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Abstract.  The present study proposes a theoretical and numerical investigation on the dynamic response behaviour 
of a functional graded (FG) ceramic-metal tapered rotor shaft system, by the differential quadrature finite elements 
method (DQFEM) to identify the natural frequencies for modelling and analysis of the structure with suitable 
validations. The purpose of this paper is to explore the influence of heat gradients on the natural frequency of rotation 
of FG shafts via three-dimensional solid elements, as well as a theoretical examination using the Timoshenko beam 
mode, which took into account the gyroscopic effect and rotational inertia. The functionally graded material’s 
distribution is described by two distribution laws: the power law and the exponential law. To simulate varied thermal 
conditions, radial temperature distributions are obtained using the nonlinear temperature distribution (NLTD) and 
exponential temperature distribution (ETD) approaches. This work deals with the results of the effect on the 
fundamental frequencies of different material’s laws gradation and temperature gradients distributions. Attempts are 
conducted to identify adequate explanations for the behaviours based on material characteristics. The effect of taper 
angle and material distribution on the dynamic behaviour of the FG conical rotor system is discussed. 
 

Keywords:  DQFEM; exponential temperature distribution; functionally graded material; non-linear 

temperature distribution; rotor dynamics; tapered shaft 

 
 
1. Introduction 
 

Scientific research has grown in recent years employing ceramic materials to suit the expanding 
needs of the mechanical engineering sector under the effect of temperatures, with these new 
materials having a good feature of resistance to high temperatures. However, due to their low 
hardness, ceramics alone have limited applications in the mechanical industry. FG materials are a 
novel type of composite material that has recently piqued the interest of scientific and industrial 
researchers. These materials are non-homogeneous, comprising of multiple layers of progressive 
mixes of components, most of which are ceramic and metal. Ceramic constituents can endure high 
temperatures because of their thermal barrier qualities, whereas metal supports the performance of 
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the strongest mechanical capabilities in FG materials. A group of Japanese scientists coined the 
term FGM in the mid-1980s. (Yamanouchi et al. 1990). Since then, a lot of work has gone into 
developing these materials, which are extremely resistant to temperature changes. (Hirai and Chen 
1999a, Hirai and Chen 1999b, Uemura 2003) FG materials were originally proposed as a 
lightweight, high temperature refractory material for aerospace constructions, fusion reactors, and 
engines. The concept of FGM, mathematical modelling, fabrication methods, material evaluation, 

applications, joining procedures in FGM, process characterization, and design considerations are 
all covered in (Holt et al. 1993). (Reddy and Chin 1998) studied the dynamic thermoelastic 
response of functionally graded cylinders and plates by varying the volume fraction of a ceramic 
and a metal using a power law distribution, including the thermomechanical coupling, and a finite 
element model. FG materials are currently being developed for more widespread applications as 
high-performance structural components. As a result, scientific study on this axis and its industrial 
use has continued, with the fabrication of gas turbine blades constructed of FG materials (Librescu 

et al. 2005). The production of rotors made of FG materials for aircraft reactors and propulsion 
turbines for aeronautics has increased the use of these materials. Scientific research, in particular 
that of (Przybyłowicz 2005), has advanced this development by studying the stability of a rotor 
composed of FG materials, as well as the active stabilization of a rotating FG shaft with a 
piezoelectric fraction to manage thermal stresses. (Cheng et al. 2006) used the assumed mode 
approach with coupling effect to investigate the frequency analysis of a spinning cantilever beam. 
(Boukhalfa and Hadjoui 2010) used the h-p version of the finite element method to investigate the 
free vibrations of an on-board rotor built of composite materials. (Saimi and Hadjoui 2016) used 

the h-p variant of the finite element method to model an on-board rotor. (Akbaş 2014) investigated 
the vibrational behaviour of a beam formed of FG materials in a temperature-varying environment. 
(Boukhalfa 2014) used the -p variant of the finite element method to investigate the dynamic 
behavior of a rotor composed of FG materials. (Ding et al. 2018) investigated the nonlinear 
vibration response of functionally graded (FG) Euler–Bernoulli beams on elastic foundation, 
taking into account the effects of the cross-section rotary inertia and neutral surface position. (Rao 
and Roy 2016) used the finite element method version -h to do a dynamic study of an FG rotor, 

and they used the power law method to describe the FG rotor based on Timoshenko’s theory. 
(Bouzidi et al. 2021) conducted a comparative study between the functionally graded and pure 
metallic rotor-blade systems using the h- version of the finite element method, and the comparison 
was based on the influence of the blade’s numbers, rotating speed, and power law index on the 
natural frequencies of the rotor-blade system. (Gayen et al. 2017b) investigated the dynamic 
behavior of a functionally graded shaft with a transvers crack using two nodded Timoshenko beam 
elements and a finite element formulation. In the same research axis, (Gayen et al. 2017a) looked 

at the impact of multiple breathing cracks on a functionally graded rotating Thy have also studied 
the stability analysis of a rotor-bearing system having a functionally graded shaft with transverse 
breathing cracks, with finite element method (Gayen et al. 2019). A Numerical analysis on the 
dynamic’s behaviour of symmetrical FGM rotor in thermal environment using h-p finite element 
method was also studied by (Assem et al. 2022). (Bose and Sathujoda 2020) studied the effect of 
Thermal Gradient on Vibration Characteristics of a Functionally Graded symmetrical rotor shaft 
using classic finite element modelling with ANSYS. Recently (Gayen et al. 2021) also studied the 
dynamic behaviour of two-cracked functionally graded (FG) shaft system under thermal 

environment; a formulation based on finite elements was used to model metal-ceramic FG 
(SS/ZrO2) shaft using Timoshenko beam theory, with power law distribution of the material 
gradation, with a conclusion that the local flexibility coefficients are functions of material gradient 
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and temperature besides crack size. Even though the reduction in Eigen frequencies is decided by 
crack parameters, material gradient and temperature, however, the reduction in Eigen frequencies 
is greatly influenced by gradient index and the index may be selected properly to design FG shafts 
for high-temperature applications. A newly modelling method DQFEM was applied for the 
modelling of rotor dynamics in the paper (Ahmed et al. 2020). The developed methods and 
applications have shown clearly that convergence was obtained for a low sampling and item 

numbers when compared with h-FEM and hp-FEM. The DQFEM was firstly used by (Xing and 
Liu 2009) for studying the high-accuracy differential quadrature finite element method and its 
application to free vibrations of thin plate with curvilinear domain. (Zahi et al. 2018) presented a 
theoretical and numerical analysis of the behaviour of a tapered shaft rotor built of composite 
materials using the finite element method’s classical version h and version p. (Torabi et al. 2017) 
examined the exact solution for two-plane transverse vibration analysis of axial-loaded multi-step 
Timoshenko rotor carrying concentrated masses is presented. (Torabi et al. 2014) used the DQEM 

for free transverse vibration analysis of multiple cracked non-uniform Timoshenko beams with 
general boundary conditions. (Pouretemad et al. 2019b) employed a differential quadrature 
element method (DQEM) is proposed for free vibration analysis of rotating non-uniform 
nanocantilevers carrying multiple concentrated masses. (Pouretemad et al. 2019a) investigated the 
free transverse vibration characteristics of a rotating non-uniform nanocantilever with multiple 
open cracks. (Afshari and Irani Rahaghi 2018) analysed the free transverse vibration of multi-
stepped rotors resting on multiple bearings via the differential quadrature element method. 
(Afshari et al. 2022) presented an exact solution for whirling analysis of rotors carrying 

concentrated masses. Effect of various parameters on the forward and backward frequencies are 
investigated including velocity of spin and quantity, translational inertia and position of the 
concentrated masses 

Following the preceding literatures, this work investigates the dynamic behaviour of a 
functionally graded tapered hollowed shaft in a thermal environment using a combined method 
involving the differential quadrature method and the classical finite element method, dubbed the 
DQFEM (Ahmed et al. 2020). The Lagrange’s equation and the Timoshenko beam theory are used 

to obtain the global equation of motion. The shaft is made of functionally graded (FG) materials. 
Using the power law and the exponential law as deferent approaches. The system’s natural 
frequencies are determined using a MATLAB tool, and the results are compared to those described 
in the literature. A study that compares the effects of exponential and NLTD. The frequencies are 
measured to assess the effect of the tapered angle on the shaft’s vibration resistance as a function 
of temperature. The results suggest that functionally graded materials are more efficient and 
appropriate for shaft modelling, design, and conceptualization. 

 
 

2. Functionally graded Material and temperature distribution laws 
 
The exact gradation shapes of the FG material are not available. However, there are different 

mathematical laws that can be used to represent the distribution of the volume fraction in the FG 
material. 

The properties of the material vary according to the volume fraction distribution as shown in 

Fig. 1 (Aboudi et al. 1999) which shows the continuously graded microstructure of an FG 
material. In the case of FG shaft, the volume fraction varies in the radial direction (Gayen and Roy 
2014) as shown in Fig. 2. The first inner layer of the shaft is composed purely of metal, as one 
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moves towards the radial outer direction the fractional volume of the metal decreases, and that of 
the ceramic increases. Thus, the outer layer is 100 per cent ceramic, which gives excellent 
temperature resistance properties. The position dependence is obtained using the Voigt model, 
which gives a simple rule for composite materials. The material properties for each layer are 
expressed in Eq. (1). 

𝑃𝑖 = 𝑃𝑐𝑉𝑐 + 𝑃𝑚𝑉𝑚  (1) 

Where Pc and Pm are the material properties of the ceramic and metal, respectively, and 𝑉𝑐 and 

𝑉𝑚  refer to the volume fraction of the ceramic and metal, respectively. Different mathematical 
models have been developed over the years by researchers to accurately predict the distribution. 
These include the power law, the exponential law, the sigmoid law and the Mori-Tanka scheme, 
which are the most widely, used laws for the gradation of FG materials. However, the majority of 
previous works have used the gradation of the power law in the case of FG shafts. In this present 
work, power law, gradation and exponential law gradation have been applied to tapered shaft rotor 
systems. Modelling using these laws and their application have been discussed in detail in the 
subsections. 

The main purpose of FG materials is temperature resistance. The properties of FG materials 
depend on the variation in temperature. In most cases of FG shafts, the outer ceramic material is 
subjected to higher temperatures than the inner metal core. This difference in gradation generates a 
radial variation of the material properties in the shaft. The temperature dependent properties have 
been proposed by (Touloukian 1966) as in the Eq. (2). 

where  𝑃0,𝑃−1, 𝑃1, 𝑃2 and  𝑃3 indicate the coefficients of temperature T (in Kelvin) for each type of 
material that makes up the volume proportion of FG materials’ graduation (Reddy and Chin 1998). 

𝑃𝑗 = 𝑃0(𝑃−1𝑇
−1 + 1 +𝑃1𝑇

1 + 𝑃2𝑇
2 +𝑃3𝑇

3) (2) 

Various combinations of FG materials were used in this work. Hence, the inner metallic 
material is SUS304 stainless steel, and the outer ceramic materials are Nickel, AL2O3, Zr  

 
 

Table 1 Temperature coefficients 

Materials Property 𝑃−1 𝑃0  𝑃1 𝑃2 𝑃3 

SUS304 

E (Pa) 0 201.04×109 3.079×10-4 -6.534×10-7 0 

K (W/mK) 0 15.379 -1.264×10-3 2.092×10-6 -7.223×10-10 

𝜈 0 0.3262 -2.002×10-4 3.797×10-7 0 

Nickel 

E (Pa) 0 223.95×109 -2.794×10-4 -3.998×10-9 0 

K (W/mK) 0 58.754 -4.614×10-4 6.670×10-7 -1.523×10-10 

𝜈 0 0.3100 0 0 0 

𝐴𝑙2𝑂3 

E (Pa) 0 349.5486×109 -3.853206×10-4 4.026993×10-7 -1.6734×10-10 

K (W/mK) -1123.6 -14.087 0.00044 0 0 

𝜈 0 0.26 0 0 0 

Zr 

E (Pa) 0 244 .27×109 -1.371×10-3 1.214×10-6 -3.681×10-10 

K (W/mK) 0 1.7000 1.276×10-4 6.648×10-8 0 

𝜈 0 0.2882 1.133×10-4 0 0 

Silicon Nitride 

E (Pa) 0 348.43×109 -3.070*× 10-4 2.160×10-7 -8.946×10-11 

K (W/mK) 0 13.723 -1.032×10-3 5.466×10-7 -7.876×10-11 

𝜈 0 0.244 0 0 0 
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Fig. 1 Modelling of the FGM tapered rotor shaft 

 

 

Fig. 2 Section cut A-A from Fig. 1 

 
 
(Zircon), Silicon Nitride. The temperature coefficients can be obtained from the works of (Reddy 
and Chin 1998). These coefficients are shown in Table 1. 

The responses of the thermomechanical behaviour of FG materials can be accurately modelled 
using different temperature distribution methods, such as ETD and non-linear temperature 
distribution. The properties of materials that are influenced by temperature are Young’s modulus, 

Poisson’s coefficient, and thermal conductivity, while density does not change with temperature. 

The geometric parameters 𝑅𝑖−𝐿, 𝑅𝑖−𝑅 , 𝑅𝑂(𝑥), 𝑅𝑖(𝑥) indicated in Figs. 1 and 2, are: the left 
inner radius, right inner radius, outer radius, and inner radius respectively. 

With 𝐷𝐿 = 2 ∗ 𝑅𝑖−𝐿 left internal diameter. 
Responses to the thermomechanical effects of FG materials can be modelled using different 

temperature distribution methods, which can be found in the literature. 
In the case of a symmetrical solid cylinder, assuming that there is no heat generation and 

numerically solving the differential thermal conduction equation with appropriate boundary 
conditions, as shown in the equation (3) gives the radial temperature distribution profiles. 

𝑑

𝑑𝑟
(𝑟𝐾(𝑟, 𝑇)

𝑑𝑇

𝑑𝑟
) = 0 (3) 

 

2.1 Exponential law gradation with ETD 
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Few researchers have used the exponential law on FG tapered shafts. The position-dependent 
properties of the FG material using the exponential law for a tapered FG shaft of circular cross-
section can be given as (Afsar and Go 2010) shown in the Eq. (4). 

Considering a tapered elastic shaft of circular cross section, the x and y coordinates define the 
horizontal plane of the shaft, while the z-axis defines the vertical plane with the other axes, Fig. 2. 

𝑃(𝑟(𝑥)) = 𝑃𝑚exp
(𝜆(𝑥)(𝑟(𝑥)−𝑅𝑖(𝑥)))     , 𝑥 ∈ [0, 𝐿] (4) 

with  𝜆(𝑥) =
1

(𝑅𝑜(𝑥)−𝑅𝑖(𝑥))
ln (

𝑃𝑐

𝑃𝑚
) (5) 

𝑃 (𝑟(x)) refers to the position-dependent properties of the material 𝑟(x). 𝑃𝑐 and 𝑃𝑚 are 
properties of the ceramic- and metal-rich region, respectively. This law governs all material 
properties obtained from the literature.  

Where 𝑟(x) denotes the variation of the radius 𝑟 as a function of position x, depending on the 

conicity of the hollow rotor system. The inner surface of the shaft (𝑟(𝑥) = 𝑅𝑖(𝑥)) consists of 

100% material (i), while the outer surface of the shaft (𝑟(𝑥) = 𝑅𝑜(𝑥))  has 100% material (o). 
ETD could be obtained using the thermal conductivity following the exponential variation for the 
circular cross section beams/shafts or cylinders as showed in Eqs. (6)-(9) (Gayen et al. 2019). 

𝑇(𝑟(𝑥)) = 𝐴(𝑥) + 𝐵(𝑥)exp
−(𝛽(𝑥)(𝑟(𝑥)−𝑅𝑖(𝑥))) (6) 

With 

𝐴(𝑥) = 𝑇𝑚 −
(𝑇𝐶 − 𝑇𝑚)

exp
−(𝛽(𝑥)(𝑅𝑜(𝑥)−𝑅𝑖(𝑥))) − 1

 (7) 

𝐵(𝑥) =
(𝑇𝐶 − 𝑇𝑚)

exp
−(𝛽(𝑥)(𝑅𝑜(𝑥)−𝑅𝑖(𝑥))) −1

 (8) 

with  𝛽(𝑥) =
1

(𝑅𝑜(𝑥)−𝑅𝑖(𝑥))
ln (

𝐾𝑐

𝐾𝑚
) (9) 

T (r(x)) is the temperature at the radial distance “r(x)”. Tc and Tm are temperatures in ceramic-

rich and metal-rich regions, respectively. Position-dependent material properties in ceramic-rich 
and metal-rich regions are denoted by Pm and Pc, respectively. The temperature distribution law is 
denoted by Eq. (6), and it can be used for FG shaft analysis where exponential gradation is desired. 

Fig. 3 shows the exponential temperature variation in the radial direction of a hollow FG shaft 
when the temperature varies from 300K to 900K from the inside to the outside, hence the 

geometrical properties of the shaft taken are: (ℎ = 0.002 m; 𝐷𝐿 = ℎ ∗ 500;  𝐿 = 𝐷𝐿 ∗ 20). 
Fig. 4 shows the Young’s modulus variation when the temperature is constant (300K), and also 

when the temperature varies from 300K to 900K from the inside to the outside. Fig. 5 shows that 
temperature has no influence on density. According to Figs. 3-5, the properties of FG materials 
have an exponential rate regardless of geometry. 

 

2.2 Power law gradation with non-linear temperature distribution 
 

The power law is the most widely utilized law to determine FG material gradation. It is a well- 
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Fig. 3 Temperature distribution profile using ETD in SS-Al2O3 FG hollowed shaft 

 

 

Fig. 4 Young’s Modulus variation using exponential law for SS-Al2O3 FG hollowed shaft 

 

 

Fig. 5 Density variation using exponential law for SS-Al2O3 FG hollowed shaft 
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known model that has been widely used to simulate the behaviour of FG plates, shafts, and other 
components. (Reddy and Chin 2007)using Eq. (10) 

𝑃(𝑟(𝑥)) = [𝑃𝑐 −𝑃𝑚](
𝑟(𝑥) − 𝑅𝑖(𝑥)

𝑅𝑜(𝑥) − 𝑅𝑖(𝑥)
)

𝑘

+𝑃𝑚 (10) 

P (r(x)) denotes radially varying material properties like Young’s modulus, Poisson’s ratio, 
thermal conductivity (K), density, and coefficient of thermal expansion. 

In the ceramic-rich and metal-rich regions, Pm and Pc are temperature-dependent material 

properties. These are obtained by solving differential Eq. (3) at the metal and ceramic 
temperatures, respectively. Ro and Ri are the cylinder’s outer and inner radius, respectively. The 

power law index is denoted by “k”. 𝑉𝑂(𝑟(𝑥)) = (
𝑟(𝑥)−𝑅𝑖(𝑥)

𝑅𝑜(𝑥)−𝑅𝑖(𝑥)
)
𝑘

 denotes the volume fraction of 

metal at a median radius ‘r(x)’ of any layer. 
The non-linear temperature distribution has been researched in FG materials research and is 

employed with power law gradation. This is the solution to Eq. (3) when the boundary conditions 
are met and the first seven terms of the polynomial expansion are taken into account (Kiani and 
Eslami 2010). gives the Eq. (11) 

𝑇(𝑟(𝑥)) = 𝑇𝑚 + (𝑇𝑐 + 𝑇𝑚)Γ(𝑥)  (11) 

With 

Γ(𝑥) =

[∑ (
(−1)𝑗

𝑗𝑘 + 1
(
𝐾𝑐𝑚
𝐾𝑚

)
𝑗

(
𝑟(𝑥) − 𝑅𝑖(𝑥)
𝑅𝑜(𝑥) − 𝑅𝑖(𝑥)

)
𝑗𝑘+1

)5
𝑗=0 ]

[∑ (
(−1)𝑗

𝑗𝑘 + 1
(
𝐾𝑐𝑚
𝐾𝑚

)
𝑗

)5
𝑗=0 ]

 (12) 

Where, 𝐾𝑐𝑚 = 𝐾𝑐 − 𝐾𝑚 . 𝐾𝑐  and 𝐾𝑚  refer to the thermal conductivity of regions rich in 

ceramics and metals at a given temperature. 𝐾𝑐 and 𝐾𝑚 depend on the temperature and are also 
calculated using the Eq. (2) at respective metal and ceramic temperatures. 

 
 

 

Fig. 6 Temperature distribution profile using NLTD in SS-Al2O3 FG hollowed shaft 
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Fig. 7 Variation of FG materials’ Young’s modulus as a function of the fractional volume index k in the radial 

direction (300K-300K) SS-Al2O3 FG shaft 

 

 

Fig. 8 Variation of FG materials’ Young’s modulus as a function of the fractional volume index k in the radial 

direction (300K-900K) SS-Al2O3 FG shaft 

 

 

Fig. 9 Variation of FG material density as a function of fractional volume index k in the radial direction 
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Fig. 10 Displacements in 3 dimensions 

 
 
Figs. 7-9 show the variations in temperature, Young’s modulus and density respectively for the 

volume fraction index. 
The variation in the properties of FG materials can be seen in the curves in Figs. 6-9 which 

show the variation in temperature, Young’s modulus, and density of a geometric FG shaft  (ℎ =
0.002 m; 𝐷𝐿 = ℎ ∗ 500;  𝐿 = 𝐷𝐿 ∗ 20) . According to the power law, these properties are a 
function of the gradation index of the volume fraction, which can vary in the radial direction of the 
shaft. 

k=0 means that the shaft is made of pure ceramic,  

k=∞ means that the shaft is made of pure metal 
k=1 indicates linear gradation. 
The temperature distribution in the FG layer is nonlinear, as illustrated in Fig. 6. This is 

because thermal conductivity, modulus of elasticity, and density are all functions of shaft radius 
alone. The temperature distribution is a straight line for k=0 and k=1 and is independent of the 
shaft’s material properties. The temperature distribution depends on radial positions, material 
properties, and the law of gradation for other values of k, as shown in Table 1. According to Table 
1, the temperature gradually increases from k=0 to a certain value of the power law index, then 

begins to decrease until it reaches the initial value in value k=∞. 
 
 

3. Formulation of a motion equation. 
 

The rotor model shown in Fig. 10 is investigated in this work. The following kinematic 
hypotheses in Timoshenko’s model: the displacement fields (U, V, W) showed in Fig. 10 at any 

position in the cross section of the shaft are provided by the relation (13) (Irani Rahagi et al. 
2016). 

{

𝑈 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑈0(𝑥, 𝑡)   + 𝑧𝛽𝑥(𝑥, 𝑡) − 𝑦𝛽𝑦(𝑥, 𝑡)

𝑉 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑉0(𝑥, 𝑡) − 𝑧∅(𝑥, 𝑡)                      

𝑊 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑊0(𝑥, 𝑡) + 𝑦∅(𝑥, 𝑡)                       

 (13) 

𝑈, 𝑉, 𝑊 indicating the bending displacements of any point on the shaft along the x-axis, y-axis, 
and z-axis respectively. 
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𝑈0 , 𝑉0 and 𝑊0 , indicating the initial displacements of the bending of any point on the shaft. 
𝛽𝑥 and 𝛽𝑦 , representing the rotational angles with respect to the y and z axes. 

𝑧𝛽𝑥 : is the displacement caused by the rotation of the shaft’s cross section caused by bending 
and shears along the z axis. 

𝑦𝛽𝑦  : is the displacement due to the rotation of the cross section of the shaft induced by 

bending and shears along the y axis. 

𝑧∅(𝑥, 𝑡) : is the displacement caused by the z-axis twist’s rotation of the cross section. 
𝑦∅(𝑥, 𝑡): displacement caused by cross-sectional rotation due to torsion along the y axis. 

∅(𝑥, 𝑡): cross section rotation around the x axis.  
 

3.1 Strain energy 
 

Cylindrical coordinate system deformations (x, r, θ) (MinYung et al. 2004) 

{
 
 

 
 𝜀𝑥𝑥 =

𝜕𝑈0

𝜕𝑥
+ 𝑟sin𝜃

𝜕𝛽𝑥

𝜕𝑥
− 𝑟cos𝜃

𝜕𝛽𝑦

𝜕𝑥
                                           

𝜀𝑥𝜃 =
1

2
(𝛽𝑦sin𝜃 + 𝛽𝑥cos𝜃 − sin𝜃

𝜕𝑉0

𝜕𝑥
+ cos𝜃

𝜕𝑊0

𝜕𝑥
) + 𝑟

𝜕∅

𝜕𝑥

𝜀𝑥𝑟 =
1

2
(𝛽𝑥sin𝜃 − 𝛽𝑦cos𝜃 − sin𝜃

𝜕𝑊0

𝜕𝑥
+ cos𝜃

𝜕𝑉0

𝜕𝑥
)            

  (14) 

The stress strain relation in cylindrical coordinates (x, r, θ) in the matrix form can be written 
(Berthelot 1996) 

[

𝜎𝑥𝑥
𝜏𝑥𝜃
𝜏𝑥𝑟

] = [

𝐶11
, 0 𝑘𝑠𝐶16

,

𝑘𝑠𝐶16
, 0 𝑘𝑠𝐶66

,

0 𝑘𝑠𝐶55
, 0

] [

𝜀𝑥𝑥
𝛾𝑥𝜃   
𝛾𝑥𝑟    

]  (15) 

𝑘𝑠: is the shear correction factor.    

𝐶𝑖𝑗
,

  Constants of elasticity compared to the principal axes. 

The strain energy of FG shaft materials is expressed by replacing the Eqs. (14) and (15) in Eq. 
(16) to get Eq. (17). 

𝐸𝑑𝑎 =
1

2
∫(σxxεxx +2τxrγ𝑥𝑟 + 2τxθγxθ)𝑑𝑉  (16) 

𝐸𝑑𝑎 =
1

2
∫ A11(𝑥) (

∂U0

∂x
)
2
dx

1

2
[∫ B11(𝑥) (

∂βx

∂x
)
2
dx +

L

0
∫ B11(𝑥) (

∂βx

∂x
)
2
dx

L

0
] +

L

0

1

2
ks ∫ B66(𝑥)(

∂∅

∂x
)
2
dx +

L

0

1

2
ks [∫ (A55(𝑥) + A66(𝑥))(

∂V0

∂x
)
2
dx

L

0
+ ∫ (A55(𝑥)+

L

0

 A66(𝑥))(
∂W0

∂x
)
2
dx + ∫ (A55(𝑥) + A66(𝑥))βx

2L

0
dx   + ∫ (A55(𝑥)+  A66(𝑥))βy

2dx +
L

0

2∫ (A55(𝑥) + A66(𝑥))βx
∂W0

∂x
dx − 2∫ (A55(𝑥) + A66(𝑥))βy

∂V0

∂x
dx

L

0

L

0
]  

(17) 

The terms A11, A55, A66, B11 of the Eqs. (18)-(24) given as follows  

A11(𝑥) = 2𝜋 ∫ 𝑄11(𝑟) 𝑟 𝑑𝑟
𝑅𝑜(𝑥)

𝑅𝑖(𝑥)
  (18) 

A55(𝑥) = 𝜋 ∫ 𝑄55(𝑟) 𝑟 𝑑𝑟
𝑅𝑜(𝑥)

𝑅𝑖(𝑥)
  (19) 
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A66(𝑥) = 𝜋 ∫ 𝑄66(𝑟) 𝑟 𝑑𝑟
𝑅𝑜(𝑥)

𝑅𝑖(𝑥)
  (20) 

B11(𝑥) = 𝜋 ∫ 𝑄11(𝑟) 𝑟
3 𝑑𝑟

𝑅𝑜(𝑥)

𝑅𝑖(𝑥)
  (21) 

B66(𝑥) = 𝜋 ∫ 𝑄66(𝑟) 𝑟
3 𝑑𝑟

𝑅𝑜(𝑥)

𝑅𝑖(𝑥)
  (22) 

𝑄11(𝑟) =
𝐸(𝑟)

1−𝜗(𝑟)2
  (23) 

𝑄55(𝑟) = 𝑄66(𝑟) =
𝐸(𝑟)

2(1+𝜗(𝑟))
  (24) 

 

3.2 Kinetic energy of the shaft 
 

The rotor studied at an angular velocity Ω and a total length L, its kinetic energy is defined by: 
(Boukhalfa 2014) 

𝐸𝑐𝑎 =
1

2
∫ (𝐼𝑚(𝑥)(𝑈̇0

2+ 𝑉̇0
2 + 𝑉̇0

2) + 𝐼𝑑(𝑥)(𝛽̇𝑥
2 + 𝛽̇𝑦

2) − 2𝛺𝐼𝑝(𝑥)𝛽𝑥𝛽̇𝑦
2 +𝛺2𝐼𝑑(𝑥)(𝛽𝑥

2 +
𝐿

0

𝛽𝑦
2) + 𝛺2𝐼𝑝(𝑥))𝑑𝑥  

(25) 

The term 2𝛺𝐼𝑝(𝑥)𝛽𝑥𝛽̇𝑦
2  represents the gyroscopic effect and the term 𝐼𝑑(𝑥)(𝛽̇𝑥

2 + 𝛽̇𝑦
2) 

represents the rotational inertia effect.  

𝐼𝑚(𝑥) : Mass moment of inertia. 
𝐼𝑑(𝑥): diametric moment of inertia  

𝐼𝑝(𝑥): polar moment of inertia of the shaft per unit of length. 

The term Ω2𝐼𝑑(𝑥)(𝛽𝑥
2 +𝛽𝑦

2)representing the centrifugal stiffening, which is very small, in 

front of Ω2𝐼𝑝(𝑥) which will be neglected later. 

𝐼𝑚(𝑥) = 2𝜋∫ 𝜌(𝑟) 𝑟 𝑑𝑟
𝑅𝑜(𝑥)

𝑅𝑖(𝑥)
  (26) 

𝐼𝑑(𝑥) = 𝜋 ∫ 𝜌(𝑟) 𝑟3 𝑑𝑟
𝑅𝑜(𝑥)

𝑅𝑖(𝑥)
  (27) 

𝐼𝑝(𝑥) = 2𝜋∫ 𝜌(𝑟) 𝑟3 𝑑𝑟
𝑅𝑜(𝑥)

𝑅𝑖(𝑥)
  (28) 

With  

{
𝑅𝑖(𝑥) = tan(𝛼)  𝑥 + 𝑅𝑖−𝐿

𝑅𝑜(𝑥) = tan(𝛼) 𝑥 + (𝑅𝑖−𝐿 + ℎ)
 (29) 

tan(𝛼) =
𝑅𝑖−𝑅 − 𝑅𝑖−𝐿

𝐿
 (30) 

𝑅𝑖−𝐿: Tapered shaft left inner radius. 

𝑅𝑖−𝑅: Tapered shaft Right inner radius. 
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Dynamic analysis of a functionally graded tapered rotating shaft under thermal load… 

4. Modelling by the deferential quadrature finite elements method.  
 

The deferential quadrature finite elements method was used to solve the governing equations. 
The differential quadrature rules and Gauss-Lobatto quadrature are used to discretize the system 
energies. 

In the differential quadrature rules, derivative of any order of a function is approximated by a 

weighted linear sum of the function values at all the discrete points. Taking a function 𝑓(𝑥, 𝑡) as an 
example, the mathematic description of the GDQM is given by (Hua and Lam 1998) 

Thus, for a field variable 𝑓(𝑥) its derivative of order n in a discrete point 𝑥𝑖 can be expressed as  

𝜕𝑛𝑓(𝑥,𝑡)

𝜕𝑥𝑛
|
𝑥𝑖
= ∑ 𝑊𝑖𝑗

(𝑛)
𝑓(𝑥𝑗, 𝑡)

𝑁
𝑗=1 (𝑖 = 1,2,3,… . . , 𝑁)  (31) 

With 𝑊𝑖𝑗
(𝑛)

 is the weighting coefficient related to the derivative of order n, and the weighting 

coefficient is obtained as follows 
if 𝑛 = 1, so 

𝑊𝑖𝑗
(1)
=

𝑀(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝑀(𝑥𝑗)
𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,… ,𝑁

𝑊𝑖𝑖
(1)
= −∑ 𝑊𝑖𝑗

(1)𝑛
𝑗=1,𝑗≠𝑖 𝑖 = 1,2, … ,𝑁

  (32) 

where 

𝑀(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑘)
𝑁
𝑘=1,𝑘≠𝑖   

𝑀(𝑥𝑗) = ∏ (𝑥𝑗 − 𝑥𝑘)
𝑁
𝑘=1,𝑘≠𝑖   

(33) 

If 𝑛 > 1, secondary and higher order derivatives, the weighting coefficients are determined 
using the following simple recurrence relationship: 

𝑊𝑖𝑗
(𝑛)

= 𝑛(𝑊𝑖𝑗
(1)
∗ 𝑊𝑖𝑖

(𝑛−1)
−

𝑊
𝑖𝑗
(𝑛−1)

(𝑥𝑖−𝑥𝑗)
)

𝑖 ≠ 𝑗, 𝑖, 𝑛 > 1
𝑗 = 1,2,… ,𝑁

𝑊𝑖𝑖
(𝑛)

= −∑ 𝑊𝑖𝑗
(𝑛)𝑁

𝑗=1,𝑗≠𝑖 𝑖 = 1,2,… , 𝑁

  (34) 

To get denser population near boundaries, the sampling points are selected based on the 
Chebyshev-Gauss-Lobatto grid distribution. 

𝑥𝑗 =
𝐿

2
[1 − cos (

𝑗−1

𝑁−1
𝜋)]     𝑗 = 1,2,… ,𝑁  (35) 

The theory of Gauss-Lobatto quadrature rules can be found in the mathematical literature; The 

Gauss-Lobatto quadrature rule with a degree of accuracy (2𝑛 − 3)  for the function 𝑓(𝑥) defined 
in [-1, 1] is 

∫ 𝑓(𝑥)𝑑𝑥
1

−1
= ∑ 𝐶𝑗𝑓(𝑥𝑗)

𝑁
𝑗=1   (36) 

With the weighting coefficient 𝐶𝑗  of the Gauss-Lobatto, integration is given by 

𝐶1 = 𝐶𝑁 =
2

𝑁(𝑁−1)
,     𝐶𝑗 =

2

𝑁(𝑁−1)[𝑃𝑁−1(𝑥𝑗)]
2

 (𝑗 ≠ 1,𝑁)
  (37) 

𝑥𝑗  is the (𝑗 − 1)  zero of the first order derivative of 𝑃𝑁−1(𝑥) . To solve the roots of the 
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Legendre polynomials, it will use the recursivity formula as Eqs. (38) and (39); it is easy to obtain 
thousands of roots. 

𝑃𝑁+1(𝑥) =
2𝑁+1

𝑁+1
𝑥𝑃𝑁(𝑥) −

𝑁

𝑁+1
𝑃𝑁−1(𝑥)  (38) 

With 𝑃0(𝑥) = 1, 𝑃1(𝑥) = 𝑥 . The nth-order derivation of the Legendre polynomials can be 
determined by the following formula 

𝑃𝑁+1
(𝑛)
(𝑥) = 𝑥𝑃𝑁

(𝑛)
(𝑥) + (𝑁 +𝑛)𝑃𝑁

(𝑛)
(𝑥) (39) 

Assuming that the deflection function is in the form 

𝑢(𝑥) = ∑ 𝐿𝑖(𝑥)𝑢𝑖
𝑁
𝑖=1   

𝑤(𝑥) = ∑ 𝐿𝑖(𝑥)𝑤𝑖
𝑁
𝑖=1   

(40) 

With  𝐿𝑖 is the Lagrange polynomial, and 𝑢𝑖 = 𝑢(𝑥𝑖), 𝑤𝑖 = 𝑤(𝑥𝑖) are the displacements of the 
Gauss Lobatto quadrature points or the DQ nodal displacements of the beam finite element. 

Using DQ rules and Gauss-Lobatto quadrature the expressions of kinetic energy and strain 
energy (41-42) can be written as follows 

𝐸𝑐𝑎 =
1

2
((𝑈̇̅0

𝑇
√𝐼𝑚𝐶√𝐼𝑚𝑈̇̅0 + 𝑉̇̅0

𝑇
√𝐼𝑚𝐶√𝐼𝑚𝑉̇̅0 + 𝑊̇̅0

𝑇
√𝐼𝑚𝐶√𝐼𝑚𝑊̇̅0) + (𝛽̇̅𝑥

𝑇

√𝐼𝑑𝐶√𝐼𝑑 𝛽̇̅𝑥 +

𝛽̇̅𝑦
𝑇
𝐶𝛽̇̅𝑦) − 2𝛺𝛽̅𝑥

𝑇
√𝐼𝑝𝐶√𝐼𝑝𝛽̇̅𝑦)  

(41) 

With 

𝐼𝑚 = 2𝜋[𝐶1𝜌(𝑟1) 𝑟1  𝐶2𝜌(𝑟2) 𝑟2… 𝐶𝑁𝜌(𝑟𝑁) 𝑟𝑁] (42) 

𝐼𝑑 = 𝜋[𝐶1𝜌(𝑟1) 𝑟1
3  𝐶2𝜌(𝑟2) 𝑟2

3… 𝐶𝑁𝜌(𝑟𝑁) 𝑟𝑁
3] (43) 

𝐼𝑝 = 2𝜋[𝐶1𝜌(𝑟1) 𝑟1
3  𝐶2𝜌(𝑟2) 𝑟2

3… 𝐶𝑁𝜌(𝑟𝑁) 𝑟𝑁
3] (44) 

 

Eda=
1

2
𝑈̅0

𝑇
𝑊(1)𝑇  √A11𝐶√A11𝑊

(1)𝑈̅0 +
1

2
[𝛽̅𝑦

𝑇
𝑊(1)𝑇  √B11𝐶√B11𝑊

(1)𝛽̅𝑦 +

𝛽̅𝑥
𝑇
𝑊(1)𝑇  √B11𝐶√B11𝑊

(1)𝛽̅𝑥] +
1

2
ks∅̅

𝑇𝑊(1)𝑇  √B66𝐶√B66𝑊
(1)∅̅ +

1

2
ks [𝑉̅0

𝑇
𝑊(1)𝑇  √(A55 + A66)𝐶√(A55 + A66)𝑊

(1)𝑉̅0 +

𝑊̅0
𝑇
𝑊(1)𝑇  √(A55 + A66)𝐶√(A55 + A66)𝑊

(1)𝑊̅0 +

𝛽̅𝑥
𝑇
 √(A55 + A66)𝐶√(A55 + A66)𝛽̅𝑥    + 𝛽̅𝑦

𝑇
 √(A55 + A66)𝐶√(A55 + A66)𝛽̅𝑦 +

2𝛽̅𝑥
𝑇
 √(A55 + A66)𝐶√(A55 + A66)𝑊

(1)𝑊̅0 − 𝛽̅𝑦
𝑇
 √(A55 + A66)𝐶√(A55 + A66)𝑊

(1)𝑉̅0]  

(45) 

With  𝑊(1) indicates the matrices of the weighting coefficients of the DQ rules for the first 
order derivatives respectively calculated with Eqs. (31)-(34), with respect to the Gauss-Lobatto 
nodes, and 

𝐶 = 𝑑𝑖𝑎𝑔[𝐶1  𝐶2… 𝐶𝑁] (46) 

Where 𝐶𝑗  are the weighting coefficients of the Gauss-Lobatto integration. 
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{
 
 
 

 
 
 𝑈̅0

𝑇
= [𝑈1 𝑈2    …    𝑈𝑁]

𝑉̅0
𝑇
= [𝑉1 𝑉2    …    𝑉𝑁]

𝑊̅0
𝑇
= [𝑊1 𝑊2    …    𝑊𝑁]

∅̅𝑇 = [∅1 ∅2    …    ∅𝑁]

𝛽̅𝑦
𝑇
= [𝛽𝑦1 𝛽𝑦2    …    𝛽𝑦𝑁]

𝛽̅𝑥
𝑇
= [𝛽𝑥1 𝛽𝑥2    …    𝛽𝑥𝑁]

 (47) 

In order to construct an element that satisfies the requirements of continuity between elements, 
the element displacement vectors must be 

𝑢𝑇 = [𝑢1    𝑢′1    𝑢3   …   𝑢𝑁−2     𝑢𝑁    𝑢′𝑁] (48) 

With 𝑢 designates 𝑈0, 𝑉0, 𝑊0,  ∅, 𝛽𝑦 and 𝛽𝑥 

The relation between 𝑢 and 𝑢̅ is defined using the DQ rule 

𝑢 = 𝑄𝑢̅  (49) 

where   

𝑄 =

[
 
 
 
 
 
 
1 0 0 ⋯ 0 0

𝑊1,1
(1)

𝑊1,2
(1)

𝑊1,3
(1)

⋯ 𝑊1,𝑁−1
(1)

𝑊1,𝑁
(1)

0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

𝑊𝑁,1
(1)

𝑊𝑁,2
(1)

𝑊𝑁,3
(1)

⋯ 𝑊𝑁,𝑁−1
(1)

𝑊𝑁,𝑁
(1)
]
 
 
 
 
 
 

 (50) 

After replacing the displacements and rotations in the equations of kinetic and strain energies of 
the rotor system with the DQFEM weightings and applying the Lagrange’s principle, it can deduce 
the elementary matrices of our system. The combination of these matrices yields the global 
matrices of the governing equation of motion of the rotor system, which are denoted as 

[𝑀]{𝑞̈} + Ω[𝐺]{𝑞̇} + [𝐾]{𝑞} = {0} (51) 

[𝑀].   Mass matrix of the shaft. 
[𝐺].    Gyroscopic matrix. 
[𝐾].   Strain matrix. 
Where 

[𝑀] =

[
 
 
 
 
 
 
 𝑄

−𝑇√𝐼𝑚𝐶√𝐼𝑚𝑄
−1 0 0 0 0 0

0 𝑄−𝑇√𝐼𝑚𝐶√𝐼𝑚𝑄
−1 0 0 0 0

0 0 𝑄−𝑇√𝐼𝑚𝐶√𝐼𝑚𝑄
−1 0 0 0

0 0 0 𝑄−𝑇√𝐼𝑝𝐶√𝐼𝑝𝑄
−1 0 0

0 0 0 0 𝑄−𝑇√𝐼𝑑𝐶√𝐼𝑑𝑄
−1 0

0 0 0 0 0 𝑄−𝑇√𝐼𝑑𝐶√𝐼𝑑𝑄
−1]
 
 
 
 
 
 
 

  

  (52) 
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[𝐺] =

[
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Ω𝐼𝑝√𝐼𝑝𝐶√𝐼𝑝

0 0 0 0 −Ω𝐼𝑝√𝐼𝑝𝐶√𝐼𝑝 0 ]
 
 
 
 
 
 

  (53) 

[𝐾] =

[
 
 
 
 
 
 
 
[𝐾𝑢] 0 0 0 0 0

0 [𝐾𝑣] 0 0 0 [𝐾𝑣𝛽𝑦]

0 0 [𝐾𝑤] 0 [𝐾𝑤𝛽𝑥] 0

0 0 0 [𝐾∅] 0 0

0 0 [𝐾𝛽𝑥𝑤] 0 [𝐾𝛽𝑥] 0

0 [𝐾𝛽𝑦𝑣] 0 0 0 [𝐾𝛽𝑦] ]
 
 
 
 
 
 
 

  (54) 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 [𝐾𝑢] = 𝑊

(1)𝑇  √A11𝐶√A11𝑊
(1)

[𝐾𝑣] = 𝑘𝑠𝑊
(1)𝑇  √(A55 + A66)𝐶√(A55 + A66)𝑊

(1)

[𝐾𝑤] = 𝑘𝑠𝑊
(1)𝑇  √(A55 + A66)𝐶√(A55 + A66)𝑊

(1)

[𝐾∅] = 𝑘𝑠𝑊
(1)𝑇  √B66𝐶√B66𝑊

(1)

[𝐾𝛽𝑥] = 𝑊
(1)𝑇  √B11𝐶√B11𝑊

(1) + 𝑘𝑠√(A55 + A66)𝐶√(A55 + A66)

[𝐾𝛽𝑦] = 𝑊
(1)𝑇  √B11𝐶√B11𝑊

(1) + 𝑘𝑠√(A55 + A66)𝐶√(A55 + A66)

[𝐾𝑣𝛽𝑦] = −𝑘𝑠√(A55+ A66)𝐶√(A55 + A66)𝑊
(1)

[𝐾𝑤𝛽𝑥] = 𝑘𝑠√(A55 + A66)𝐶√(A55+ A66)𝑊
(1)

[𝐾𝛽𝑥𝑤] = [𝐾𝑤𝛽𝑥]
𝑇

[𝐾𝛽𝑦𝑣] = [𝐾𝑣𝛽𝑦]
𝑇

   (55) 

The assembly of the elementary matrices to obtain the total matrices is similar to that of the 

classical finite element method. 
 

 

5. Validation 
 
Efforts have been made to carefully validate this work with literature. Due to the scarcity as 

soon as important research work on the use of the FG shaft is available. Validation at each stage 

has been significantly confirmed by the literature.  
Validation with the literature is carried out in order to determine the accuracy with which the 

grading of the material is carried out. The algorithm performed with the MATLAB programming 
language concerns different cases of gradation of the properties of the FG material. The material 
properties are calculated at the mean radius of each layer for different material laws, and its 
variation with the power law coefficient is graphically represented. 

 

5.1 The variation of FG material properties in radial direction 
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Fig. 11 Young’s Modulus variation for different k values when Tm=300K and Tc= 900K for SS-ZrO2 FG shaft 

 

 

Fig. 12 Young’s Modulus variation along the radial direction for different k values when for Al2O3 FG shaft 

at room temperature 

 
 
The gradation of materials as a function of temperature, an FG shaft consisting of SS-ZrO2 was 

considered based on material data available in the literature (Reddy and Chin 1998). The radius 

(Ro) of the shaft is taken as 50 mm, and the outer ceramic layer is kept at a temperature of 900K 
while the inner metal core is at room temperature 300K. The variation in material properties such 
as Young’s modulus, Poisson’s ratio and temperature the distribution profile has been showed in 
with Fig. 11 in the work of (Gayen et al. 2017b). The Young’s modulus plot for different power 
laws, the coefficients obtained using the code are shown in Fig. 11. The algorithm was then 
applied to generate a material distribution profile for a 40 mm outer radius FG shaft made of SS-
Al2O3, where the outer ceramic surface and the metal of the inner core were maintained at room 

temperature. Fig. 12. Shows that the resulting radial material variations are in good agreement 
with the patterns obtained from the literature work (Gayen et al. 2018). 
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Fig. 13 Young’s Modulus variation along the radial direction using exponential law for SS-Al2O3 FG shaft 

at room temperature 

 

 

Fig. 14 Convergence of natural frequency with respect to the mesh element h and a sampling point equal to 

N=5 

 

 

5.2 Study of convergence. 
 

To do the convergence of the modelling method we vary the sampling points number N and the 
mesh elements number h to see the speed of the convergence. A shaft with inner material is 
SUS304 and the outer material is Nickel (Ni), the mechanical properties of these two poles are 
shown in Tables 1 and 2 respectively. Geometrical dimensions (layer thickness FG h=0.002 m, 

ratio diameter thickness 𝐷𝐿/ℎ = 500, ratio length diameter 𝐿/𝐷𝐿 = 20, and a shear correction 
factor Ks=0.5.  The outside and inside temperature is 300K. 

Figs. 14-16 showing the convergence of the four Eigen frequencies with respect to the sampling 

number N and the number of mesh elements h, of a rotating FG shaft composed of Nickel (Ni) and 
SUS304 stainless steel, with boundary conditions simply supported in both ends. The figures show  
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Fig. 15 Convergence of natural frequency with respect to the sampling point N and one mesh element h=1 

 

 

Fig. 16 Convergence of natural frequency with respect to the sampling point N and mesh element h 

 
 

that the first three natural frequencies converge rapidly. We can see that the first frequency start 

converging at N=7 in Fig. 15, and h=3 in Fig. 14. However, in the combination between N and h it 
starts converging at N=6, h=2. The second frequency start converging at N=10 in Fig. 15, and h=7 
in Fig. 14. However, in the combination between N and h it starts converging at N=7, h=3. It 
concluded that the combination between the two methods DQM and FEM gives good convergence 
with small sampling numbers N and mesh numbers h, which makes the method acceptable. 

For more details of Figs. 14-16, see Table 2. 
Therefore, in subsequent calculations, N=7 and h=3 is used. 

 
5.3 Validation with a cylindrical FG shaft 
 
To do the validation with a cylindrical shaft FG it is sufficient to put the angle of inclination in 

Eq. (29), α=0. The same shaft as in (Loy et al. 1999) has been used, such that the inner material is 
SUS304 and the outer material is Nickel (Ni), the mechanical properties of these two poles are  
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Table 2 Convergence of natural frequency with rotational speed Ω=0 

N 𝑓1 𝑓2 𝑓3 h 𝑓1 𝑓2 𝑓3 N-h 𝑓1 𝑓2 𝑓3 

5 6.6413 33.6134 71.8006 1 6.6413 33.6134 71.8006 5-1 6.6413 33.6134 71.8006 

6 6.6435 26.4607 87.4568 2 6.6420 26.4441 60.7320 6-2 6.6415 26.4526 59.2184 

7 6.6415 26.5566 59.3804 3 6.6415 26.4545 59.0531 7-3 6.6415 26.4448 59.0544 

8 6.6415 26.4448 60.0532 4 6.6415 26.4466 59.0969 8-4 6.6415 26.4448 59.0544 

9 6.6415 26.4453 59.0572 5 6.6415 26.4453 59.0662 9-5 6.6415 26.4448 59.0544 

10 6.6415 26.4448 59.0688 6 6.6415 26.4449 59.0585 10-6 6.6415 26.4448 59.0544 

11 6.6415 26.4448 59.0544 7 6.6415 26.4448 59.0561 11-7 6.6415 26.4448 59.0544 

12 6.6415 26.4448 59.0545 8 6.6415 26.4448 59.0552 12-8 6.6415 26.4448 59.0544 

13 6.6415 26.4448 59.0544 9 6.6415 26.4448 59.0548 13-9 6.6415 26.4448 59.0544 

14 6.6415 26.4448 59.0544 10 6.6415 26.4448 59.0546 14-10 6.6415 26.4448 59.0544 

15 6.6415 26.4448 59.0544 11 6.6415 26.4448 59.0545 15-11 6.6415 26.4448 59.0544 

16 6.6415 26.4448 59.0544 12 6.6415 26.4448 59.0545 16-12 6.6415 26.4448 59.0544 

17 6.6415 26.4448 59.0544 13 6.6415 26.4448 59.0545 17-13 6.6415 26.4448 59.0544 

18 6.6415 26.4448 59.0544 14 6.6415 26.4448 59.0544 18-14 6.6415 26.4448 59.0544 

19 6.6415 26.4448 59.0544 15 6.6415 26.4448 59.0544 19-15 6.6415 26.4448 59.0544 

20 6.6415 26.4448 59.0544 16 6.6415 26.4448 59.0544 20-16 6.6415 26.4448 59.0544 

 
Table 3 Variation in natural vibration frequencies as a function of the power law index with rotation speed 

Ω=0 

POWER LAW EXP LAW 

Material 

gradation 
DQM DQFEM 

h-p FEM 

(Assem et al. 2022) 

(Loy et al. 

1999) 
 DQM DQFEM 

0 13.3459 13.2355 13.2537 12.894 100% Ni 13.1524 13.2355 

0.5 13.5626 13.4502 13.4667 13.103 

EXP FG  

(Ni-SUS304) 
13.4801 13.5652 

0.7 13.6149 13.5022 13.5181 13.154 

1 13.6743 13.5611 13.5766 13.211 

2 13.7883 13.6742 13.6889 13.321 

5 13.9048 13.7897 13.8036 13.433 

15 13.9789 13.8631 13.8766 13.505 

30 14.0005 13.8848 13.8980 13.526 100% SUS304 13.8204 13.9077 

 
 

shown in Tables 1 and 2 respectively. And geometrical dimensions (layer thickness FG h=0.002 m, 

ration diameter thickness 𝐷𝐿/ℎ = 1000, ratio length diameter 𝐿/𝐷𝐿 = 10, and a shear correction 
factor Ks=0.5. The outside and inside temperature is 300K. 

Prior to validation with the literature a convergence study of the results of the same shaft was 
made with the h-p version of the finite element method and the DQM, see Figs. 10-11. 

Table 3 shows the results of the validation with that found in (Assem et al. 2022) and (Loy et 

al. 1999), it can be seen that the difference in results between the methods is small. 
Table 4 represents the validation of the natural frequencies of this method with the work in the 

literature, such that the geometric and physical parameters of the shaft are as follows: The 
diameter D and the total length L of the solid shaft are respectively 0.05 m and 0.9 m. The 
modulus of elasticity E, the density ρ and the Poisson’s ratio ν are 

E=2×1011 N/m2, ν=0.3, ρ=7800 kg/m3. 
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Table 4 Natural vibration frequencies of isotropic rotating shaft with rotation speed Ω = 104 

Rotating speed 

Ω [rad/s] 

Ω = 104 

Backward mode (B) Forward mode (F) 

Bending mode 

𝜔 [Hz] 
Present 

(Boukhalfa 

2014) 

(René-Jean 

1988) 

(Assem et 

al. 2022) 
Present 

(Boukhalfa 

2014) 

(René-Jean 

1988) 

h-p FEM 

(Assem et 

al. 2022) 

1 122.2145 122.3467 119.7548 122.3144 122.7438 134.2918 125.8150 122.9479 

2 487.6529 484.6529 479.0191 487.8729 490.2952 530.4377 503.2598 490.3922 

3 1092.4635 1073.5822 1077.7931 1092.5785 1098.0896 1169.8098 1132.3346 1098.1938 

 

 

Fig. 17 Campbell’s diagram of the bending of the first mode of the tapered FG rotor shaft simply supported 

((F) forward modes (B) backward modes)-exponential law 

 
 

6. Influence of the conical angle α of the hollow FG tapered shaft. 
 

In this section, the influence of the cone angle α on the natural frequencies of a hollow FG 
tapered shaft with simple supports at both ends is studied. The geometrical system dimensions (FG 

layer thickness h=0.002 m, diameter to thickness ratio 𝐷𝐿 / ℎ =  500), and a shear correction 
factor Ks=0.5. The cone angle (α) varies between 0° and 7°, because usually the cone angle of a 
rotor shaft rarely exceeds 7°. With a slenderness ratio set at L/DL=10. 

The tapered shaft FG consists of Nickel (Ni) as outer material and stainless steel (SUS304) as 
inner material. The external and internal temperature is 300K in one case, and the external and 
internal temperature is 1500K, 300K respectively in the second case. 

Figs. 17-18 shows the Campbell diagram for two different conical angles (α=0° and α=7°), for 
an FG tapered shaft made of Ni-SUS304. The results in Fig. 17 are obtained with the exponential 
distribution of FG, and the results in Fig. 18 are obtained with the power distribution with an index 
of volume fraction equal to 0.5. 

According to the results presented in Tables 5-6, with a rotation speed equal to 10 Hz it can be 
seen that the results calculated with the Exponential Law are close to the results calculated with 
the Power Law with a volume index fraction equal to 1 in an ambient temperature of 300K.  
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Fig. 18 Campbell’s diagram of the bending of the first mode of the tapered FG rotor shaft simply supported 

((F) forward modes (B) reverse modes)-power law k=0.5 

 
Table 5 Variation of natural frequencies as a function of the cone angle 𝛼 (outer Ni- inner SUS304) 

Internal temperature=300K/External temperature=300K 

 POWER LAW 
EXP-LAW 

𝛼° k=0.5 k=0.7 k=1 k=3 k=5 k=10 

0° 26.8738 26.9774 27.0952 27.4359 27.5520 27.6586 27.1034 

1° 31.2655 31.3861 31.5231 31.9195 32.0545 32.1785 31.5326 

2° 35.2649 35.4009 35.5555 36.0026 36.1548 36.2947 35.5662 

3° 38.9753 39.1257 39.2965 39.7906 39.9589 40.1134 39.3084 

4° 42.4563 42.6201 42.8062 43.3444 43.5277 43.6960 42.8191 

5° 45.7455 45.9221 46.1226 46.7025 46.8999 47.0813 46.1365 

6° 48.8685 49.0571 49.2713 49.8908 50.1018 50.2955 49.2862 

7° 51.8436 52.0437 52.2709 52.9281 53.1519 53.3574 52.2867 

8° 54.6841 54.8952 55.1349 55.8281 56.0641 56.2809 55.1515 

9° 57.4006 57.6221 57.8737 58.6014 58.8491 59.0766 57.8912 

10° 60.0010 60.2326 60.4956 61.2563 61.5152 61.7530 60.5139 

 
 

However, it changes widely when the gape is large between the internal and external temperature. 
It can also be seen that as the conical angle increases, the frequencies increase. On the other 

hand, the influence of temperature causes the frequencies to decrease. 
It is noted from the results presented in Tables 5-6 that the frequencies increase with the 

increase of the conical angle  𝛼 , whatever the deference between the external and internal 
temperature, which is physically explained that the system becomes more resistant to vibration 

responses. The results in Table 6 show that the increase in conical angle compensates for the 
decrease in frequencies due to temperature increases, making the rotor movement more resistant to 
vibration responses. 

It can be seen from Tables 5-6 that the frequencies increase with respect to the increase in the 
fraction volume index, which is logical, since at k=0 the FG layer is 100% external metal which is 
the Nickel, and nickel has greater thermal conductivity compared to that of the SUS304 metal. 
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Table 6 Variation of natural frequencies as a function of the cone angle 𝛼 (outer Ni-inner SUS304) 

Internal temperature=300K/External temperature=300K 

 POWER LAW 
EXP-LAW 

𝛼° k=0.5 k=0.7 k=1 k=3 k=5 k=10 

0° 25.7530 26.0672 26.3854 27.1511 27.3750 27.5800 21.9929 

1° 29.9622 30.3277 30.6978 31.5884 31.8488 32.0871 25.5884 

2° 33.7955 34.2076 34.6250 35.6294 35.9229 36.1917 28.8627 

3° 37.3518 37.8073 38.2685 39.3783 39.7027 39.9997 31.9004 

4° 40.6882 41.1843 41.6867 42.8954 43.2488 43.5721 34.7503 

5° 43.8407 44.3752 44.9165 46.2188 46.5994 46.9478 37.4432 

6° 46.8340 47.4050 47.9832 49.3742 49.7808 50.1530 40.0000 

7° 49.6854 50.2911 50.9045 52.3802 52.8115 53.2062 42.4357 

8° 52.4080 53.0468 53.6938 55.2502 55.7051 56.1214 44.7612 

9° 55.0116 55.6821 56.3612 57.9948 58.4723 58.9093 46.9852 

10° 57.5040 58.2049 58.9148 60.6223 61.1214 61.5781 49.1142 

 
Table 7 Variation of natural frequencies as a function of the cone angle 𝛼 (outer Al2O3-inner SUS304) 

Internal temperature=300K/External temperature=300K 

 POWER LAW 
EXP-LAW 

𝛼° k=0.5 k=0.7 k=1 k=3 k=5 k=10 

0° 40.0427 38.2487 36.3785 31.7361 30.3567 29.1604 36.8773 

1° 46.5846 44.4974 42.3214 36.9207 35.3163 33.9250 42.9017 

2° 52.5422 50.1878 47.7334 41.6422 39.8329 38.2639 48.3879 

3° 58.0693 55.4671 52.7545 46.0226 44.0231 42.2894 53.4778 

4° 63.2546 60.4200 57.4650 50.1321 47.9543 46.0659 58.2529 

5° 68.1543 65.1000 61.9160 54.0153 51.6688 49.6344 62.7649 

6° 72.8064 69.5435 66.1421 57.7022 55.1957 53.0226 67.0490 

7° 77.2380 73.7764 70.1680 61.2144 58.5554 56.2502 71.1300 

8° 81.4694 77.8180 74.0119 64.5678 61.7633 59.3319 75.0266 

9° 85.5158 81.6830 77.6878 67.7747 64.8310 62.2790 78.7529 

10° 89.3895 85.3830 81.2068 70.8447 67.7677 65.1002 82.3201 

 
Table 8 Variation of natural frequencies as a function of the cone angle 𝛼 (outer Al2O3-inner SUS304) 

Internal temperature=300K/External temperature=1500K 

 POWER LAW 
EXP-LAW 

𝛼° k=0.5 k=0.7 k=1 k=3 k=5 k=10 

0° 39.2519 37.6080 35.8802 31.5383 30.2364 29.0950 30.3795 

1° 45.6651 43.7523 41.7420 36.6908 35.1764 33.8490 35.3435 

2° 51.5054 49.3478 47.0802 41.3831 39.6752 38.1782 39.8642 

3° 56.9238 54.5390 52.0327 45.7363 43.8489 42.1948 44.0582 

4° 62.0070 59.4091 56.6790 49.8203 47.7646 45.9629 47.9928 
5° 66.8103 64.0110 61.0693 53.6794 51.4645 49.5234 51.7107 

6° 71.3708 68.3804 65.2377 57.3434 54.9774 52.9040 55.2407 

7° 75.7152 72.5427 69.2087 60.8339 58.3239 56.1244 58.6034 

8° 79.8632 76.5168 73.0001 64.1665 61.5192 59.1993 61.8141 

9° 83.8300 80.3173 76.6258 67.3535 64.5748 62.1398 64.8846 

10° 87.6275 83.9555 80.0968 70.4045 67.4999 64.9547 67.8239 
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Fig. 19 Temperature-dependent variation of the first frequency, (outer Ni-inner SUS304) 

 

 

Fig. 20 Temperature-dependent variation of the first frequency, (outer Al2O3-inner SUS304) 

 
 
On the other hand, in Tables 7-8, we notice the reverse, which is the decrease in frequencies 

compared to the increase in the fraction volume index, because the external metal is Al2O3, which 
has a lower conductivity. Thermal compared to SUS304. 
 
 

7. Influence of external temperature on natural frequencies. 
 

In this section, the shaft studied is the same as the one in the previous section, only the 
temperature and the composition of FG materials are changed. 

The external temperature is varied from 300K to 1500K, keeping the internal metal temperature 
fixed at 300K. 

Figs. 19-22 depict the frequencies of four different types of FG mixes (AL2O3-SUS304, Ni-
SUS304, Silicone nitrid-SUS304, Zirconia-SUS304). The silicon nitrid-SUS304 and AL2O3- 
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Fig. 21 Temperature-dependent variation of the first frequency, (outer Zirconia-inner SUS304) 

 

 

Fig. 11 Temperature-dependent variation of the first frequency, (outer Silicon Nitride-inner SUS304) 

 
 

SUS304 mixtures have the highest frequencies in all cases, according to these results (Figs. 19-
22). It explains why silicone nitrid-SUS304 and AL2O3-SUS304 mixtures outperform other 
mixtures in terms of temperature resistance. The frequencies of the mixtures Ni-SUS304, Zr-
SUS304, are very close. 

Note that as the cone angle increases, the more vibration-resistant the deflecting system 
becomes (i.e., the natural frequencies increase). On the other hand, the influence of temperature 

always decreases the frequencies and makes the system less resistant to vibration. The FG material 
distribution method has a great influence on the dynamic and thermal behaviour of the FG shaft. 
For all of the FG materials tested in this study, the frequencies fall as the temperature rises, albeit 
in varied quantities. As a result, each FG material has a different temperature resistance. It is clear 
that as the temperature rises, the FG shaft becomes increasingly unstable. 

In this section, three cases of FGM law are shown, in case for the power law for a fraction 
volume index equal to 0.5 and 1, and also the exponential law. We notice between the results  
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Fig. 23 Variation of the 1st frequency under the interne and external thermal gradient for a conical angle 

equal to 7°  

 

 

Fig. 24 Variation of the 1st frequency under the interne and external thermal gradient for a conical angle 

equal to 0° 

 
 

calculate with the fraction volume index which is equal to 0.5 and the fraction volume index which 
is equal to 1, that the interval of decreasing frequencies relative to increasing temperature, increase 

with increasing fraction volume index. Because in the power law, the greater the fraction volume 
index, the thinner the outer ceramic layer, that is, the less resistance to temperature change. 

 

7.1 Internal temperature influence 
 
In this section the external temperature (ceramic temperature) is varied for deferent internal 

temperature (metal temperature Tm), and a combination between Silicon Nitride and SUS304 

stainless steel. The frequencies in this section are obtained with a rotation speed equal to 0 rpm. 
According to Figs. 23 and 24, the difference between the frequency curves decreases with the 

increase in the internal temperature of the metal Tm in the case of graduation with the power law. 
On the other hand, with the exponential gradation, the difference between the frequencies curves 
increases with the increase in internal temperature. 
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Fig. 25 Temperature-dependent variation of the first critical speed, (outer Ni-inner SUS304) 

 

 

Fig. 26 Temperature-dependent variation of the first critical speed, (outer Al2O3-inner SUS304) 

 

 

8. Influence of external temperature and length-diameter ratio on natural 
frequencies 
 

Figs. 25-26 illustrate the influence of Temperature and length-diameter ratio with two conicity 

angles 𝛼 = [0, 7] and a power law index 𝑘 = [0.5, 1], on the behaviour of critical speed of the 
rotating  tarped shaft. It is noticed that the critical velocities have the same behaviour as the natural 
frequencies. On the other hand, it can be seen that the increase in value of temperature reduces the 
critical speeds of the rotor, which is physically logical because the shaft loses its rigidity by 

increasing the temperature. In addition, the increase in the length-to-diameter ratio, the critical 
speeds decrease, and this is due to the low resistance to bending when the length-to-diameter ratio 
is high. The most important effect in this study is that the rise of conicity angle increases the value 
of critical speeds, whatever the value of the temperature, which explains that the more the conicity 
angle increases, the rotor becomes more resistant to bending critical speeds. 
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9. Conclusions 
 
In this paper, the deferential quadrature method combined with Timoshenko’s beam theory, 

taking into account the gyroscopic effect and the rotational inertia was performed to study the 
vibration characteristics of FG tapered rotating shafts simply supported on a ceramic base. Several 
FG mixtures were used. The elements of the FG tapered shaft are modelled with two different 
gradations, the gradation of the power law with NLTD and the exponential gradient with ETD. 
Several examples have been processed to determine the effect of the cone angle (α) and the 
influence of temperature on the fundamental frequencies of the FG tapered rotor shafts. The 
following conclusions can be drawn from this work: 

• The differential quadrature method shows good convergence and results close to those found 
in the literature. 
• The taper of the shaft makes the system more resistant to vibrations, which explains why the 
frequencies increasing with the increase of the conical angle. 
• In the case of the results obtained with the power law, the variation of the volume fraction 
index influences the frequency behaviour is noticed. By increasing the value of the volume 
fraction index, the frequencies approach the frequencies when the shaft is composed of 100% 
internal materials (metal), and it is also the same in the opposite direction, the more the volume 
fraction index is decreased, the more the frequencies approach the frequencies when the shaft is 
composed of 100% external materials (ceramic). 
• The frequencies obtained with exponential gradation are close to those obtained with power 
law gradation with a fraction volume index equal to k=1. 
• The results show that the frequencies decrease with the increase in the external temperature 
gradient, regardless of the type of ceramic, but with deferent proportions, which explains the 
temperature resistance deference of each ceramic. In the ceramic examples treated in this paper, 
Silicon Nitride is the most temperature resistant; Aluminium Oxide (Al2O3) comes second. 
• The advantage of using an FG shaft instead of a homogeneous shaft is the resistance to 
temperature effects on frequency behaviour; this is clearly inferred from the results. 
• The advantage of the taper angle in the geometry of the FG shaft is that it considerably 
increases the resistance of the FG shaft, which in the result explains the increase in frequencies. 

• By increasing the temperature, the drop in the natural frequencies of the FG shaft is more 
stable than that of a homogeneous shaft in SUS304. 
• The influence of temperature causes the natural frequencies to decrease; on the other hand, it 
has been found that the increase of the conical angle causes the natural frequencies to increase. 
Therefore, it was concluded that to avoid significant decreases in frequencies relative to 
temperature, the geometric parameter of conical angle is increased, and to make the structure of 
the shaft more resistant to the influence of temperature. 

• A rotor shaft under the influence of temperature is exposed to hazardous frequencies and 
critical speeds due to the change in the material’s mechanical characteristics due to 
temperature. The addition of FG materials gives significant resistance to temperature influence, 
which implies resistance to vibration frequencies. In this work, the geometric parameter of the 
conical angle was used, to optimize the resistance to the frequencies of vibrations. 
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