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On the mechanism of vertical stabilizer plates for 
improving aerodynamic stability of bridges 

Airong Chen†, Zhiyong Zhou‡, and Haifan Xiang‡†

State Key Laboratory for Disaster Reduction in Civil Engineering

Department of Bridge Engineering, Tongji University, Shanghai, China

(Received February 2, 2004, Accepted December 8, 2005)

Abstract. Vertical stabilizer plates have been found to be an effective aerodynamic measure to improve
the aerodynamic stability of bridges either with an open cross section or with a streamlined box cross
section in wind tunnel testings and have been adopted in some long span bridges. By taking an open deck
II-shaped section and a closed box section as examples, the mechanism of vertical stabilizer plates for
improving aerodynamic stability are investigated by using numerical simulation based on Random Vortex
Method. It is found that vertical stabilizer plates can increase the amplitude of the heaving motion, and
decrease that of the rotational motion of the bridge decks.

Keywords: bridge deck; aerodynamic stability; aerodynamic measure; vertical stabilizer plate; random
vortex method (RVM).

1. Introduction 

Geometrical shape of cross-sections of long span bridges is often chosen based on the

consideration of aerodynamic stabilities. Proper aerodynamic measures to improve the aerodynamic

stability of bridges are necessary if the aerodynamic stability of cross sections chosen can’t meet the

design criteria. Vertical stabilizer plates have been found to be an effective aerodynamic measure to

improve the aerodynamic stability of bridges in wind tunnel testings. This kind of measure has been

adopted in Akashi Kaikyo Bridge in Japan and in Runyang Bridge over Yangtze River in China (a

suspension bridge with a main span of 1490 m). 

The self-excited forces of bridge decks can be expressed by eight aerodynamic derivatives

(Scanlan 1974) which can characterize the flutter instability and are still widely used nowdays.

These aerodynamic derivatives are H*
1, H

*
2, H

*
3, and H*

4 for unsteady heaving and A*
1, A

*
2, A

*
3, and

A*
4 for unsteady pitching motions. Broadly speaking, the flutters of bridges are primarily classified

into two categories: the torsional flutter and the coupled flutter. In these eight aerodynamic

derivatives, A*
2 is the key one for flutter investigation. If A*

2 shows positive, the bridge may exhibit

torsional flutter, otherwise the coupled flutter may occur.
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While the flutter instabilities are characterized by these eight aerodynamic derivatives, it is

difficult to control each aerodynamic derivative by changing the geometrical shape of bridge decks

[Masaru Matsumoto, Hiromichi Shirato, etc, Flutter stabilization of long span bridges, The Second

International Symposium on Wind and Structures, Busan, Korea (2002) 257-264 2002]. In other

words, the relationship between the aerodynamic derivatives and the geometrical shape of bridge

decks are highly complex and difficult to ascertain.

It is well known that two distinct features of unsteady separated flow about bluff bodies either

stationary or in motion, are vortex shedding and vortex motion. The complicated vortex structures

and development of vortex motion in the near wake directly influence the aerodynamic forces on

the bluff bodies. As a consequence, we may identify the inherent mechanism of the fluid forces on

the bodies by investigating the complicated vortex structure and motion.

Random Vortex Method (RVM) is a kind of discrete vortex methods, which are based on the

particle discretization of the vorticity-velocity formulation of the Navier-Stokes equation in the

Lagrangian form. They are gird-free, with little or no numerical diffusion and naturally adaptive.

The discrete vortex methods have been generalized in many applications and can apply to complex

high-Reynolds-number separated flow. Larsen and Walther (1997) have undertaken the pioneer work

on the aeroelastic analysis of bridge decks based on the discrete vortex method.

To understand how the vertical stabilizer plates can improve the aerodynamic stability, the

numerical simulation based on the RVM is employed (Zhou 2002). Two-dimensional viscous flow

about a Ð-shaped section and a streamlined section are simulated. Four arrangements of vertical

plates on the open cross section and vertical plates with different heights at the top of the

streamlined deck are investigated. 

2. The random discrete vortex method

In RVM, the boundary element method and the generalized Biot-Savart integral are used to

determine effectively the surface vorticity about a group of isolated bodies (multi-bodies) in two-

dimensional viscous incompressible flow. The solution to the unknown surface vorticity is made

unique by imposing the principle of conservation of total vorticity all bodies as well as each single

body. The vortex transport equation (VTE) is solved by two fractional step methods.

2.1. Governing equation

The two-dimensional incompressible unsteady flow of viscous fluid may be determined by the

vorticity formulation of the Navier-Stokes equation:

(1a)

Where  is the vorticity,  is the fluid velocity and v denotes the kinematic

viscosity. 

The kinematic relationship between the velocity field and the vorticity field is obtained by solving

the following Poisson equation:

(1b)

When the flow around solid configuration in motion, Eq. (1b) may be formulated as an integral

∂ω x t,( )
∂t

------------------- u x t,( ) ∇⋅( )ω+ v∇2
ω x t,( )=

ω ω ∇≡ u×( ) u x t,( )

∆u x t,( ) ∇– ω×=
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equation, the generalized Biot-Savart integral (Wu 1976):

(1c)

With

where  is the freestream velocity, ns is the outward normal vector of the solid boundary, f is

the fluid region and S is the solid boundary and   is the solid velocity on the surface(S) at

xS .

At the solid boundary, the fluid velocity (u(xb, t)) must be equal to the solid velocity (u(xs, t))

     on S (1d)

With

where  is the vertical velocity of the solid, Ω(t) is the rotational angular velocity and xc is

the center of mass.

At infinity we have

 when (1e)

In the discrete vortex methods, the vorticity field is considered as a discrete sum of the individual

vorticity fields of the particles, having core radius σ, strength Γ (t) and an individual distribution of

vorticity determined by the function fσ so that

(2)

Where NV is total number of the vortex particle, which is described as vortex blob. 

2.2. Determination of the vorticity boundary condition

The generalized Biot-Savart integral (Eq. (1c)) is valid for both the fluid domain ( f ) and the solid

domain (B). Owing to the generation of the fluid vorticity in the boundary region, we introduce a

fluid layer, S+ adjacent to the solid surface, S. When the thickness of the fluid layer fs extend to

infinitesimal, it is convenient to introduce the surface vortex sheet . As a consequence, we have

the following vector equation.

(3)

According to Eq. (3), we have the following vector equation for each vortex sheet  in discrete

form
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1

2π
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1
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                                          (4)

where  is the velocity on the boundary of the solids at . Ns is the number of the solids.

The normal and tangential components of the vector Eq. (4) are the first Fredholm integral

equations in unknown  and its solution is not unique according to the nature of Fredholm

integral equation. The solution may be made unique by imposing a constraint based on the principle

of the conservation of total vorticity. According to the principle, the total vorticty does not change

with time (Wu 1976).

(5)

where Ωj, Aj are the rotational angular velocity and the area of the j-th solid, respectively.

Using Eq. (2) in Eq. (5), in discrete form, the following equations can be obtained

 ⇒

 with 

(6)

where  is the total number of vortex blob during the k-th time step,  is the circulation of i-th

vortex blob at k-th time step,  is the length of the i-th boundary element on the j-th solid surface,

Mj is the total number of boundary elements on the j-th solid and  is the total circulation of

vortex blobs that have entered bodies and have been removed from numerical calculation during the

(k-1)-th time step.

The principle of the conservation of the total vorticity is applied to each body, as a consequence,

the following equations can be obtained

                 j = 1, 2, ..., Ns (7)

where  is total circulation of the vortex blobs entered j-th solid during the (k-1)-th time step.

In this paper, the normal component of Eq. (4), Eq. (6) and Eq. (7) are solved by applying the

least square method (Walther 1997 and Wu 1976).
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2.3. Computation of convection, diffusion equation and aerodynamic force

In RVM, the VTE may be solved by two fractional steps method (Chorin 1973), in a Lagrangian

formulation. Firstly, we solve the convection equation with dΓi/dt = 0(I = 1, …, Nv) by standard ODE

method. In this paper, we use the Euler method. Secondly, we approximated the diffusion equation

by random walks method developed by Chorin (1973). As a consequence, the solution to VTE

using the Heun integration method is 

(8)

where ∆t is the time step, ηi are random vector with zero mean and variance 2ν∆t.

The costly O (N2
v) operation imposed by solving the Eq. (8) can be overcome by applying the

 fast adaptive multipole algorithm developed by Carrier (1988).

Applying the moment of momentum on the boundary of bluff bodies, introducing body-fitting

coordinate and combining vorticity transport equation, then we have the following equation in the

discrete form: 

(9)

where  is the tangential acceleration on the midpoint of the i-th boundary element of the j-th

body. Aerodynamic forces may be obtained by the integration of pressure distribution along the

boundary of the bodies. It must be noted that the aerodynamic foeces obtained by Eq. (9) is only

the force components due to pressure distribution along the surface of bodies and exclude the

viscous shear at the surface. 

The self-excited force per unit span may be expressed as

(10a)

(10b)

Where  is reduced frequency, h, α, ,  are vertical motion, rotational motion and

their first derivatives, respectively,  are aerodynamic derivatives

In order to compute the aerodynamic derivatives, the following procedure may be applied: Firstly,

the lift and moment time traces of bridge deck oscillated in either pure vertical and rotational

motion are computed by RVM; Secondly, the aerodynamic derivatives may be identified from the

bridge deck motion and aerodynamic forces by a least square fitting of a sinusoid to the simulated

lift and moment time traces (Larsen 1997).

3. Aerodynamic stability of Π-shaped section with stabilizers

The prototype cross section of Jinsha Bridge over Yangtze River, a concrete cable-stayed bridge

with a main span of 500 m, is shown and four arrangements of vertical plate vertical to the cross

section are presented in Fig, 1, which are denoted as B type section, C type section, D type section

and E type section, respectively, and the height of vertical plates all are 1.9 m.

Fig. 2(a) illustrates that a ‘vortex B’ is being generated at the lower windward corner of the
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bridge deck and a ‘vortex A’ is convecting downstream across the under side of the prototype deck

at the non-dimensional time t1 = Ut/B = 5.64 (where B = width of deck). The ‘vortex A’ cause a

higher local suction pressure at the local location x1/B = 0.21. The higher local suction pressure is

acting in an opposite direction against the body motion such that the value of work done by the

suction pressure is negative within a non-dimensional time interval U∆t/B = 0.02 as indicated in Fig. 4.

At the instants t2 = 6.06, the ‘vortex B’ is strengthened and its scale becomes larger and the

‘vortex A’ has reached the right leeward corner resulting in the maximum of lift force and moment.

The value of work done by the suction pressure induced by the ‘vortex A’ is positive and the value

by ‘vortex B’ is negative. As the width of the local suction pressure induced by the ‘vortex A’ is

shorter than it by ‘vortex B’, the work done by the suction pressure induced by the vortex on the

lower bridge deck is negative as indicated in Fig. 4. 

Fig. 2(c) and Fig. 2(d) illustrate that the ‘vortex A’ has entered the near wake. As can be seen, the

flow pattern at the instants t4 = 6.6 is almost the same as that of Fig. 2(c) but the direction of the

body motion has reversed resulting in a positive work done by the suction pressure as indicated in

Fig. 4. 

Fig. 2(e) illustrates that the ‘vortex B’ is convecting downstream across the under side of the

bridge deck at the instants t5 = 7.5 and begins to repeat the flow process undergone by ‘vortex A’.

At the same time, a new ‘vortex C’ is being generated at the lower windward corner and begins to

repeat the flow process undergone by ‘vortex B’ (compare with Fig. 2b). At the instants t2 and t6 or

t1 and t5 the similarity of vortex structure explains the aerodynamic behavior of the deck as

indicated in Fig. 2 and Fig. 3.

Fig. 5 illustrates the aerodynamic derivatives obtained by means of RVM simulations and wind

tunnel test results for flow about the prototype section. A comparison of prototype critical wind

speeds obtained from the RVM simulations and from wind tunnel section model tests is given in

Table 1. Fig. 5 and Table 1 show the aerodynamic derivatives, in particular, A*
2 and the computed

critical wind speed for the onset of flutter is in good agreement with the wind tunnel results.

Moreover Fig. 5 illustrates that the A*
2 shows positive at the non-dimensional wind velocity U/fB =

5.5, so the torsional flutter can be excited.

Fig. 1 Geometry of a bridge deck with an open cross section
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From the above interpretation of Fig. 2 it can be concluded that the separation bubble generates at

the lower windward corner and the main vortex structure developed from the separation bubble

Fig. 2 Instant flow pattern for flow about the prototype section (the non-dimensional wind velocity U/fB = 2)



66 Airong Chen, Zhiyong Zhou, and Haifan Xiang

convects across the under side of the bridge deck downstream into the wake. The value of the work

done by the local suction pressure induced by the vortices is determined by the unsteady interaction

effect of the local suction pressure and the body motion. The period of vortex shedding at the lower

windward corner and the development of vortex motion around the under side of the prototype

bridge deck make a direct influence on the value of the work done.

Based on the above observation, a B-type section and a C-type section with a vertical plate at the

mid-chord point and two vertical plates at the soffit of the bridges are proposed as aerodynamics

measures to improve flutter stability (see Fig. 1), also D-type section and E-type section are

proposed as reference sections. It is our aim to attempt to weaken the strength of the main vortex

structure developed from the separation bubble and destroy its rhythmic motion. 

Fig. 3 Rotational motion and computed and fitted time traces of moment for flow about the prototype deck
(U/fB = 2) (Wv is the work done by the suction pressure between the non-dimensional interval 0.02) 

Fig. 4 Rotational motion and computed time traces of power done by the vortex generated at the lower windward
corner and convected across the under side for flow about the prototype cross-section (U/fB = 2)
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RVM simulations were carried out for the following four bridge cross-sections following the

procedure outlined above. The simulations covered the reduced wind speed range 1 < U/fB < 10.

Bending simulations were carried out at a forced motion amplitude h/B = 0.05. Twisting simulations

were carried out at α = 5o. Fig. 6a and Fig. 6b illustrate the flow pattern for flow about prototype

deck and D-type section at U/fB = 6 and Fig. 7 illustrates the rotational motion and computed and

fitted time traces of moment for flow about prototype section and D-type section at U/fB = 6,

respectively. Fig. 8 illustrates the rotational motion and computed time traces of power done by the

vortex generated at the lower windward corner and convected across the under side for flow about

prototype section and D-type section at U/fB = 6, respectively.

Aerodynamic derivatives obtained for the five generic sections presented are shown in Fig. 9.

Fig. 9 illustrates the aerodynamic derivative A*
2 are positive at reduced wind velocity (U/fB) = 7 for

the C-type section, so the torsional flutter can be excited and the C-type arrangement of vertical plates

can not change the torsional flutter pattern from the prototype section. It is also shown from Fig. 9 that

the aerodynamic derivative A*
2 is negative for B-type, D-type and E-type sections, and the coupled

flutter may still occur. So it can be concluded that the characteristics of flutter can be changed to from

“torsional” to “coupled” by arranging the vertical plates at the soffit of the prototype section.

The work done in one oscillation cycle by the suction pressure induced by the vortex for the

prototype deck cross-section, B-type cross-section, C-type cross-section, D-type cross-section and E-

Fig. 5 Aerodynamic derivatives for prototype cross-section

Table 1 Structural parameters critical wind speed for the onset of flutter for prototype section (wind incidence 0 
degree)

B (m) M (Kg/m) I (Kgm) fh (Hz) fα (Hz)
Critical wind speed (m/s)

Present work Wind tunnel testing

27 44,300 4,260,000 0.2801 0.4540
62 (ξ = 0)

83 (ξ = 0.01)
58 (ξ = 0)

88 (ξ = 0.01)

Note: B: deck width; M: mass per unit length; I: mass inertia moment; fh: vertical bending frequency;
f
α
: torsional frequency; ξ: structure damping (rel-to-crit)
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type cross-section, respectively, are given in Table 2.

Table 3 shows the computed critical wind speed for the onset of flutter for A-type, B-type, C-

type, D-type and E-type sections, respectively. It can be seen from Table 2 and Table 3 that the

value of the work done in one oscillation cycle by the vortices for the prototype deck is positive

and the value of the work for B-type, C-type, D-type and E-type sections is negative. It can be

concluded that the critical wind speed for the onset of flutter can be increased if the vertical plate is

Fig. 6 Instant flow pattern for flow about the prototype section and D-type section at U/fB = 6

Fig. 7 Rotational motion and computed and fitted time traces of moment for flow about prototype section and
D-type section at U/fB = 6, respectively
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attached at the soffit of the prototype section and the flutter mode is changed from the torsional

flutter into the coupled flutter and the critical wind speed for the onset of flutter can also be

increased if the vertical plate is located at the top center of the prototype section, however, the

flutter mode remains as the torsional flutter instead of the coupled flutter.

4. Aerodynamic stability of streamlined box with stabilizers 

Runyang Bridge over Yangtze River is a suspension bridge with a main span of 1490 m and a

closed box deck of only 3 m high (Fig. 10). A series of wind tunnel testings have been carried out

at the State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University. It was

found that the original design could not meet the design criteria, therefore, the vertical stabilizer

plate of 0.8 m high was proposed at the center top of the box girder to improve the aerodynamic

stability. To understand the mechanism, numerical simulations for the deck with and without

Fig. 8 Rotational motion and computed time traces of power done by the vortex generated at the lower
windward corner and adverted around the lower side for flow about prototype section and D-type
section at U/fB = 6, respectively

Table 2 Work done in one oscillation cycle by the suction pressure induced by the vortices at the soffit of the
bridge deck for the prototype deck cross-section, B-type cross-section, C-type cross-section, D-type
cross-section and E-type cross-section, respectively

Section Type A B C D E

U/fB = 2 -3.03E-2 -3.00E-2 -3.03E-2 -3.96E-2 -2.85E-2

U/fB = 4 -7.58 E-3 -2.58E-2 -1.65E-2 -2.09E-2 -2.37E-2

U/fB = 6 1.E-3 -7.50 E-3 -5.20 E-3 -1.03 E-2 -9.70E-3

Table 3 Critical wind speeds for the onset of flutter for A, B, C, D and E-type sections (structure damping is 0)

Section Type A B C D E

Critical wind speed (m/s) 62 86 97 123 129
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Fig. 9 Aerodynamic derivatives for the open cross-section of Jinsha Bridge with stabilizer plates
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Fig. 10 Structural scheme of Runyang Bridge 

Fig. 11 Simulated flow pattern for Runyang Bridge in rotational motion at U/fB = 8 and Ut/B = 12.5. (the
height of vertical plate is 0 m and 0.8 m respectively)

Fig. 12 Simulated flow pattern for Runyang Bridge in heaving motion at U/fB = 8 and Ut/B = 12.5

Table 4 Structural parameters of Runyang Bridge

B (m) M (Kg/m) I (Kgm) fh (Hz) fα (Hz)

38.7 30630 6642000 0.12426 0.23079

Table 5 Critical wind speeds for the onset of flutter or Runyang Bridge with vertical plates (wind attack angle 0 
degree)

Height of vertical stabilizer plate (m) 0 0.5 0.65 0.8

Flutter speed (m/s) (Structure damping ξ = 0.005) 66.5 70.8 70. 75.

Flutter frequency (Hz) 0.2037 0.1988 0.2013 0.1935

Tested result of critical flutter velocity (m/s) 64.3 / 73.6 /
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Fig. 13 Aerodynamic derivatives of Runyang Bridge with vertical plates of different heights
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stabilizer plates were performed based on RVM method. 

Fig. 11 and Fig. 12 respectively show the flow patterns of the deck in rotational and heaving

motions without and with the stabilizer plate respectively. Fig. 13 shows the aerodynamic

derivatives. Table 4 gives the basic parameters of the bridge, and Table 5 shows the critical flutter

wind speeds of the bridge with vertical plates of different height. 

The work done in two oscillation cycles for the deck without and with the center stabilizer plates

in heaving and rotational motions are given in Table 6. It can be seen that the stabilizer plate

increase the work done in heaving motion, whereas, the work done in rotational motion changes

Table 6 Work done in two oscillation cycles for the deck without and with the center 
stabilizer plates in heaving and rotational motions

Motion Without stabilizer With stabilizer of 0.8 m

Heaving 0.0497 0.0673

Rotational 0.3527 -0.0295

Fig. 14 Aerodynamic force coefficients of the deck in rotational motion at U/fB = 8

Fig. 15 Aerodynamic forces coefficients of the deck in heaving motion at U/fB = 8
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from positive to negative. From Fig. 14 and Fig. 15, which show the aerodynamic force coefficients

in rotational motion and heaving motion respectively, it is quite clear that due to the stabilizer the

pitching moment decreases in rotational motion, and the lift increases in heaving motion. 

5. Conclusions

From wind tunnel testings, it was found that the stabilizer plates are effective to improve the

aerodynamic stability of bridges. To understand the mechanism, two-dimensional viscous flow about

an open Π-shaped section and a streamlined closed box section are simulated based on the Random

Vortex Method. The simulation results reveal that the separation bubble generates at the lower

windward corner and the main vortex structure developed from the separation bubble convects

downstream across the under side of the cross-section downstream into the wake. The value of the

work done by the vortices is determined by the unsteady interaction effect of the local suction

pressure and the body motion. The period of vortex shedding at the lower windward corner and the

development of vortex motion across the under side of the prototype bridge deck make a direct

influence on the value of the work. It can be concluded the critical wind speed for the onset of

flutter may be increased when the strength of the main vortex structure is weakened and its

rhythmic motion is destroyed. It can be seen that the critical wind speed for the onset of flutter can

be largely increased if the vertical plate is attached at the soffit of the Π-shaped section, and the

flutter characteristics can be changed from “torsional” to “coupled”. The critical wind speed for the

onset of flutter can also be increased if the vertical plate is attached at the top center of the open

cross section deck, however the flutter mode remains as “torsional”. The stabilizer plate attached at

the top center of a closed box girder is also effective in increasing the critical flutter wind speed. 
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