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Abstract.  In this paper, the effect of deepness on in-plane free vibration behavior of a curved functionally graded 
(FG) nanobeam based on nonlocal elasticity theory has been investigated. Differential equations and boundary 
conditions have been developed based on Hamilton’s principle. In order to figure out the size effect, nonlocal theory 
has been adopted. Properties of material vary in radial direction. By using Navier solution technique, the amount of 
natural frequencies has been obtained. Also, to take into account the deepness effect on vibrations, thickness to radius 
ratio has been considered. Differences percentage between results of cases in which deepness effect is included and 
excluded are obtained and influences of power-law exponent, nonlocal parameter and arc angle on these differences 
percentage are studied. Results show that arc angle and power law exponent parameters have the most influences on 
the amount of the differences percentage due to deepness effect. It has been observed that the inclusion of 
geometrical deep term and material distribution results in an increase in sensitivity of dimensionless natural 
frequency about variation of aforementioned parameters and a change in variation range of natural frequency. Finally, 
several numerical results of deep and shallow curved functionally graded nanobeams with different geometry 
dimensions are presented, which may serve as benchmark solutions for the future research in this field. 
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1. Introduction 
 

Using nano material is a novel method in order to construct materials with perfect properties 
and manufacture tools with ultra-high stabilities. Development of nanotechnology occurred by out 
spreading of researchers’ studies on nanostructures after the discovery of carbonic nanotubes 

(CNTs) by Iijima (1991). In continuance, in order to facilitate calculations and mathematical 
treatments and eliminate complicated simulation methods, continuum mechanics methods were 
employed. Among existing theories in continuum mechanics, according to Eringen’s investigations 
(Eringen, Eringen, Eringen), it can be said that nonlocal elasticity theory is more capable than 
others to describe the behavior of various nanostructure. For the first time, Peddieson et al. (2003) 
presented a nonlocal Euler-Bernoulli beam model. The main difference between local and nonlocal 
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models is, the way of defining stress function that, in local theories stress in a point is defined as a 
function of strain only in the same point, whereas in nonlocal theory stress field in a point is 
defined as a function of strain at all points in the near region. In the society of nanotechnology, 
great attention is paid to the application of nonlocal elasticity (Amara et al. 2010, Lim 2010, Ma et 
al. 2010, Zidour et al. 2012, Tounsi et al. 2013, Wang et al. 2013, Xu and Deng 2013, Aydogdu 
and Arda 2016, Rakrak et al. 2016, Barati 2017, Bouafia et al. 2017, Bensaid et al. 2018, Hosseini 

and Khosravi 2020), especially nonlocal Euler-Bernoulli beam theory (Seifoori and Liaghat 2013). 
In this regard, Ebrahimi et al. (2015) evaluated DTM method applications by investigating 
vibrations of FG nanobeams based on Euler-Bernoulli beam model. Also, they employed this 
method in order to analyze the vibration and buckling of FG nano beams by considering the 
physical neutral axis position (Eltaher et al.). Khosravi and Hosseini (2020) considered an attached 
disk as a mass nanoresonator to find the effects of nonlocal parameter, damping parameters, the 
mass nanoresonator on the dynamic responses of viscoelastic nanotube based on classical elasticity 

within the framework of exact solution and finite difference method. Alizadeh et al. (2020) carried 
out the vibration of a resonator based on nonlocal elasticity theory, Euler-Bernoulli beam model 
and Green-Naghdi approach in the presence of thermal and surface effects. Bastanfar et al. (2019) 
worked on the flexural behavior of imperfect Euler-Bernoulli nanobeam model, which contains a 
crack on it as well as rotational and axial springs at the defect location.  

However, because of the size order of structures which was under investigation (being out of 
the micron and sub-micron scales) all of FGMs researches above were investigated and studied by 
classical theories which cannot involve size effect due to lacking inherent length scale parameter. 

After this, researches, scientists and engineers produced FG structures in the micron and 
submicron scales and wanted to investigate their characteristics. Therefore, more practical theories 
and models involving material length scale parameters capable of capturing the size effect were 
required in order to investigate the micron and sub-micron FG structural objects such as beams, 
plates etc. Khosravi and Hosseini (2020) employed the nonlocal elasticity theory and viscoelastic 
mass nanosensor to study the torsional behaviour of the model, the finite difference method was 
established to prove the accuracy of obtained results. Khosravi et al. (2020) established the 

nonlocal model along with the Rayleigh-Ritz theory to investigate the small scale torsional 
behaviour of the single-walled carbon nanotubes for free case and for the state in which model is 
subjected to the linear and harmonic torques. Khosravi et al. (2020) conducted torsional vibration 
of a single-walled carbon nanotube embedded in an elastic medium to evaluate the effect of the 
medium, excitation frequency, time constant, geometry and type of loads on the responses, also, 
the resonance behaviour was evaluated. Hosseini and Khosravi (2020)established the nonlocal 
theory to assess the free and forced torsional vibration of single-walled carbon nanotubes under 

both type of loadings. 
Recently, FGMs have found a wide range of applications, and they are widely used in micro 

and nanostructures, and due to their importance, many various beam and plane models have been 
developed in buckling (Şimşek and Yurtcu 2012), bending (Eltaher et al. 2013, Şimşek and Yurtcu 
2013, Ansari et al. 2015) and vibration  analyses. Eltaher et al. (2012) investigated free vibration 
of size-dependent FG nanobeams using the finite element method based on the nonlocal 
continuum model. Simsek and Yurtcu (2012) studied the bending and buckling of FG nano beams 
in accordance with nonlocal Timoshenko and Euler-Bernoulli beam models. The application range 

of curved beam has been developed in mechanical, aerospace and civil engineering industries as 
the stabilizer of structures (Ai-min and Ming 2004, Zhu and Zhao 2008). Thus, static and dynamic 
characteristics of such beams and nanobeams have been turned into an interesting subject for 
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researchers. It is noteworthy to mention that beam could be deep or shallow (Hajianmaleki and 
Qatu 2012, Kurtaran 2015, Kurtaran 2015, Ye et al. 2015). 

In practice, all of the beams and nanobeams have some curvature, even with small angles. 
However, in most of the researches, owing to the simplification, straight beam theories have been 
adopted. Whereas, in comparison with straight beam theories, curved beam theories are more 
generalized, owing to the fact that if the radius of curved beam is set to infinity, the results of 

straight beam theory may be achieved. To the best of authors' knowledge about performed works 
and obtainable results, a gap exists in open literature that is no profound study has been conducted 
on free vibration characteristics of deep curved FG nanobeams based on nonlocal elasticity so far. 
The current paper aims to fill this gap. 

In this paper, free vibration of a deep curved FG nanobeam has been studied based on nonlocal 
theory. Hamilton's Principle has been employed to derive governing equations of motion and 
related boundary conditions. Then Navier's approach has been utilized to solve the obtained 

differential equation. Influences of aspect ratio, nonlocal parameter, gradient index and interactive 
influences of such parameters on natural frequency have been investigated. For validation, the 
presented results have been compared with those of previous work. It is believed that the results of 
this paper will be a reference with which other researchers may compare their results on the future. 
 
 

2. Governing equations 
 

According to Euler-Bernoulli theory regarding curved beams, it should be assumed that after 
applying deformation to the beam, the plane which was already perpendicular to the plane of 
cross-sectional area before deformation, remains perpendicular, consequently. The radial 
displacement u and tangential displacement w are considered as follows 

(1)                                      ( ) ( ) ( ) 0
0 0

0

( , )
, , , ,

( , , ) ( , )

u tz
w r t w t w t

R x

u r t u t


  

 

 
= + + 

 

= −

 

where 𝑢0, and 𝑤0 are radial and tangential displacement of a mid-plane component, respectively. 
Also, R denotes radius of curvature. Parameters t, x, z mark time, the peripheral and radial 
directions of the nanobeam respectively.   
 
 

 

Fig. 1 Geometry of curved FG nanobeam 

53



 

 

 

 

 

 

S.A.H. Hosseini, O. Rahmani, V. Refaeinejad, H. Golmohammadi and M. Montazeripour 

Fig. 1 illustrates a scheme of curved FG nanobeam. The strain of an element in the curved 
beam is defined as follows 

(2)                                                  ( )0 01

1 /
xx xx xzk

z R
 = +

+
 

where 
x and 

x  are bending and tensional strains, respectively. These parameters are described 

as follows 

(3)                                          
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( , )xx

w t
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
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(4)                                                 
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k
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 

 

  
= + 

  

 

The governing equations of motion and associated boundary conditions are developed based on 
Hamilton’s principle 

0
( ) 0

t

U T V dt − + =  
(5) 

where 𝛿𝑈, 𝛿𝑇 and 𝛿𝑉 are taken into account for the virtual strain energy, the virtual kinetic energy, 
and the virtual potential of external loading, respectively. They can be calculated as follows 

(6)                   
0 0

0
( ) ( ( ) ( ))

ij ij xx xx xx
v v

x
U dV dV N M R dk



       = = = +   

where normal forces resultant and bending moment are given as follows 

(7)                                                ,
xx xx

A A
N dA M zdA = =  

The first variation of kinetic energy is developed as follows 
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where 𝐼0, 𝐼1 and 𝐼2 are the mass moments of inertia as follows 
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2

0 1 2( , , ) ( )(1, , )
A

I I I z z z dA=   (9) 

The first variation of performed work due to external forces resultant is defined as follows 

( )
0

V b f u p w Rd


   = − +  (10) 

where f and p denote radial and tangential distributed forces, respectively. b is the width of the 
nanobeam. By inserting Eqs. (6), (8) and (10) into Eqs. (5), it will be concluded as 
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 (12) 

Also, associated boundary conditions are described as follows 

0
M
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R
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3. Functionally graded material properties 
 

In this study, it is assumed that curved FG nanobeam is made of an aluminum and alumina 

composition. The properties of these two structural constituents have been presented in the result 
and discussion section. Based on the presented method the gradient variation may be chosen, 
randomly, although, in order to facilitate analytical solution, they are usually presented as 
exponential-type dependence. Furthermore, employing a power law gradient is significantly 
useful, especially from an experimental vantage point of view. Hence, material properties of 
curved FG nanobeam are defined as follows 

( )

( )

1
( )

2

1
( )

2

k

f c m m

k

f c m m

z
E z E E E

h

z
z

h
   

 
= − + + 

 

 
= − + + 

 

 
(14) 

k is a non-negative constant that adjusts the volume fraction of structural materials. c and m 
subscripts prescribe where a property is related to ceramic and metal of the curved FG nanobeam, 

respectively. For instance, if z=-h/2, E will be equal to 𝐸 = 𝐸𝑚  and if z=h/2, E will be equal to 

𝐸 = 𝐸𝑐 . For the sake of convenience, top and bottom surfaces of the curved FG nanobeam are 
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assumed to be pure ceramic and pure aluminum, respectively. Although, the aforementioned power 
law equation is a theoretical relation it can be easily achieved and dominated experimentally. The 
properties of material vary in the thickness direction due to k. It should be pointed out that, if k=0, 
the material will be homogeneous. 
 

3.1 Nonlocal elasticity theory 
 

According to Eringen’s nonlocal theory, stress field at point x does not only depend on the 
strain of the specified point, but also depends on the strain of all structural components. This issue 
has been proved by the atomic theory of lattice dynamic and phonon dispersion experimental 

observation. Stress tensor 𝜎 which is related to point x is calculated as follows 

( )( , )K x x x dx  


  = −  (15) 

𝜎 is called the classical microscopic second Piola-kirchhoff stress at point x, Kernel function 

𝑘(|𝑥 ' − 𝑥, 𝜏|) represents the nonlocal modulus, in which (𝑥' − 𝑥) is distance and 𝜏  depends on 

internal and external characteristic length. According to Hook’s law, the macroscopic stress 𝜎 at 
point x in Hookean solid is considered for the strain at the same point which is defined as follows 

( ) ( ) : ( )x C x x =  (16) 

C represents the fourth order elasticity tensor which indicates the double-dot product. Eqs. (15) 
and (16) express the nonlocal constitutive behavior of Hookean solid. Eq. (15) represents the 
weighted average of strain field contributions owing to displacement of all points in the structure 
to the stress field at point x. For the sake of convenience, an equivalent model is utilized instead of 
integral constitutive relation. The model is evaluated as follows 

2 2 2 2 2

0(1 ) ,      e a    −  = = =  (17) 

where 𝜏 is defined as 𝜏 = 𝑒0𝑎/ℓ, in which 𝑒0 is a constant value according to applied material, and 

a and ℓ denote internal (e.g., granular distance or lattice parameter) and external (e.g., wave or 

crack length) characteristic length, respectively. Also, the nonlocal parameter 𝜇  varies in 
accordance with different materials. For an elastic material in one-dimensional problem, the 
nonlocal relations can be simplified as follows 

)(
)(

)()(
2

2
2

0 xE
x

x
aex 


 =




−  (18) 

where E is Young’s modulus. For a Euler-Bernoulli, nonlocal FG beam, Eq. (20) may be 
formulated as follows 

2

2
( )xx

xx xx
E z

x


  


− =


 (19) 

According to Eq. (19) resultants of normal forces and bending moment in the nonlocal Euler-
Bernoulli theory can be obtained as follows 

2 2

2 2 2 2

N A w B w u
N u

R R R


   

     
− = − + − +  

      

 (20) 

56



 

 

 

 

 

 

Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity 

2 2

2 2 2 2 2
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   
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 (21) 

where A, B, D for deep and shallow cases are obtained in the following. A, B, and D are 
extensional, coupling, and bending stiffness matrixes considering the deep curved FG beam, 
respectively, which are described as follows 

2( )
( , , ) (1, , )

1 /A

E z
A B D z z dA

z R
=

+  (22) 

Note that for the case in which (1+z/R) term is ignored in Eq. (2) (shallow case), A, B, and D 

values are obtained as follows 

2( , , ) ( ) (1, , )
A

A B D E z z z dA=   (23) 

By performing some algebraic operations and inserting N and M from equations (20) and (21) 
in equations (11) and (12), the nonlocal equations of motion are obtained as follows 
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4. Analytical solution  
 

In this part, the equations of motion for free vibration of a curved FG nano beam with 

associated simply supported boundary conditions is solved, analytically Navier’s solution method 
is employed to perform the analytical approach known trigonometric displacement functions with 
unknown coefficients have been considered satisfying differential equations and associated 
boundary conditions. These displacement functions are described as following 

0
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n
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0

1

( , ) cos( ) ni t
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n

n
w t W e 

 




=

=  (27) 

where i is equal to √−1 and 𝜔𝑛 is natural frequency, 𝑈𝑛, and 𝑊𝑛  denote Fourier coefficients which 
are unknown values. 

In order to free vibration analysis of curved FG nanobeam, it is clear that total external forces 
should be equal to zero. By inserting Eqs. (26) and (27) into Eqs. (24) and (25), eigenvalues can be 
calculated as follows 
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where 𝑆𝑛
11, 𝑆𝑛

12, and 𝑆𝑛
22 are determined as follows 
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Also mass matrices coefficients are defined as follows 
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The dimensionless natural frequency of curved FG nanobeam has been obtained as follows 

2 2 c
n n

c

A
R

E I


  =  (31) 

where A, and I stand for the cross section of curved homogeneous nanobeam, and its moment of 

inertia, respectively. Ec and 𝜌𝑐  stand for Young’s modulus and mass density both related to 
ceramic, respectively. 
 
 

4. Results and discussion 
 

By obtaining the amount of 𝐴, 𝐵, 𝐷 for two cases of shallow and deep in curved FG nanobeam, 
the amount of frequencies for both aforementioned conditions are obtained. First of all, it should  
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Table 1 Comparison of the natural frequency for simply supported of straight and curved (α=π/360=0.5o) FG 

nanobeam with selected values of power-law exponent, aspect ratio and nonlocal parameters
 

L/h   k=0 k=0.2 k=1 k=5 

  Present 

Ref. 

(Eltaher et 

al. 2012) 

Present 

Ref. 

(Eltaher et 

al. 2012) 

Present 

Ref. 

(Eltaher et 

al. 2012) 

Present 

Ref. 

(Eltaher et 

al. 2012) 

20 

0 9.8594 9.8797 8.6858 8.7200 6.9885 7.0904 5.9370 6.0025 

1×10-12 9.40622 9.4238 8.2865 8.3175 6.6672 6.7631 5.66411 5.7256 

2×10-12 9.0102 9.0257 7.9376 7.9661 6.3865 6.4774 5.4256 5.4837 

3×10-12 8.6603 8.6741 7.6294 7.6557 6.1385 6.2251 5.2449 5.2702 

4×10-12 8.3483 8.3607 7.3545 7.3791 5.9174 6.0001 5.0271 5.0797 

50 

0 9.8679 9.8797 8.6937 8.7115 6.9951 7.0852 5.9421 5.9990 

1×10-12 9.4143 9.4172 8.2940 8.3114 6.6735 6.7583 5.6689 5.7218 

2×10-12 9.0180 9.0205 7.9448 7.9613 6.3925 6.4737 5.4302 5.4808 

3×10-12 8.6678 8.6700 7.6363 7.5620 6.1437 6.2222 5.2194 5.2679 

4×10-12 8.3555 8.3575 7.3612 7.3762 5.9229 5.9979 5.0314 5.0780 

100 

0 9.8692 9.8700 8.6948 8.7111 6.9960 7.0833 5.9428 5.9970 

1×10-12 9.4154 9.4162 8.2951 8.3106 6.6744 6.7577 5.6696 5.7212 

2×10-12 9.0191 9.0197 7.9459 7.9607 6.3934 6.4731 5.4309 5.4803 

3×10-12 8.6689 8.6695 7.6373 7.6515 6.1452 6.2217 5.2201 5.2675 

4×10-12 8.3565 8.3571 7.3622 7.3758 5.9237 5.9976 5.0320 5.0777 

 
Table 2 Variation of dimensionless frequency of curved FG nanobeam for three first modes with k=0 and 

L/h=20 

 μ 
α=45° α=60° α=90° 

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3 

S
h

al
lo

w
 

cu
rv

ed
 b

ea
m

 0 8.96683 38.4016 87.0973 8.31363 37.701 86.3883 6.61333 35.7521 84.3876 

1 8.55461 32.5159 63.3831 7.93144 31.9227 62.8671 6.3093 30.2725 61.4112 

2 8.19447 28.7061 52.2701 7.59753 28.1825 51.8446 6.04368 26.7256 50.6439 

3 7.87629 25.9829 45.4967 7.30253 25.5089 45.1263 5.80902 24.1903 44.0813 

4 7.59251 23.9118 40.8181 7.03943 23.4756 40.4858 5.59972 22.262 39.5482 

M
o

d
e 

sh
ap

e 

          

d
ee

p
 c

u
rv

ed
 

b
ea

m
 

0 8.96946 38.4132 87.1239 8.31781 37.7212 86.435 6.62012 35.794 84.489 

1 8.55712 32.5258 63.4024 7.93542 31.9398 62.9011 6.31579 30.308 61.4849 

2 8.19687 28.7149 52.2861 7.60135 28.1975 51.8726 6.0499 26.7569 50.7048 

3 7.8786 25.9908 45.5106 7.3062 25.5225 45.1507 5.81499 24.2186 44.1342 

4 7.59474 23.919 40.8306 7.04296 23.4881 40.5077 5.60548 22.2881 39.5957 

 
 

be mentioned that properties of FG materials for this work on upper surface is pure Aluminum 

𝜌𝑚 = 2702 Kg/m3  and 𝐸𝑚 = 70 GPa  and on the lower surface is the pure Aluminum oxide 

(𝐴𝑙2𝑂3) 𝜌𝑐 = 3960 Kg/m3 and 𝐸𝑐 = 390 GPa. Initially, in order to validation, obtained results 
for the case in which arc angle of curved FG nanobeam approaches to zero and consequently 
radius approaches to infinity, have been compared in Table 1 with results of a straight beam. An  
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Table 3 Variation of dimensionless frequency of curved FG nanobeam for three first modes with k=1 and 

L/h=20 

 μ 
α=45° α=60° α=90° 

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3 

S
h
al

lo
w

 

cu
rv

ed
 b

ea
m

 0 6.82479 29.2137 66.2319 6.31452 28.6117 65.5306 5.00621 27.0107 63.7091 

1 6.51104 24.7362 48.1987 6.02423 24.2265 47.6884 4.77607 22.8709 46.3629 

2 6.23693 21.838 39.7481 5.77062 21.388 39.3272 4.575 20.1912 38.2341 

3 5.99476 19.7663 34.5973 5.54655 19.359 34.231 4.39736 18.2757 33.2795 

4 5.77877 18.1907 31.0396 5.34671 17.8159 30.7109 4.23893 16.8189 29.8573 

d
ee

p
 c

u
rv

ed
 

b
ea

m
 

0 6.82725 29.225 66.2594 6.31816 28.6296 65.5742 5.01171 27.0442 63.7931 

1 6.51339 24.7458 48.2188 6.02771 24.2416 47.7201 4.78131 22.8993 46.424 

2 6.23918 21.8464 39.7646 5.77395 21.4013 39.3533 4.58002 20.2163 38.2845 

3 5.99693 19.7739 34.6117 5.54975 19.3711 34.2537 4.40219 18.2984 33.3234 

4 5.78086 18.1977 31.0525 5.3498 17.827 30.7313 4.24358 16.8398 29.8966 

 
Table 4 Variation of dimensionless frequency of curved FG nanobeam for three first modes with k= 10 and 

L/h=20 

 μ 
α=45° α=60° α=90° 

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3 

S
h

al
lo

w
 c

u
rv

ed
 

b
ea

m
 

0 5.72099 24.479 55.4667 5.29187 23.966 54.8582 4.19407 22.6098 53.293 

1 5.45799 20.7272 40.3646 5.0486 20.2928 39.9218 4.00127 19.1444 38.7827 

2 5.22821 18.2987 33.2875 4.83605 17.9152 32.9223 3.83282 16.9014 31.983 

3 5.02521 16.5627 28.9739 4.64828 16.2156 28.6561 3.68399 15.298 27.8385 

4 4.84415 15.2425 25.9944 4.4808 14.9231 25.7093 3.55126 14.0786 24.9757 

d
ee

p
 c

u
rv

ed
 

b
ea

m
 

0 5.72553 24.4994 55.5157 5.2981 23.9959 54.9306 4.20268 22.6609 53.4201 

1 5.46232 20.7445 40.4003 5.05454 20.3181 39.9745 4.00948 19.1877 38.8753 

2 5.23236 18.3139 33.3169 4.84175 17.9376 32.9658 3.84068 16.9396 32.0593 

3 5.02919 16.5766 28.9995 4.65375 16.2359 28.6939 3.69156 15.3326 27.9049 

4 4.84799 15.2552 26.0174 4.48608 14.9417 25.7432 3.55855 14.1104 25.0353 

 
 
excellent agreement is achieved for all amounts of the power-law exponent, the nonlocal 
parameter, etc. 

Tables 2-4 report the amount of dimensionless frequency of deep and shallow cases for the first 
three modes of frequency, the various values of the nonlocal parameter, and the arc angle of curved 

FG nanobeam with respect to power-law exponents 0, 1, and 10 respectively. As it is clear in these 
tables, by increasing of arc angle, the amount of frequency decreases. Also, it can be observed that 
an increase in nonlocal parameter leads to a reduction in the amount of frequency, which means 
that when the amount of nonlocal parameter increases, atomic spacing increases which results in a 
reduction in material stiffness, therefore, the amount of natural frequency will be increased. By 
comparing the obtained amounts from two cases of shallow and deep, it can be concluded that the 
expected amounts of frequency fall. In this regard, it is also worth noting that this reduction has a 
larger rate initially, and then by an increase in the power-law exponent, reduction rate will 

decrease. 
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Fig. 2 Variation of the difference percentage versus nonlocal parameter for the first three modes with α=90o 

and k=0 

 

 

Fig. 3 Variation of percentage the difference versus power-law exponent for the first three modes number 

with α=45o 

 
 

4.1 Effect of deepness term 
 
Effects of deepness term and difference percentage between obtained amounts in shallow and 

deep cases and effective factors on these differences are studied in this section. For this purpose, 
the relation of differences between frequency amounts due to the inclusion of deepness term and 
exclusion of this term is expressed as following 

Difference percentage= 100
deep shallow

deep

 



−
  (32) 
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Fig. 4 Variation of the difference percentage versus power-law exponent for selected values of arc angle 

with third mode 

 
 

Fig. 2 illustrates the changes’ percentage of shallow and deep cases against nonlocal parameter 
for various values of mode number. As it is apparent from the figure provided, by increasing of 
nonlocal parameter, the changes’ percentage remains almost constant. It is evident that the 
nonlocal parameter has no significant effect on deepness or shallowness of the curved FG beam. 
Moreover, it should be noticed that the third mode of vibration is by far the most significant 

difference percentage.  
Fig. 3 is a diagram illustrating the changes’ percentage against power-law exponent for various 

mode numbers. From the information supplied, it is interesting to note that the difference 
percentage see a drop initially due to a rise in the power-law exponent, then reaches its peak and 

finally experiences a gradual decline. Results show that for power-law exponent 0.1 , the difference 

percentage between deep and shallow cases is less than the case of homogeneous material (𝑘 =
0). Furthermore, in 𝑘 = 5 maximum difference exists between the cases in which deepness term is 
included, the point which should be investigated in analysis of curved FG beams. Also, evident is 

the fact that an increase in the amount of power-law exponent (𝑘 ≻ 5) gives rise to a decline in the 
difference percentage. One particularly interesting fact highlighted by the figure is that the figure 
shows a negligible amount of the difference percentage variations in terms of each mode for the 
lower amount of power-law exponent, however, this variation will rise by increasing the power-
low exponent parameter. Fig. 4 shows the difference percentage with respect to power-law 

exponent for various arc angles. It is evident that the amount of this parameter goes up from 𝑘 =
0.5 to 𝑘 = 5. In other words, in 𝑘 = 0.5 distances between the difference percentage related to 

each of arc angles are minimum and in 𝑘 = 5 they are maximum. Last but not least, the figure 
shows the highest amount of the difference percentage for 𝛼 = 𝜋/2 , 𝛼 = 𝜋/3 , 𝛼 = 𝜋/4 
respectively, in all range of power-law exponent parameter. 
 

 

5. Conclusions 
 

In this paper, the effect of deepness on frequency responses of a curved FG nanobeam has been 

62



 

 

 

 

 

 

Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity 

investigated. Differential equations and boundary conditions have been developed in accordance 
with Euler-Bernoulli curved beam model and Hamilton’s principle. By using nonlocal theory, 
governing equations in the order of nano has been obtained. Natural frequency of the curved nano-
beam with simply supported boundary conditions for both shallow and deep cases has been 
obtained analytically and influences of various parameters on natural frequency and differences 
between frequency of shallow and deep cases were investigated and the following results were 

obtained: 
• Increasing of power-law-exponent, nonlocal parameter and opening angle lead to the 
reduction of natural frequency. 
• Increasing of nonlocal parameter did not alter the difference percentage between shallow and 
deep cases. This observation acclaims the fact that, this matter is independent of the size effect. 
• Rising of mode number results in an increase in the difference percentage. 
• Opening angle significantly affects the difference percentage in such a way that increasing of 

opening angle causes the difference percentage and its sensitivity to rise. 
• By growing of power-law-exponent, the difference percentage initially reduces, then goes up 
and finally declines again.  

 
 

References 
 
Ai-min, Y. and Ming, Y. (2004), “Solution of generalized coordinate for warping for naturally curved and 

twisted beams”, Appl. Math. Mech., 25(10), 1166-1175. https://doi.org/10.1007/BF02439869. 

Amara, K., Tounsi, A. and Mechab, I. (2010), “Nonlocal elasticity effect on column buckling of multiwalled 

carbon nanotubes under temperature field”, Appl. Math. Mech., 34(12), 3933-3942. 

https://doi.org/10.1016/j.apm.2010.03.029. 

Ansari, R., Faghih Shojaei, M., Shahabodini, A. and Bazdid-Vahdati, M. (2015), “Three-dimensional 

bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based 

approach”, Compos. Struct., 131, 753-764. http://doi.org/10.1016/j.compstruct.2015.06.027. 

Aydogdu, M. and Arda, M. (2016), “Forced vibration of nanorods using nonlocal elasticity”, Adv. Nano Res., 

4(4), 265. https://doi.org/10.12989/anr.2016.4.4.265. 

Barati, M.R. (2017), “Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with 

uniform and graded porosities”, Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393. 

Bastanfar, M., Hosseini, S.A., Sourki, R. and Khosravi, F. (2019), “Flexoelectric and surface effects on a 

cracked piezoelectric nanobeam: Analytical resonant frequency response”, Arch. Mech. Eng., 66, 417. 

http://doi.org/10.24425/ame.2019.131355. 

Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), “Dynamic analysis of higher order shear-deformable 
nanobeams resting on elastic foundation based on nonlocal strain gradient theory”, Adv. Nano Res., 6(3), 

279. https://doi.org/10.12989/anr.2018.6.3.279. 

Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), “A nonlocal quasi-3D theory for 

bending and free flexural vibration behaviors of functionally graded nanobeams”, Smart Struct. Syst., 

19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115. 

Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), “Application of the 

differential transformation method for nonlocal vibration analysis of functionally graded nanobeams”, J. 

Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7. 

Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), “Free vibration analysis of functionally graded size-

dependent nanobeams”, Appl. Math. Comput., 218(14), 7406-7420. 

http://doi.org/10.1016/j.amc.2011.12.090. 

Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), “Determination of neutral axis position and its 

effect on natural frequencies of functionally graded macro/nanobeams”, Compos. Struct., 99, 193-201. 

63



 

 

 

 

 

 

S.A.H. Hosseini, O. Rahmani, V. Refaeinejad, H. Golmohammadi and M. Montazeripour 

http://doi.org/10.1016/j.compstruct.2012.11.039. 

Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), “Static and stability analysis of nonlocal functionally 

graded nanobeams”, Compos. Struct., 96, 82-88. http://doi.org/10.1016/j.compstruct.2012.09.030. 

Eringen, A.C. (1972), “Nonlocal polar elastic continua”, Int. J. Eng. Sci., 10(1), 1-16. 
https://doi.org/10.1016/0020-7225(72)90070-5. 

Eringen, A.C. (1983), “On differential equations of nonlocal elasticity and solutions of screw dislocation and 

surface waves”, J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803. 

Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media. 

Hajianmaleki, M. and Qatu, M.S. (2012), “Static and vibration analyses of thick, generally laminated deep 

curved beams with different boundary conditions”, Compos. Part B: Eng., 43(4), 1767-1775. 

http://doi.org/10.1016/j.compositesb.2012.01.019. 

Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), “Theoretical analysis of 

thermoelastic damping of silver nanobeam resonators based on Green–Naghdi via nonlocal elasticity with 

surface energy effects”, Eur. Phys. J. Plus, 135(1), 35. http://doi.org/10.1140/epjp/s13360-019-00037-8. 

Hosseini, S.A. and Khosravi, F. (2020), “Exact solution for dynamic response of size dependent torsional 

vibration of CNT subjected to linear and harmonic loadings”, Adv. Nano Res., 8(1), 25. 

https://doi.org/10.12989/anr.2020.8.1.025. 

Iijima, S. (1991), “Helical microtubules of graphitic carbon”, Nature, 354(6348), 56-58. 

https://doi.org/10.1038/354056a0. 

Khosravi, F. and Hosseini, S.A. (2020), “On the viscoelastic carbon nanotube mass nanosensor using 

torsional forced vibration and Eringen’s nonlocal model”, Mech. Bas. Des. Struct. Mach., 50(3), 1030-
1053. https://doi.org/10.1080/15397734.2020.1744001. 

Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020), “Exponential and harmonic forced torsional vibration 

of single-walled carbon nanotube in an elastic medium”, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. 

Sci., 234(10), 1928-1942. http://doi.org/10.1177/0954406220903341. 

Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), “Torsional dynamic response of viscoelastic SWCNT 

subjected to linear and harmonic torques with general boundary conditions via Eringen’s nonlocal 

differential model”, Eur. Phys. J. Plus, 135(2), 1-23. https://doi.org/10.1140/epjp/s13360-020-00207-z. 

Kurtaran, H. (2015), “Geometrically nonlinear transient analysis of thick deep composite curved beams with 

generalized differential quadrature method”, Compos. Struct., 128, 241-250. 

http://doi.org/10.1016/j.compstruct.2015.03.060. 

Kurtaran, H. (2015), “Large displacement static and transient analysis of functionally graded deep curved 

beams with generalized differential quadrature method”, Compos. Struct., 131, 821-831. 

http://doi.org/10.1016/j.compstruct.2015.06.024. 

Lim, C.W. (2010), “On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: 

equilibrium, governing equation and static deflection”, Appl. Math. Mech., 31(1), 37-54. 

https://doi.org/10.1007/s10483-010-0105-7. 

Ma, H., Gao, X.L. and Reddy, J. (2010), “A nonclassical Reddy-Levinson beam model based on a modified 
couple stress theory”, Int. J. Multisc. Comput. Eng., 8(2), 167-180. 

http://doi.org/10.1615/IntJMultCompEng.v8.i2.30. 

Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), “Application of nonlocal continuum models to 

nanotechnology”, Int. J. Eng. Sci., 41(3), 305-312. http://doi.org/10.1016/S0020-7225(02)00210-0. 

Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), “Free vibration analysis of 

chiral double-walled carbon nanotube using non-local elasticity theory”, Adv. Nano Res., 4(1), 31. 

https://doi.org/10.12989/anr.2016.4.1.031. 

Seifoori, S. and Liaghat, G.H. (2013), “Low velocity impact of a nanoparticle on nanobeams by using a 

nonlocal elasticity model and explicit finite element modeling”, Int. J. Mech. Sci., 69, 85-93. 

http://doi.org/10.1016/j.ijmecsci.2013.01.030. 

Şimşek, M. and Yurtcu, H. (2012), “Analytical solutions for bending and buckling of functionally graded 

nanobeams based on the nonlocal Timoshenko beam theory”, Compos. Struct., 97, 378-386. 

http://doi.org/10.1016/j.compstruct.2012.10.038. 

64



 

 

 

 

 

 

Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity 

Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), “Nonlocal effects on thermal buckling 

properties of double-walled carbon nanotubes”, Adv. Nano Res., 1(1), 1. 

https://doi.org/10.12989/anr.2013.1.1.001. 

Wang, B., Deng, Z.. and Zhang, K. (2013), “Nonlinear vibration of embedded single-walled carbon 
nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam 

theory”, Appl. Math. Mech., 34, 269-280. https://doi.org/10.1007/s10483-013-1669-8. 

Xu, X.. and Deng, Z.. (2013), “Surface effects of adsorption-induced resonance analysis on 

micro/nanobeams via nonlocal elasticity”, Appl. Math. Mech., 34, 37-44. http://doi.org/10.1007/s10483-

013-1651-9. 

Ye, T., Jin, G., Ye, X. and Wang, X. (2015), “A series solution for the vibrations of composite laminated deep 

curved beams with general boundaries”, Compos. Struct., 127, 450-465. 

http://doi.org/10.1016/j.compstruct.2015.03.020. 

Zhu, L. and Zhao, Y.. (2008), “Exact solution for warping of spatial curved beams in natural coordinates”, 

Appl. Math. Mech., 29, 933-941. https://doi.org/10.1007/s10483-008-0712-x. 

Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A., Bakhti, K. and Tounsi, A. (2012), “The 

thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam 

theory”, Comput. Mater. Sci., 51(1), 252-260. http://doi.org/10.1016/j.commatsci.2011.07.021. 

 

 

EC 

65




