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Simulation of large wind pressures by gusts
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Abstract. This paper illustrates application of the proper orthogonal decomposition (POD) and the
autoregressive (AR) model to simulate large wind pressures due to gusts on a low-rise building. In the
POD analysis, the covariance of the ensemble of large wind pressures is employed to calculate the
principal modes and coordinates. The POD principal coordinates are modeled using the AR process, and
the fitted AR models are employed to generate the principal coordinates. The generated principal coordinates
are then used to simulate large wind pressures. The results show that the structure characterizing large wind
pressures is well represented by the dominant eigenmodes (up to the first fifteen eigenmodes). Also, wind
pressures with large peak values are simulated very well using the dominant eigenmodes along with the
principal coordinates generated by the AR models.
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1. Introduction

Characteristics of gusts and wind-induced large pressures on buildings and structures are of
considerable interest in wind engineering. The gust peak values are important in determining the
dynamic response of buildings and structures, and endeavors to investigate strong gusts and their
effects on buildings and structures have been made in wind and civil engineering applications
(Solari and Repetto 2002, Xu and Guo 2003). It has been recognized in turbulence research that the
extreme temporal fluctuations of aerodynamic loading are associated with organized, large coherent
structures in flow. The proper orthogonal decomposition (POD) is a noble tool developed for the
analysis of coherent structures in the random field of turbulence. Armitt (1968) first applied the
POD in wind engineering to analyze wind pressure on a bluff body. Panofsky and Dutton (1984)
produced simulated strong gusts using the random samples of the POD principal coordinates.
Recently, the POD was applied in the investigation of wind-induced pressure on buildings
(Bienkiewicz, et al. 1995, Tamuragt al. 1999) and the vibration analysis of structural systems
(Azeez and Vakakis 2001).

The autoregressive (AR) model provides a statistical representation of uniformly sampled time
series by a finite number of parameters. The AR process, Brockwell and Davis (1991), has been
successfully employed in the field of wind engineering to investigate approaching wind and wind-
induced loading on buildings and structures. Scanlan and Fortier (1982) used the AR process to
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model the full-scale data of wind velocity and wind pressure signals on a cooling tower.
Stathopoulos and Mohammadian (1991) fitted the AR model for roof pressure obtained during
wind-tunnel studies. Li and Kareem (1990) considered the AR process in development of efficient
simulation techniques for studies of wind effects. Jeong and Bienkiewicz (1997) also investigated
wind-induced pressure on a low-rise building and found a relatively low order AR model to be
appropriate for the considered wind pressure and its dominant POD principal coordinatest &ang,
(1999) investigated damping values in a building, obtained from field measurements, and established the
AR model of damping.

In this paper, the POD is employed to identify the coherent structure of large wind pressures due
to gusts. The roof pressure obtained from a field study of the TTU test building is used in the
analysis. A collection of large wind pressures is extracted from the pressure data, and then the POD
is applied to the ensemble of large wind pressures constructed with the peak pressure at the
midpoint of the time interval. The covariance matrix of the ensemble is employed to calculate the
principal modes and coordinates. Next, the AR models are fitted for the POD principal coordinates,
and the fitted AR models are employed to generate the new principal coordinates. The POD modes
and the generated principal coordinates are used to simulate wind pressures with large peak values.

2. Background

2.1. Proper orthogonal decomposition (POD) analysis

The objective of the POD is to find a deterministic function that is similar to all the elements of
the ensemble of a random field. Given a random preggyé), the maximum of the projection of
p(y,t) on a deterministic function¥(t) can be found. Implementation of this condition in the
mean-square sense leads to the following condition.

JRo(t ) P(t)dt = AW(t) 1)

where Ry(t,t') is the covariance of pressure time series. The solutions of the above eigenvalue

problem, the eigenvaluesand the eigenfunction¥/(t), provide the basis for the POD. Theadam
pressurep(y, t) can be represented as a series expansion:

P(y, =3 ady) %) )
k
where the principal coordinates are
a(y) = [p(y, ) ¥ (t)dt 3)
The principal coordinateg(y) are statistical and vary with each pressure time series in the random
pressure field. The eigenfunctiong(t) are deterministic and represent the integrated temporal
dependence of the entire random pressure field.

2.2. Autoregressive (AR) process

A seriesa(y) having a zero mean is an autoregressive process ofrordmoted as ARY), if it
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is stationary and satisfies the difference equation

a(y) = ga(y-1) +@a(y-2) +...+gra(y—m +&(y) (4)

where @, ..., @, are the AR coefficients ané(y) is a white noise process with zero mean and
varianceo? . The model parameters are related to the autocorrelation function (ACF) and the partial
autocorrelation function (PACF). For a given lag, the ACF is the measure of the dependence
between two observations, while the PACF expresses the dependence between the residuals of the
two observations, which result from the removal of the effect of the intervening observations. The
PACF is them™ autoregressive coefficient in the AR model of omer~or AR models, the PACF

is of main interest. As an initial guess, the model omdeis assumed equal to the lag number
beyond which the magnitude of the PACF is negligible. Next, the model paramgeietsl, ...,m,

are estimated. Initial prediction of the parameters, typically made for AR models using the Yule-
Walker equations, can be subsequently refined using a number of approaches, including the least
squares and maximum likelihood methods, Brockwell and Davis (1991).

The model order is optimized to determine the best order without overfitting the model. The
effectiveness of these maodifications is typically assessed by monitoring the decrease in the variance
of residuals (discrepancy between the series and the fitted model) as the model order is increased.
Criteria used in this process include the final prediction error (FPE), the bias corrected version of
the Akaike Information Criterion (AICC), and the Bayesian Information Criterion (BIC). In the
paper, the FPE is used in optimizing the order of AR models. The FPE for AR models, after
Brockwell and Davis (1991), reads as follows

n+m

FPE = &7 (5)
where &? is the maximum likelihood estimate af anig the number of observations.

Validation of the fitted model is accomplished through examining the residuals and comparing
the model and sample ACF. The residuals are defined as follows

f, = (a(y) —a(y))/ JE(a(y) —a(y))*/ 02 (©)

where a(y) is the predicted value afy) based on observations up to pojrtl, g2 is the white

noise variance of the fitted model, aBds the expectation operator. The residuals should resemble

a realization of a white noise sequence. This property is verified by inspecting the ACF of the

residuals. The goodness of fit of the model is also examined by using a number of tests. In this
paper, the residual correlation-based McLeod-Li Portmanteau (MLP) test, Brockwell and Davis

(1991), is employed. The MLP test statistic is defined by

h
MLP = n(n+2)% p2(j)/(n-j) (7)
ji=1
where p, (j) is the sample autocorrelations of the squared residuals jaanadn is the maximum
number of lags. If the model is correctly fitted, then MLP is approximately chi-squarechwith
degrees of freedom. The adequacy of the proposed model is rejected atifet value of MLP
is larger than the @a) quantile of the chi-square distribution.
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3. Results and discussion

The time series of wind-induced pressure used in the paper was obtained from a field study of the
Texas Tech University test building, as Fig. 1 shows. The point pressure at a representative location (tap
50501) on the roof corner of the building was measured for the wind dirécti@@3, as depicted
in Fig. 1. Fig. 2 shows a sequence of 36000 samples of pressure acquired at a sampling rate of 40 Hz.

In the paper, a collection consisting of 99 pressure time series with negative peak values stronger
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than the pressure coefficient of -5.2 was extracted from the original pressure data in Fig. 2. Then an
ensemble of large wind pressures was constructed with the negative peak pressure at the midpoint
of the time interval. Fig. 3 shows four representative time series among the 99 records of wind
pressure extracted from the original data. The POD was applied to the ensemble of large wind
pressures after subtracting the mean of the original data.

The representative results of the POD analysis are presented in Table 1 and Fig. 4. It is shown in

Table 1 First ten and subsequent representative eigenvalues

Mode Eigenvalue Proportion (%) Cumulative proportion
k Ax Al Zy Aq (%)
1 385.23 92.87 92.87
2 9.24 2.23 95.10
3 5.89 1.42 96.52
4 3.21 0.77 97.29
5 2.63 0.63 97.93
6 161 0.39 98.31
7 1.24 0.30 98.61
8 0.90 0.22 98.83
9 0.75 0.18 99.01
10 0.53 0.13 99.14
20 0.12 0.03 99.80
30 0.03 0.01 99.95
60 0.00 0.00 100.00
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Table 2 Statistical properties of the first ten principal coordinates

Mode Mean Standard deviation Mode Mean Standard deviation
k <a> Oy k <a> Ok
1 -18.71 5.93 6 -0.10 1.27
2 0.04 3.04 7 -0.05 1.11
3 -0.34 2.40 8 -0.05 0.95
4 -0.16 1.78 9 0.00 0.87
5 0.10 1.62 10 -0.03 0.73

Table 1 that the first eigenvalue is significantly greater in magnitude than the other eigenvalues. The
first four eigenfunctions (modes) of the pressure are depicted in Fig. 4. The first mode exhibits the
largest value at the midpoint of the time interval, which implies that the largest value makes a
significant contribution to identifying the structure of large wind pressures due to gusts. The means
and standard deviations of the first ten principal coordinates computed from the POD analysis are
listed in Table 2. It is shown that the first principal coordinate takes a significantly larger negative
mean value compared to the remaining coordinates.
The POD results can be used to reconstruct the original large wind pressure using the modal
expansion defined by Eq. (2). Fig. 5 depicts a convergence of the reconstructed pressure to the
original pressure with the largest negative peak (series 9, Fig. 3) for an increasing number of modes.

Fig. 5 Original (---) and reconstructed (-) pressure using (a) one, (b) two, (c) five and (d) fifteen modes
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The effect of the number of modes on the reconstruction error is illustrated in Fig. 6. The reconstruction
error is defined as the root mean square value of the difference between the original and reconstructed
pressure divided by the original pressure. It can be seen that the error is lower than 3% when the
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first fifteen (approximately 25% of all the modes) or more modes are considered.
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The AR model was next applied to the principal coordinates. Matching of the model was
accomplished by using the program ITSM, Brockwell and Davis (1991). The autocorrelation
function (ACF) and the partial autocorrelation function (PACF) are shown for the first two principal
coordinates in Fig. 7. The horizontal lines on the graph display the approximate 95% bounds for the
autocorrelations of a white noise sequence. The PACF value for the first principal coordinate is
large at lag 1, which suggests an AR model of low order. The ACF and PACF of the second
principal coordinate appear to be those of a white noise sequence.

Preliminary estimate of the AR-model parameters was made using the Yule-Walker equations, but
the final decision of the parameters was based on the more refined maximum likelihood method.
The final prediction error (FPE) was employed in optimization of the model order. Fig. 8 shows the
FPE value as a function of the model ordefor the first two principal coordinates. The AR order
m associated with the minimum FPE was selected as an optimal order. As shown in Fig. 8 and
Table 3, the AR orders for the first and the second principal coordinates are, respectively, 10 and 2,
based on the FPE. The minimum-FPE AR models of order 10 with zero coefficients except at lags 1,
2, 3, 5, 8 and 10 was selected as the best-fitting model for the first principal coordinate. The
selected AR(10) model is expressed as

a(y) = 0.34%(y—1) —0.156(y—2) + 0.084a(y—3) —0.15%(y—5)

—0.214a(y—8) —0.265a(y—10) + &(y) (8)
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Fig. 8 FPE for the (a) first and (b) second principal coordinate
Table 3 AR order for the first five principal coordinates
Principal AR order AR coefficients  White noise  Min. MLP test AR order
Coordinates m @,i=1,....m variance FPE (df=26, x3¢s=38.9) for residuals
al 10 0.345-0.156, 0.084, 23.728 27.24 135 0
0,-0.159, 0, O,
-0.214, 0,-0.265
a2 2 0,-0.218 8.795 9.00 21.7 0
a3 0 - 3.457 - 32.2 0
a4 3 0,-0.179, 0.202 2.946 3.09 24.2 0
ab 0 - 1.910 - 19.3 0
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whereg(y) is a sequence of uncorrelated random variables with mean 0 and variance 23.728. Table
3 shows that the AR orders for the third and fifth coordinates are zero, which means that there are
no correlations outside the bounds for the autocorrelations of a white noise sequence.

The ACF of the residuals and the MLP test statistics were employed to check whether the model
was correctly fitted. The ACF of the residuals is depicted in Fig. 9 for the first two principal
coordinates and appears to be compatible with the hypothesis that the residuals constitute a white
noise sequence. As shown in Table 3, the results of the MLP test indicate a good fit of the AR
models. The AR order for the residuals of each principal coordinate, Table 3, is zero, which suggests
that no correlations remain in the residuals. The ACF and PACF of the original first principal coordinate
are compared with those of the modeled coordinate in Fig. 10. The comparisons show that the ACF
and PACF of the original principal coordinate are similar to the model ACF and PACF.

The new principal coordinates were generated using the applied AR models with normally distributed
random variables. The data points of each principal coordinate generated from the AR model were
200, which were approximately twice those of the original coordinate computed from the POD
analysis. The ACF and PACF of the generated first principal coordinate shown in Fig. 11 look
compatible with those of the modeled coordinate in Fig. 10.
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The POD modes and the generated principal coordinates were then used to simulate large wind
pressures due to gusts employing Eq. (2). Fig. 12 shows the simulated wind pressure for an
increasing number of modes. In order to obtain a strong negative peak of wind pressure, the largest
value of the first principal coordinate and ordinary values of the other coordinates were used. As a
result, wind pressure with a strong negative peak value of -9.764 was produced using the first
fifteen eigenmodes, as depicted in Fig. 12. Fig. 13 shows another strong peak value of -10.475,
which was produced using the first fifteen eigenmodes and the principal coordinates generated using
the AR models with new random variables. The pressure time series 9 in Fig. 3 exhibits the largest
negative peak value of -8.979 among the 99 records of wind pressure. It can be seen that the large
negative peak of the simulated pressure with the fifteen modes in Figs. 12 and 13 respectively is
stronger than the largest peak of the original pressure time series 9 in Fig. 3. The presented data
show that wind pressures with large peak values can be produced well using the dominant POD
modes and the principal coordinates generated by the AR models.
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4. Conclusions

The proper orthogonal decomposition and the autoregressive process were applied to simulate
wind pressures with large peak values on a low-rise building. In the POD analysis, the covariance
of the ensemble of large wind pressures was employed to calculate the principal modes and
coordinates. It was shown that approximately 25% of the modes were required to reconstruct large
wind pressure with the error of 3%.

The POD principal coordinates were modeled using the AR process. It was found that, compared
to the order of the AR model established for the first principal coordinate, the order of the AR
model required for the remaining coordinates was low. The fitted AR models were employed to
generate the new principal coordinates. It was shown that wind pressure with the large negative
peak, which is stronger than the largest peak of the original random pressure field and characterizes
the large wind pressures of the field, was produced using the dominant POD modes (up to the first
fifteen eigenmodes) and the generated principal coordinates. Based on the presented study, it is
concluded that wind pressures with large peak values can be produced using the dominant POD
modes and the principal coordinates generated by the AR models.
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