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Abstract.  A linearised buckling analysis of thin-walled beams is addressed in this paper. Beam theories 
formulated according to a unified approach are presented. The displacement unknown variables on the 
cross-section of the beam are approximated via Mac Laurin’s polynomials. The governing differential 
equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend 
upon the expansion order. Classical beam theories such as Euler-Bernoulli’s and Timoshenko’s can be 
retrieved as particular cases. Slender and deep beams are investigated. Flexural, torsional and mixed 
buckling modes are considered. Results are assessed toward three-dimensional finite element solutions. The 
numerical investigations show that classical and lower-order theories are accurate for flexural buckling 
modes of slender beams only. When deep beams or torsional buckling modes are considered, higher-order 
theories are required. 
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1. Introduction 
 

Thin-walled beams are widely used as primary and secondary elements in structures of civil, 
mechanical and space engineering. The accurate prediction of the buckling loads (and, in particular, 
of the critical one) is mandatory for a safe and effective design. Stability analysis of beams 
represents, therefore, an interesting and important research topic.  

To the best of the authors’ knowledge, Wagner (1929, 1936), Goodier (1942), Timoshenko 
(1945), Timoshenko and Goodier (1970), Bleich (1952) and Vlasov (1959) are the pioneers of the 
theory of thin-walled beams stability. The governing differential equations were derived from 
either geometric/equilibrium considerations or the principle of stationary potential energy. Within 
the framework of Euler-Bernoulli’s kinematic model, Nishino et al. (1977) proposed a variational 
formulation based upon the Principle of Virtual Displacements (PVD). Saucha and Rados (2001) 
presented a review on Vlasov’s theory of stability also discussing some relations among the 
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afore-mentioned models. Over the years, several improvements in classical models have been 
proposed to account for non-classical effects. Chen and Santathadaporn (1968) presented a survey 
of analytical models and experimental results for beams under a bi-axial loading. A general review 
on beam modelling was proposed by Kapania and Raciti (1989a,b) accounting for static, buckling, 
free-vibration and wave propagation analyses. A review on the boundary conditions effect on the 
stability of thin-walled elements was presented by Trahair (1993). Since the early works by 
Schardt (1983, 1989, 1994), a remarkable effort has been devoted to the development of a 
generalised beam theory formally compatible with Vlasov’s model for the analysis, amongst the 
others, of unbranched and branched thin-walled beams in Dinis et al. (2006) and Gonçalves et al. 
(2009) and frames in Basaglia et al. (2009) and Camotim et al. (2010). Zhang and Tong (2004) 
modelled the beams via shell elements based on Kirchhoff (1850) and Love (1888) kinematic 
hypotheses. They obtained the total potential from the PVD and accounted also for the non-linear 
strain energy due to normal and shear transverse stresses. They investigated cantilever beams in 
Zhang and Tong (2008) by this approach. Mohri et al. (2001) formulated a model for the 
post-buckling analysis of thin-walled beams with mono- and bi-symmetric cross-sections. 
Non-linearities were assumed in the relations between bending moments and principal curvatures 
via a Maclaurin series expansion. An algebraic system was derived via Galerkin’s method in which 
shortening, warping and coupling between torsion and bending were accounted for. Vlasov’s 
theory was also obtained. As far as experimental investigation is concerned, the works by Beale et 
al. (2001), Put et al. (1999) and Paczos and Wasilewicz (2009) are worth to be mentioned.  

A linearised analysis of thin-walled beams via hierarchical models is addressed in this paper. 
Models are derived via a Unified Formulation (UF) that has been previously derived for plates and 
shells in Carrera (2003), Carrera and Giunta (2009a,b) and extended to beams in Carrera and 
Giunta (2010), Carrera et al. (2010) and Giunta et al. (2011). Through a concise notation for the 
displacement field, the governing differential equations and the corresponding boundary 
conditions are reduced to a ‘fundamental nucleo’ that does not depend upon the approximation 
order. This latter can be assumed as a formulation free parameter. Displacement-based theories that 
account for non-classical effects, such as transverse shear and cross-section in- and out-of-plane 
warping, can be formulated. Coupled flexural-torsion buckling modes are predicted although no 
warping functions are explicitly assumed. Governing differential equations are solved via a 
Navier’s closed form solution. Slender and deep beams (within the limit of elastic behaviour) are 
investigated. Since a linearised approach is used, the change in geometry due to pre-buckling 
deformation is disregarded. Open and closed thin-walled cross-sections with at least a symmetry 
axis are, therefore, considered. It is worth mentioning that this limitation is due to the approach to 
the buckling analysis and not to the theory formulation itself. The present models are validated 
towards three-dimensional FEM solutions. 
 
 
2. Preliminaries 

 
A beam is a structure whose axial extension (l) is predominant if compared to any other dimension 
orthogonal to it. The cross-section ( ) is identified by intersecting the beam with planes that are 
orthogonal to its axis. A Cartesian reference system is adopted: y- and z-axis are two orthogonal 
directions laying on  . The x coordinate is coincident to the axis of the beam. It is bounded such 
that lx 0 . Cross-sections obtained as the union of k

N  non-overlapping rectangular 
sub-domains 
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Fig. 1 Generic cross-section rectangular sub-domain
 

 


k

k

k





N

1

 (1)

with 

  k
2

k
1

k
2

k
1

k zzzyyyzy,  ;:  (2)

are considered, see Fig. 1. Terms   21,ji,:z,y k
j

k
i   are the coordinates of the corner points of a 

k sub-domain. Through the paper, the superscript ‘k’ represents a cross-section sub-domain index, 
while, as subscript, it stands for summation over the range  kΩ

N,1 . The cross-section is 
considered to be constant along the axial direction. The displacement field is 

        zy,x,uzy,x,uzy,x,uzy,x, zyx
T u  (3)

where xu , yu and zu  are the displacement components along the the x -, y - and z -axis, 
respectively. Superscript ‘T ’ represents the transposition operator. Stressσ and strain ε vectors are 
grouped into vectors nσ , nε that lay on the cross-section 

 xzxyxx
T
n σσσσ ,  xzxyxx

T
n εεεε  (4)

and pσ , pε  laying on planes orthogonal to   

 yzzzyy
T
p σσσσ ,  yzzzyy

T
p εεεε  (5)

The linear strain-displacement geometrical relations are 

 xz,zx,xy,yx,xx,
lT
n uuuuu ε  

 yz,y,zz,zyy,
lT
p uuuu ε  

(6)

Subscripts ‘ x ’, ‘ y ’ and ‘ z ’, when preceded by comma, represent derivation versus the 
corresponding spatial coordinate. A compact vectorial notation can be adopted for Eq. (6) 
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 (7)

npD , nxD , and pD  are the following differential matrix operators 
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where I is the unit matrix. Geometric non-linearities are introduced in the axial strain in a 
Green-Lagrange sense (see [27]) 

 2
,

2
,

2
,2

1
xzxyxx

nl
xx uuu   (9)

Under the hypothesis of linear elastic materials, the generalised Hooke law holds. According to 
Eqs. (4) and (5), it reads 
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Matrixes ppC , pnC , npC  and nnC  in Eq. (10) are 




















































55

66

11

13

12

44

3323

2322

00

00

00

C

000

00

00

CC

00

0

0

C

C

C

C

C

C

C

CC

CC

nn
T
nppnpp  (11)

where the coefficients ijC  are 
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
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12

11211

1

665544

231312332211

 (12)

being E the Young modulus and the Poisson ratio. 
 
 
3. Hierarchical beam theories 
 

The variation of the displacement field over the cross-section is a-priori postulated. Several 
displacement-based theories can be formulated on the basis of the following generic kinematic  
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Table 1 Mac Laurin’s polynomials terms via Pascal’s triangle 

N  uN   F    

0 1  11 F    

1 3  zFyF  32  

2 6  2
65

2
4 zFyzFyF   

3 10  3
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field 

      uτ N,,,τxzy,Fzy,x, 21with  uu  (13)

where uN stands for the number of approximating terms. It depends on the approximation order 
N that is a free parameter of the present formulation. The compact expression in Eq. (13) is based 
on Einstein’s notation: twice repeated subscripts indicate summation. Thanks to this notation, 
problem’s governing differential equations and boundary conditions can be derived in terms of a 
single ‘fundamental nucleo’. The complexity related to higher than classical approximation terms 
is tackled and the theoretical formulation is valid for the generic approximation order and 
approximating functions  zyF , . In this paper, the functions F  are assumed to be Maclaurin’s 
polynomials. This choice is inspired by the classical beam models. uN  and F  as functions of 
N  can be obtained via Pascal’s triangle as shown in Table 1. The actual governing differential 
equations and boundary conditions due to a fixed approximation order and polynomials type are 
obtained straightforwardly via summation of the nucleo corresponding to each term of the 
expansion. According to the previous choice for the approximating functions, a generic, N -order 
displacement field is 
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As far as the first-order approximation order is concerned, the kinematic field is 
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Classical models, such as Timoshenko’s beam theory (TBT) 
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 (16)

and Euler-Bernoulli beam theory (EBT) 

1

1
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zuyuuu





 (17)

are straightforwardly derived from the first-order approximation model. In TBT, no shear 
correction coefficient is considered, since it depends upon several parameters, such as the 
geometry of the cross-section (see, for instance, Cowper (1966) and Murty (1970)). Higher order 
models yield a more detailed description of the shear mechanics (no shear correction coefficient is 
required), of the in- and out-of-section deformations, of the coupling of the spatial directions due 
to Poisson’s effect and of the torsional mechanics than classical models do. EBT theory neglects 
them all, since it was formulated to describe the bending mechanics. TBT model accounts for 
constant shear stress and strain components. In the case of classical models and first-order 
approximation, the material stiffness coefficients should be corrected in order to contrast a 
phenomenon known in literature as Poisson’s locking (see Carrera and Brischetto (2008a,b)). 
 

4. Governing equations 
 

The strong form of the governing differential equations and the boundary conditions are 
obtained via Euler’s method of adjacent states of equilibrium upon the assumption that the 
pre-buckling deformation can be neglected. The Principle of Virtual Displacements reads 

00 
xxσi δLδL  (18)

where   stands for a virtual variation, iL  represents the strain energy and 0
xxL is the work done 

by an axial pre-stress 
0
xx  on the corresponding non-linear strain nl

xx . The axial pre-stress is 
assumed constant along the beam axis and it does not change in magnitude nor in direction during 
buckling. 
 
4.1 Virtual variation of the strain energy 

 
According to the grouping of the stress and strain components in Eqs. (4) and (5), the virtual 

variation of the strain energy is considered as sum of two contributes 
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σσ εε   (19)

By substitution of the geometrical relations, Eq. (7), the material constitutive equations, 
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Eq. (10), and the unified hierarchical approximation of the displacements, Eq. (13), and after 
integration by parts, Eq. (19) reads 

       
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and in a compact vectorial form 
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The components of the differential linear stiffness matrix sK are 
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The generic term    
gh

sJ  ,, is a cross-section moment 
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Since the material is isotropic and the approximating functions are the elements of the classical 
polynomial base, the previous equation can be rewritten as 
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Ω

Ω  (24)

where yk , zk , yn  and zn  are constant depending upon indexes   and s  as in Table 1 and 
whether differentiation with respect to y  and z  should be performed or not. The analytical 
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solution of integral in Eq. (23) is 

           
k

nknk

z

znknk

y

yk
gh

gh
ξ,sφ,τ

zzyy zz
n

k
yy

n

k
CJ

















 





 




 1

1

1

2

1

1

1

2 11
 (25)

As far as the boundary conditions are concerned, the components of sΠ are 
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4.2 Virtual work of the axial pre-stress 
 
The virtual work of the axial pre-stress is 
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Upon substitution of Eqs. (9) and (13) and after integration by parts, Eq. (2) becomes 
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In a compact vectorial form 
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The components of the differential geometric stiffness matrix s
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where ij  is Kronecker’s delta and 
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The components of s

xx


 0Π are 
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zy,x,ji,
x

Jδ τsij
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4.3 Governing equations’ fundamental nucleo 
 

The explicit form of the fundamental nucleo of the governing equations is 
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(33)

The boundary conditions are               
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
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




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lx

xzszτs,ysyτs,xxs,τsxxτsxτ

uJσJuJuδ

uJσJuJuδ

uJuJuJσJuδ

 (34)

For a fixed approximation order, the nucleo has to be expanded versus the indexes   and s  
in order to obtain the governing equations and the boundary conditions of the desired model. 

 
 
5. Closed form analytical solution 
 
The differential equations are solved via a Navier type solution. Simply supported beams are, 

therefore, investigated. The following displacement field is adopted 

 

 

 

 αxFUu

αxFUu

αxFUu

τzτz

τyτy

τxτx

sin

sin

cos







 (35)

where is 

*Nm
l

mπ
 with  (36)

m
 
representing the half-wave number along the beam axis.  zy,x,iUiτ : are the maximal  
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amplitudes of the displacement components. The displacement field in Eq. (35) satisfies the 
boundary conditions since 

 

   

   

    00

00

00







luu

luu

luu

zτzτ

yτyτ

xxττxxττ

 (37)

Upon substitution of Eq. (35) into Eq. (33), the fundamental nucleo of the algebraic 
eigensystem is obtained 

  0: 0
0  s

s
xx

τs

xx
UKKU 

   (38)

and 

1125566
τszzs,τ,yys,τ,

τs
xx JαJJK      1266

yτs,ysτ,
τs
xy JJαK      1355

zτs,zsτ,
τs
xz JJαK   

6624422
τszzs,τ,yys,τ,

τs
yy JαJJK      1266

ysτ,yτs,
τs
yx JJαK     4423

yzs,τ,zys,τ,
τs
yz JJK   

5523344
τszzs,τ,yys,τ,

τs
zz JαJJK      1355

zsτ,zτs,
τs
zx JJαK     2344

yzs,τ,zys,τ,
τs
zy JJK   

(39)

and 

zy,x,ji,JαδK τsij
τs

ijσ xx
 with2

0  (40)

For a fixed approximation order and m , the eigensystem has to be assembled according to the 
summation indexes   and s . Its solution yields as many eigenvalues (or buckling loads) and 
eigenvectors (or buckling modes) as the degrees of freedom of the model.  

 
 

6. Numerical results and discussion 
 
Beams made of the aluminium alloy 7075-T6 are considered. Mechanical properties are: 

Young’s modulus equal to 71700 MPa, Poisson’s ratio equal to 0.3 and yield stress ( yσ ) equal to 
503 MPa. Analyses are carried out considering open and closed thin-walled cross-sections. The 
ratio between a representative dimension of the cross-section ( 10.a 

 

m) and the walls thickness 
( h ) is 20. The minimum value of the length-to-side ratio ( 15l/a ) is such that a linear 
stress-strain relation holds. Slender beams ( 100l/a ) are also accounted for. As far as validation 
is concerned, results are compared with FEM three-dimensional solutions obtained via the 
commercial code Ansys. The quadratic three-dimensional “SOLID186” element is used. For each 
considered case, a convergence analysis of the FEM reference solution versus the element sides 
length ( ex , ey and ez ) is presented. Although the three-dimensional FEM solution and the 
analytical one are different in nature some considerations about computational time and effort can 
be addressed. The degrees of freedom of the three-dimensional FEM models are about 7 104 for 
the coarsest considered mesh, whereas, in the case of a tenth-order analytical model, they are 198.  
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Table 2 Box beam critical buckling load [MPa] via three-dimensional FEM analyses 

al/  ex , ey , ez  [mm] 0
xxσ  [MPa] DOFs 104 

100 100, 5.0, 5.0 10.640 15.8 

 50, 5.0, 5.0 10.651 31.8 

50 50, 5.0, 5.0 42.460 15.8 

 25, 5.0, 5.0 42.497 31.8 

20 25, 5.0, 5.0 261.05 12.6 

 25, 2.5, 2.5 261.04 39.8 

15 25, 5.0, 5.0 457.04 9.5 

 25, 2.5, 2.5 457.01 29.8 

 
Table 3 Box beam critical buckling load [MPa] 

al /  100 50 20 15 

FEM 3D 10.651 42.497 261.04 457.01 

N = 4 10.664, 0.12a 42.551, 0.13 261.34, 0.11 457.31, 0.07 

N = 3 10.664, 0.12 42.551, 0.13 261.34, 0.11 457.32, 0.07 

N = 2 10.668, 0.16 42.605, 0.25 261.36, 0.89 463.51, 1.42 

TBT 10.668, 0.16 42.604, 0.25 261.32, 0.87 463.40, 1.40 

EBT 10.672, 0.20 42.669, 0.40 265.85, 1.84 471.26, 3.12 

a: Absolute value of the percentage relative error 

 

Fig. 2 Box-beam cross-section geometry
 
 

6.1 Box cross-section 
 
Beams with the box cross-section shown in Fig. 2 are firstly investigated. Table 2 presents the 

results obtained by FEM three-dimensional simulations for the first buckling load that corresponds  
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(a) isometric view (b) side view 

Fig. 3 Bending mode with three half-waves via a 6N  model, box-beam, 100l/a  
 

Table 4 Box beam critical buckling load [MPa] versus the half-wave number, 100al /   

m  1 2 3 4 

FEM 3D 10.651 42.443 95.008 167.78 

N = 6 10.664, 0.12a 42.540, 0.23 95.287, 0.29 168.34, 0.33 

N = 5 10.664, 0.12a 42.540, 0.23 95.287, 0.29 168.34, 0.33 

N = 4 10.664, 0.12a 42.551, 0.25 95.339, 0.35 168.50, 0.43 

N = 3 10.664, 0.12 42.551, 0.25 95.339, 0.35 168.50, 0.43 

N = 2 10.668, 0.16 42.604, 0.38 95.607, 0.63 169.34, 0.93 

TBT 10.668, 0.16 42.603, 0.38 95.602, 0.63 169.33, 0.92 

EBT 10.672, 0.20 42.669, 0.40 95.934, 0.97 170.37, 1.54 

a: Absolute value of the percentage relative error. 

 
Table 5 First three buckling loads via three-dimensional FEM analysis, I-shaped cross-section beams 

al /  ex , ey , ez  [mm]
0
xxσ  [MPa]   

DOFs 104 
Mode Ia Mode IIb Mode IIIc 

100 100, 5.0, 5.0 4.0607 -d 12.456 12.6 
 50, 5.0, 5.0 4.0645 - 12.469 25.4 

50 50, 5.0, 5.0 16.224 115.44 49.603 12.6 
 25, 5.0, 5.0 16.236 115.54 49.649 25.4 

20 25, 5.0, 5.0 100.72 197.11 300.68 10.1 
 25, 2.5, 2.5 100.72 196.58 300.65 30.6 

15 25, 5.0, 5.0 177.99 272.04 - 7.5 
 25, 2.5, 2.5 177.99 271.53 - 22.9 

a: Bending on plane xz . b: Torsional mode. 
c: Bending on plane xy . d: Buckling load higher than yielding load. 

 
 

to a flexural mode. The results computed via the proposed Unified Formulation are shown in 
Table 3. As expected, in the case of slender beams ( 100l/a  and 10 ), classical theories yield 
accurate results. In the case of deep beam ( 15l/a ), TBT overestimates the reference solution by 
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about 1.4%, whereas EBT does by about 3.1%. Higher-order theories yield accurate results. 
Table 4 presents the buckling load for several values of the half-wave number along the beam axis. 
A slender beam is considered. As the value of m  increases, the accuracy of the classical theories 
becomes less and less accurate. Increasing N , the buckling loads converge to a value smaller than 
the three-dimensional FEM one by about 0.4% for all the considered values of m . The buckling 
mode with 3m  and 6N  is shown in Fig. 3.  
 

6.2 I-Shaped cross-section 
 
Beams with I-shaped cross-section are investigated. The cross-section geometry is shown in 

Fig. 4. Results obtained with the FEM three-dimensional solutions are presented in Table 5. Three 
different buckling modes are considered: flexural on plane xz , torsional and bending on plane xy . 
In the case of slender beam ( 100l/a ), the buckling loads of the torsional mode is higher than the 
yielding load. The same applies for the flexural mode on plane xy  in the case of deep beam 
( 15l/a ). Tables 6, 7 and 8 present the results computed via the proposed models for the 
considered buckling modes. In the case of the bending modes, the same comments made for beams 
with a box cross-section apply. Classical theories yield accurate results for slender beams, whereas  
 
Table 6 Mode I (bending on plane xz ) critical buckling load [MPa], I-shaped cross-section beams 

al /  100 50 20 15 
FEM 3D 4.0645 16.236 100.72 177.99 
N = 14 4.0702, 0.14a 16.267, 0.19 101.04, 0.32 178.55, 0.31 
N = 10 4.0704, 0.15 16.268, 0.20 101.06, 0.34 178.63, 0.36 
N = 6 4.0704, 0.15 16.269, 0.20 101.12, 0.40 178.85, 0.48 
N = 5 4.0705, 0.15 16.269, 0.20 101.13, 0.41 178.89, 0.51 
N = 4 4.0707, 0.15 16.271, 0.22 101.22, 0.50 179.18, 0.67 
N = 3 4.0706, 0.15 16.271, 0.22 101.22, 0.50 179.18, 0.67 
N = 2 4.0707, 0.15 16.273, 0.23 101.29, 0.57 179.39, 0.79 
TBT 4.0707, 0.15 16.272, 0.22 101.27, 0.55 179.33, 0.75 
EBT 4.0714, 0.17 16.282, 0.28 101.64, 0.91 180.50, 1.41 

a: Absolute value of the percentage relative error. 

 

Table 7 Mode II (torsion) buckling load [MPa] via the proposed models, I-shaped cross-section beams. The 
values for 7N  are not reported since they are higher than the yielding stress 

al /  50 20 15 

FEM 3D 115.54 196.58 271.53 

N = 14 136.81, 18.4a 216.84, 10.3 290.14, 6.8 

N = 13 149.38, 29.2 228.99, 16.4 301.94, 11.2 

N = 12 149.39, 29.3 229.01, 16.5 301.95, 11.2 

N = 11 168.84, 46.1 247.72, 26.0 320.02, 17.8 

N = 10 168.85, 46.1 247.75, 26.0 320.05, 17.8 

N = 9 250.22, 116.5 326.62, 66.1 396.78, 46.1 

N = 8 250.27, 116.6 326.82, 66.2 397.05, 46.2 
a: Absolute value of the percentage relative error. 
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Table 8 Mode III (bending on plane xy ) buckling load [MPa], I-shaped cross-section beams 

al /  100 50 20 
FEM 3D 12.469 49.649 300.65 

N = 6 12.484, 0.12a 49.711, 0.12 301.09, 0.15 
N = 5 12.484, 0.12 49.711, 0.12 301.10, 0.15 
N = 4 12.486, 0.14 49.734, 0.17 301.95, 0.43 
N = 3 12.486, 01.4 49.734, 0.17 301.96, 0.44 
N = 2 12.496, 0.22 49.890, 0.49 307.80, 2.38 
TBT 12.496, 0.22 49.890, 0.49 307.78, 2.37 
EBT 12.501, 0.26 49.980, 0.67 311.23, 3.52 

a: Absolute value of the percentage relative error. 

 

 

Fig. 4 I-shaped cross-section geometry
 

  

(a) isometric view (b) front view 

Fig. 5 Torsional mode via a 12N  model, I-shaped cross-section beam, 20l/a  
 
 
they overestimate the buckling load by about 4% for deep beams. In the case of the torsional mode, 
classical and low-order theories are not accurate. By increasing N , the buckling load converges 
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towards the reference solution. In the case of 50l/a , an expansion order as high as 14 yields a 
solution that is about the 18% higher than the FEM reference one. The difference is about 6.8% for 
deep beams ( 15l/a ). Besides further increasing the expansion order, a possibility to improve the 
accuracy of the proposed models consists in a change in the approximation type for the kinematic 
field. A ‘layer-wise’ approximation (that is, locally over the cross-section sub-domains) can be 
used instead of a global one. It should be also noticed that for 7N  the considered models all 
yield a torsional buckling load that is higher than the yielding stress. Fig. 5 shows the torsional 
mode as obtained by a 12-order approximation. 
 

6.3 C-Shaped cross-section 
 

Beams with C-shaped cross-section (as shown in Fig. 6) are finally investigated. Table 9 
presents the convergence analysis for the FEM three-dimensional simulations. Two buckling  

 
 

Fig. 6 C-shaped cross-section geometry
 
Table 9 First two buckling loadings via three-dimensional FEM analysis, C-shaped cross-section beams 

al /  ex , ey , ez  [mm] 
0
xxσ  [MPa] 

DOFs 104 
Mode Ia Mode IIb 

100 100, 5.0, 5.0 9.4291 7.4677 12.2 
 50, 5.0, 5.0 9.4393 7.4748 24.6 

50 50, 5.0, 5.0 21.860 29.821 12.2 
 25, 5.0, 5.0 21.882 29.845 24.6 

20 25, 5.0, 5.0 55.454 -c 9.8 
 25, 2.5, 2.5 55.374 - 30.6 

15 25, 5.0, 5.0 81.425 - 7.3 
 25, 2.5, 2.5 81.333 - 22.9 

a: Coupled bending on plane xy  and torsion.   b: Bending on plane xz . 

c: Buckling load higher than yielding load. 
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(a) isometric view (b) front view 
Fig. 7 Coupled bending-torsion mode via a 12N  model, C-shaped cross-section beam,  

100l/a  
 
Table 10 Mode I (coupled bending-torsion) buckling load [MPa], C-shaped cross-section beams 

al /  100 50 20 15 
FEM 3D 9.4393 21.882 55.374 81.333 
N = 14 9.6605, 2.34a 22.929, 4.78 57.532, 3.90 83.784, 3.01 
N = 12 9.7611, 3.41 23.447, 7.15 58.560, 5.75 84.907, 4.39 
N = 10 10.175, 7.79 25.797, 17.8 63.592, 14.8 90.329, 11.0 
N = 8 10.473, 10.9 27.737, 26.7 68.305, 23.3 95.495, 17.4 
N = 7 11.081, 17.3 29.889, 36.5 82.946, 49.7 111.77, 37.4 
N = 6 11.822, 25.2 29.889, 36.5 125.65, 126.9 163.57, 101.1 
N = 5 12.174, 28.9 29.889, 36.5 180.55, 226.0 244.22, 200.2 
N = 4 12.227, 29.5 29.890, 36.6 184.71, 233.5 267.99, 229.5 
N = 3 12.479, 32.2 29.894, 36.6 184.87, 233.8 325.50, 300.2 
N = 2 12.495, 32.3 29.907, 36.6 185.37, 234.7 327.06, 302.1 
TBT 12.496, 32.3 29.910, 36.6 185.48, 234.9 327.38, 302.5 
EBT 12.501, 32.4 29.942, 36.8 186.73, 237.2 331.29, 307.3 

a: Absolute value of the percentage relative error . 
b: Pure flexural mode on plane xy . 

 
 
modes are considered: a pure flexural mode on plane xz  and a combination of bending on plane 
xy  and torsion (as shown in Fig. 7). The order of apparition of these two modes depends upon the 
ratio l/a . In the case of slender beam ( 100l/a ), the first buckling mode is pure bending, whereas 
for all the other considered values of l/a  the bending-torsion mixed mode is the critical one. 

Furthermore, in the case of 15l/a
 
and 20 , the buckling load of the pure flexural mode is 

higher than the yielding stress. Table 10 presents the results computed via the proposed UF for the 
mixed buckling mode. Classical and low-order theories provide very poor results. For EBT and 
TBT, the torsion component of the mode is neglected and a pure bending is predicted. The error is 
about 32% for slender beams and it increases up to about 300% for deep beams. Results obtained 
by higher-order theories are more accurate, the difference from the three-dimensional FEM 
solution being less than 5% for all the considered values of l/a . The variation of the buckling load  
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Table 11 Mode II (bending on plane xz ) buckling load [MPa], C-shaped cross-section beams 

al /  100 50 

FEM 3D 7.4748 29.845 

N = 14 7.4846, 0.13a 29.887, 0.14 
N = 8 7.4847, 0.13 29.888, 0.14 

N = 7 7.4847, 0.13 32.520, 8.96 

N = 6 7.4847, 0.13 40.347, 35.1 
N = 5 7.4847, 0.13 45.029, 50.8 

N = 4 7.4848, 0.13 45.798, 53.4 

N = 3 7.4850, 0.14 49.622, 66.2 
N = 2 7.4858, 0.15 49.887, 67.1 

TBT 7.4860, 0.15 49.890, 67.1 

EBT 7.4881, 0.18 49.980, 67.4 

a: Absolute value of the percentage relative error. 
 
 
versus the half-wave number is shown in Fig. 8 in the case of .l/a 50  For 14N , the results 
match the reference solution, whereas for 6N  the results are inaccurate (this case is not 
presented for the sake of brevity). Table 11 presents the case of the flexural mode. The buckling 
load is accurately predicted by classical and low-order theories only in the case of 100l/a . For 

50l/a , 8N  is required to converge to the reference FEM solution. Classical and low-order 
theories overestimate the buckling load by about 67%. 

 
6. Conclusions   
 

Several models for the buckling analysis of thin-walled beam structures have been derived via a 
unified formulation. Via this approach, higher-order theories that account for shear deformations, 
in- and out-of-plane warping can be formulated straightforwardly. Classical models, such as 
Euler-Bernoulli’s and Timoshenko’s, are obtained as particular cases. A closed form, Navier-type 
solution has been used. Slender and deep beams with several cross-sections (box, C- and I-shaped) 
have been investigated. Three-dimensional FEM solutions obtained via the commercial code 
Ansys have been considered as reference solutions. Classical models are accurate only in the case 
of flexural buckling modes of slender beams. Coupled bending-torsion modes are more difficult to 
be described accurately and higher approximation order than for the flexural modes are required. It 
has been shown that the proposed formulation allows obtaining results as accurate as desired 
through an appropriate choice of the approximation order tackling the complexity due to 
increasing the expansion order over the beam cross-section.  
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