931 1.195172
FSDT (Zenkour and Alghamdi 2010)  0.961791 0.966697 0.982082 0.998875
5 RPT (Li et al. 2017) 0.865197 0.869218 0.882038 0.896261
nth order SDT (Boussoula et al. 2020)  0.865197 0. 869218 0.882038 0.896261
Present 0.866517 1.239013 0.883238 1.243555

ratios of square plate sandwich (type A) with two homogeneous upper and lower faces (p=0) and
an FGM core subjected to a thermomechanical load (a/4=10) is show in Table 5.

The dimensionless deflection increases very little with the material index k increases. Table 6
present the effect of the dimension ratio (a/b) on dimensionless of square plate square sandwich
(type A) with two homogeneous upper and lower faces (p=0) and an FGM core subjected to a
thermomechanical load (a/4=10, k=1) and for various layer thickness ratios.

It can be seen that the dimensionless arrow W decreases when the ratio a/b increases. The
greatest central deflection is observed for a thickness ratio (1-3-1).

Table 7 present the variation of dimensionless normal stress as a function of the power index &
and different layer thickness ratios of square plate square sandwich (type A) with two
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Table 6 Effect of the dimension ratio (a/b) on dimensionless of square plate square sandwich (type A) with
two homogeneous upper and lower faces (p=0) and an FGM core subjected to a thermomechanical load
(a/h=10, k=1) and for various layer thickness ratios

_q/ab

Scheme Theory w (E’E)
a/b=1 a/b=2 a/b=3 alb=4 a/b=5
FSDPT (Li et al. 2017) 0.970187 0.388069 0.194034 0.114137 0.074628
1-9-1 RPT (Li et al. 2017) 0.872221 0.348604 0.174070 0.102204 0.066667
nth order SDT (Boussoula et al. 2020) 0.872221 0.348604 0.174070 0.102204 0.066667
Present 0.887704 0.348788 0.173920 0.101906 0.066299
FSDPT (Li et al. 2017) 0.977474 0.390984 0.195491 0.114994 0.075189
1-3-1 RPT (Li et al. 2017) 0.878396 0.351016 0.175228 0.102846 0.067055
nth order SDT (Boussoula et al. 2020) 0.878396 0.351016 0.175228 0.102846 0.067055
Present 0.879592 0.375095 0.186988 0.094628 0.065457
FSDPT (Li et al. 2017) 0.961067 0.384421 0.192210 0.113064 0.073927
9.1-2 RPT (Li et al. 2017) 0.864623 0.345661 0.172678 0.101451 0.066229
nth order SDT (Boussoula et al. 2020) 0.864623 0.345661 0.172678 0.101451 0.066229
Present 0.865937 0.345927 0.172596 0.101229 0.060922
FSDPT (Li et al. 2017) 0.963305 0.385316 0.192657 0.113328 0.074099
1-1-1 RPT (Li et al. 2017) 0.866466 0.346369 0.173008 0.101625 0.066327
nth order SDT (Boussoula et al. 2020) 0.866466 0.346369 0.173008 0.101625 0.066327
Present 0.867767 0.346652 0.172908 0.101395 0.066020

Table 7 Variation of dimensionless normal stress as a function of the power index k and different layer
thickness ratios of square plate square sandwich (type A) with two homogeneous upper and lower faces
(p=0) and an FGM core subjected to a thermomechanical load (a/h=10)

U_x(a/z'b/z'h/z)

k Theory
2-1-2 1-1-1 1-2-1 1-3-1

FSDPT (Li et al. 2017) -4.158732 -4.158732 -4.158732 -4.158732
0 RPT (Li et al. 2017) -2.911440 -2.911440 -2.911440 -2.911440
nth order SDT (Boussoula et al. 2020)  -2.911440 -2.911440 -2.911440 -2.911440
Present -2.925320 -2.925320 -2.925320 -2.925320
FSDPT (Li et al. 2017) -4.153417 -4.134036 -4.074434 -4.011326
1 RPT (Li et al. 2017) -2.907015 -2.890699 -2.840040 -2.785860
nth order SDT (Boussoula et al. 2020)  -2.907015 -2.890699 -2.840040 -2.785860
Present -2.920859 -2.904513 -2.853791 -2.799543
FSDPT (Li et al. 2017) -4.150749 -4.121567 -4.031095 -3.934090
9 RPT (Li et al. 2017) -2.904809 -2.880305 -2.803535 -2.720298
nth order SDT (Boussoula et al. 2020)  -2.904809 -2.880305 -2.803535 -2.720298
Present -2.918640 -2.894090 -2.817206 -2.733844
FSDPT (Li et al. 2017) -4.149101 -4.113838 -4.003951 -3.885176
3 RPT (Li et al. 2017) -2.903451 -2.873883 -2.780706 -2.678783
nth order SDT (Boussoula et al. 2020)  -2.903451 -2.873883 -2.780706  -2.678783
Present -2.917275 -2.887650 -2.794326 -2.754493
FSDPT (Li et al. 2017) -4.147973 -4.108535 -3.985199 -3.851130
4 RPT (Li et al. 2017) -2.902523 -2.869484 -2.764940 -2.649867

nth order SDT (Boussoula et al. 2020)  -2. 902523  -2.869484  -2.764940  -2. 649867
Present -2.916343 -2.883240 -2.778524 -2.663260
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Table 7 Continued

FSDPT (Li et al. 2017) -4.147150 -4.104658 -3.971420  -3.825981

5 RPT (Li et al. 2017) -2.901847 -2.866270 -2.753353 -2.628487
nth order SDT (Boussoula et al. 2020)  -2. 901847 -2.866270  -2. 753353 -2. 628487
Present -2.915664 -2.470615 -2.766911 -2.707588

Table 8 Variation of dimensionless deflection (w) as a function of the power index p and different layer
thickness ratios of square sandwich plate (Type A) with P-FGM face sheets and E-FGM core under
thermomechanical load (e/h=10)

_q/ab
p Theory v (E’ E)
2-1-2 1-1-1 1-2-1 1-3-1

FSDPT (Li et al. 2017) 0.961067 0.963305 0.970187 0.977474
0 RPT (Li et al. 2017) 0.864623 0.866466 0.872221 0.878396
nth order SDT (Boussoula et al. 2020)  0.864623 0.866466 0.872221 0.878396
Present 0.865937 0.867767 0.887704 0.879592
FSDPT (Li et al. 2017) 1.242779 1.217361 1.180779 1.156699
1 RPT (Li et al. 2017) 1.121862 1.098934 1.065520 1.043229
nth order SDT (Boussoula et al. 2020)  1.121862 1.098934 1.065520 1.043229
Present 1.124665 1.101817 1.068333 1.045871
FSDPT (Li et al. 2017) 1.313230 1.284594 1.238612 1.206011
5 RPT (Li et al. 2017) 1.185157 1.159800 1.118459 1.088746
nth order SDT (Boussoula et al. 2020) 1. 185157 1.159800 1.118459 1.088746
Present 1.187823 1.162717 1.121529 1.091729
FSDPT (Li et al. 2017) 1.341711 1.313791 1.265222 1.229142
3 RPT (Li et al. 2017) 1.210108 1.185685 1.142459 1.109859
nth order SDT (Boussoula et al. 2020)  1.210108 1185685 1.142459 1.109859
Present 1.212578 1.188498 1.145555 1.112718
FSDPT (Li et al. 2017) 1.355934 1.329367 1.289699 1.229142
4 RPT (Li et al. 2017) 1.222339 1.199282 1.155813 1.121864
nth order SDT (Boussoula et al. 2020) 1. 222339 1.199282 1.155813 1.121864
Present 1.224687 1.201852 1.153601 1.130099
FSDPT (Li et al. 2017) 1.364062 1.338795 1.289699 1.250973
5 RPT (Li et al. 2017) 1.229235 1.207420 1.164203 1.129545
nth order SDT (Boussoula et al. 2020) 1. 229235 1.207420 1.164203 1.129545
Present 1.230514 1.197773 1.296510 1.034460

homogeneous upper and lower faces (p=0) and an FGM core subjected to a thermo- mechanical
load (a/h=10). The stress decreases with the value of index & increase. The results obtained are
close to those obtained by Boussoula et al. (2020), Li ef al. (2017). On the other hand, the values
obtained by the FSDT (Zenkour and Alghamdi 2010) are very high.

In the three parts, an analysis bending of sandwich plate with two faces in FGM and core in
FGM (k=0) subjected to loads thermo mechanical is considered.

Table 8 shows the variation of dimensionless deflection (w) as a function of the power index
pand different layer thickness ratios of square sandwich plate (Type A) with P-FGM face sheets
and E-FGM core under thermo mechanical load (a/A=10). The variation of dimensionless
deflection increases with the material index p. The high values are obtained for thicknessratio layer
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Table 9 Effect of aspect ratio (a/b) on dimensionless deflection (w) of sandwich plate (Type A) with PFGM
face sheets and E-FGM core under thermomechanical load (2/h=10, p=3, k=1)

_q/ab
Scheme Theory v (E'E)
a/b=1 a/b=2 a/b=3 a/b=4 a/b=5
FSDPT (Li et al. 2017) 1.341711 0.536675 0.268336 0.157844 0.103206
9-1-2 RPT (Li et al. 2017) 1.210108 0.484045 0.242031 0.142378 0.093100
nth order SDT (Boussoula et al. 2020) 1.210108 0.484045 0.242031 0.142378 0.093100
Present 1.212578 0.485069 0.242572 0.142721 0.093344
FSDPT (Li et al. 2017) 1.313791 0.525507 0.262752 0.154560 0.101058
1-1-1 RPT (Li et al. 2017) 1.185685 0.474370 0.237271 0.139642 0.091364
nth order SDT (Boussoula et al. 2020) 1.185685 0.474370 0.237271 0.139642 0.091364
Present 1.187823 0.475758 0.238183 0.140355 0.091976
FSDPT (Li et al. 2017) 1.265222 0.506080 0.253039 0.148846 0.097322
1-2-1 RPT (Li et al. 2017) 1.142459 0.457190 0.228773 0.134719 0.088208
nth order SDT (Boussoula et al. 2020) 1. 142459 0.457190 0.228773 0.134719 0.088208
Present 1.145555 0.458908 0.230029 0.135780 0.089167
FSDPT (Li et al. 2017) 1.229142 0.491649 0.245823 0.144601 0.094547
131 RPT (Li et al. 2017) 1.109859 0.444182 0.222295 0.130929 0.085748
nth order SDT (Boussoula et al. 2020) 1.109859 0. 444182 0.222295 0.130929 0.085748
Present 1112718 0.445877 0.223569 0.132032 0.086759
(2-1-2).

The effect of the dimension ratio (a/b) on dimensionless of square plate square sandwich (type
A) with two homogeneous upper and lower faces (p=0) and an FGM core subjected to a thermo-
mechanical load (a/h=10, k=1) and for various layer thickness ratios is presented in Table 9. We
can noted that the dimensionless deflection (w) decrease when the aspect ratio a/b increases. Table
10 presents the variation of dimensionless normal stress as a function of the power index p and
different layer thickness ratios of square plate square sandwich (type A) with P-FGM face sheets
and E-FGM core under thermo mechanical load (a/4=10).

The results obtained are in good agreement and follow the same trends with those obtained by
Li et al. (2017), Boussoula et al. (2020).

6.2 Nonlocal approach

In this second part, the behavior of FGM Nano plates is examined. The deflection and stresses
of FG Nano plates using a four-order shear deformation theory with combination of the nonlocal
strain gradient theory. The variation of dimensionless normal stress as a function of the nonlocal
parameter (eolo)* and different layer thickness ratios with different configurations are presented in
Tables 11 to 13 and under different loading (¢=100, #1=0, £=t:=100 K, ¢=100, #1=t:=0, £2=100 K
and g=100, ©1=t3=1=0).

For thermomechanical loading, it can be seen that for the same layer thickness ratio, the stress
values are identical, the influence of the nonlocal parameter is negligible. In the case of
mechanical loading, the variation of the stress as a function of the scale parameter is very
significant. We can conclude that in the case of nanoplates, the temperature does not influence the
evolution of the stress.
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Table 10 Variation of dimensionless normal stress as a function of the power index p and different layer
thickness ratios of square plate square sandwich (type A) with P-FGM face sheets and E-FGM core (a/h=10)

&, (a/2, b/2, h/2)

p Theory

2-1-2 1-1-1 1-2-1 1-3-1
FSDPT (Li et al. 2017) -4.153417 -4.134036 -4.074434 -4.011326
0 RPT (Li et al. 2017) -2.907015 -2.890699 -2.840040 -2.785860
nth order SDT (Boussoula et al. 2020)  -2.907015 -2.890699 -2.840040 -2.785860
Present -2.920859 -2.904513 -2.853791 -2.799543
FSDPT (Li et al. 2017) -4.136946 -4.261501 -4.440672 -4.558762
1 RPT (Li et al. 2017) -3.025929 -3.138583 -3.302462 -3.411521
nth order SDT (Boussoula et al. 2020)  -3.025929  -3.138583  -3.302462 -3.411521
Present -3.037798 -3.150553 -3.314721 -3.424072
FSDPT (Li et al. 2017) -3.791718 -3.932040 -4.157364 -4.317119
5 RPT (Li et al. 2017) -2.715313 -2.840096 -3.043204 -3.188866
nth order SDT (Boussoula et al. 2020)  -2. 715313  -2.840096  -3.043204 -3.188866
Present -2.726809 -2.851587 -3.054872 -3.200811
FSDPT (Li et al. 2017) -3.652156 -3.788971 -4.026970 -4.203773
3 RPT (Li et al. 2017) -2.592638 -2.712947 -2.925506 -3.085463
nth order SDT (Boussoula et al. 2020)  -2. 592638  -2.712947  -2. 925506 -3.085463
Present -2.604054 -2.724223 -2.936901 -3.098048
FSDPT (Li et al. 2017) -3.582456 -3.712645 -3.953554 -4.138716
4 RPT (Li et al. 2017) -2.532421 -2.646085 -2.859957 -3.026620
nth order SDT (Boussoula et al. 2020)  -2.532421  -2. 646085  -2. 859957 -3.026620
Present -2.543889 -2.654959 -2.887632 -3.037757
FSDPT (Li et al. 2017) -4.153417 -4.134036 -4.074434 -4.011326
5 RPT (Li et al. 2017) -2.907015 -2.890699 -2.840040 -2.785860
nth order SDT (Boussoula et al. 2020)  -2.907015 -2.890699 -2.840040 -2.785860
Present -2.920859 -2.904513 -2.853791 -2.799543

Table 11 Variation of normal stress as a function of the nonlocal parameter (golo)?> and different layer
thickness ratios of square nanoplate sandwich (type A) with P-FGM face sheets and ahomogeneous core
under mechanical and thermal loading (P=3, k=0)

5, (a/2, b/2, h/2)

H 2

Loading (olo) 1:0-1 31-3 2-1-2 111
0 22497773 2567929  -2.611036  -2.754493
=100 0.5 2497766 2567917  -2.611026  -2.754478
t,=0 1 2497736 -2567888  -2.610997  -2.754451
t,=t;=100 15 2497687  -2567839  -2.610049  -2.754404
2 2497618  -2567771  -2.610882  -2.754340
0 1764135  -1.804735  -1.829437  -1.910932
=100 0.5 1764126  -1.804725  -1.829427  -1.910923
t1=t3=0 1 1764096  -1.804725  -1.829398  -1.910895
£,=100 15 -1.764046  -1.804696  -1.829350  -1.910849
2 1763977  -1.804580  -1.829283  -1.917784
0 2007284  1.067001  1.944276 1.872672
4=100 0.5 2106340 2064163  2.040222  1.965085
1 2403507  2.355380  2.328061 2242323
ti=t,=t;=0 15 2.808784  2.840740  2.807792 2704386

2 3.592173 3.520245 3.479415 3.351275
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Table 12 Variation of dimensionless normal stress as a function of the nonlocal parameter (eolo) and different
layer thickness ratios of square nanoplate sandwich (type A) with two homogeneous upper and lower faces
(p=0) and E-FGM core (k=1) under mechanical and thermal loading

5, (a/2,b/2,h/2)

H 2

Loading (eolo) 212 111 1-2-1 131
0 2920859  -2.004513  -2.853791  -2.799543
=100 05 2920848  -2.004503  -2.853780  -2.799532
=0 1 2920818  -2.004472  -2.853749  -2.799501
t,=t;=100 15 2920766  -2.904420  -2.853697  -2.799448
2 2920694  -2.004348  -2.853624 -2 .799374
0 2076618  -2.066984  -2.037332 _ -2.005906
=100 05 2076608  -2.066974  -2.037322  -2.005896
t,=ts=0 1 2076577  -2.066943  -2.037291  -2.005864
£,=100 15 2076526  -2.066892  -2.037239  -2.005811
2 2076454  -2.066819  -2.037166  -2.005738
0 2082656  2.089908  2.112409 2.136467
=100 05 2185431 2193041  2.216652 2.241898
1 2493756 2502439  2.529382 2.558189
t=t,=t;=0 15 3007631  3.018104  3.050598 3.085341
2 3727056 3.740033  3.780303 3.823354

Table 13 Variation of dimensionless normal stress as a function of the nonlocal parameter (eolo)?and
different layer thickness ratios of square nanoplate sandwich (type A) with P-FGM facesheets (P=3) and E-
FGM core (k=1) under mechanical and thermal loading (2/h=10)

5, (a/2,b/2,h/2)

H 2

Loading (€olo) 2-1-2 1-1-1 1-2-1 131
0 2604054  -2.724223  -2.936901  -3.098086
=100 05 2604048  -2.724219  -2.936887  -3.098078
=0 1 2604019  -2.724191  -2.936861  -3.098052
t,=t;=100 15 2603904  -2.724145 2936817  -3.098010
2 2603904  -2.724080  -2.936755  -3.097951
0 1825423  -1.893572 2012302 -2.100635
=100 05 1825414  -1.893562  -2.012293  -2.100627
ty=t;=0 1 1825385  -1.893534  -2.012266  -2.100601
£,=100 15 1825337  -1.893488 2012222  -2.100559
2 1825270  -1.893423  -2.012161  -2.100500
0 1947311 1.885790  1.783385 1.709041
=100 05 2043407 1978850  1.871392 1.793379
1 2331694 2258031  2.135412 2.046393
t1=t=t;=0 15 2812174 2723331  2.575444 2.468082
2 3484846 3374751  3.191490 3.058447

Conceming the non-local approach, under thermomechanical loading the effect of nonlocal
parameter is negligible, for the same layer thickness ratio, the stress values are identical. In case of
mechanical loading, the variation of the stress as a function of the scale parameter is very
significant. The temperature has not influence the evolution of the stress in the case of nano plates.

Figs. 2 to 4 show the variation of deflection ratio between nonlocal and local deflection as a
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Fig. 2 Variation of deflection ration as a function of the nonlocal parameter (eolp)? and different
layer thickness ratios of square nanoplate sandwich (type A) with P-FGM face sheets (P=3) and
homogeneous core (4~=0) under mechanical and thermal loading

—— t1=0; 2=3=100; =100N
——t1=t3=0;2=100 ;g=100N
== t1=2=t3=0;q=100N

Nonlocal parameter

-

0 03 1 15 2 23

Deflection ratio
Fig. 3 Variation of the deflection ratio as a function of the nonlocal parameter (eolp)’ and
different layer thickness ratios of square nanoplate sandwich (type A) with two homogeneous
upper and lower faces (p=0) and E-FGM core (4~=1) under mechanical and thermal loading
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Fig. 4 Variation of the deflection ratio as a function of the nonlocal parameter (eoly)* and
different layer thickness ratios of square nanoplate sandwich (type A) with P-FGM face sheets
and E-FGM core under mechanical and thermal loading (P=3, &/=1) (a/h=10)
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function of the nonlocal parameter (eolo)* for square nanoplate sandwich (type A) respectively with
P-FGM face sheets (P=3) and a homogeneous core (k=0), two homogeneous upper and lower
faces (p=0) and E-FGM core (k=1) and P-FGM face sheets (p=3) and E-FGM core (k=1) under
mechanical and thermal loading. We can note that thermomechanical does not influence the
evolution of the deflection ratio.

6. Conclusions

In the present work the static analyses of FGM macro and nano-plates under thermomechanical
loading has been investigated by utilizing a theory with a new displacement field with four
variables and a warping function taking into account the effect of shear. The equilibrium equations
deduced by using the virtual work principle and local and non-local theory, and then are solved by
the Navier method with boundary conditions of plate simply supported.

* The current model is using a new displacement field with four variables and a warping

function considering the effect of shear

» The results obtained are in good agreement with those obtained by the theory of the plates

refined in order to validate the precision of the present theory.

» The dimensionless deflection increases with the material index k increases.

» The dimensionless arrow w decreases when the ratio a/b increases.

» The stress decreases with the value of index k increase
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