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Abstract. This paper presents a time-domain approach for analyzing nonlinear random vibrations of
long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully
accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial
correlation are properly included by modeling wind velocity fluctuation as a random function of time and
of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D)
random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a
very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This
procedure starts by generating sample functions of the generalized aerodynamic loads by using the
spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on
the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of
the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure
according to which just the first few significant loading and structural modal contributions are retained.

Keywords: suspended cable; wind velocity; random field; digital simulation; Proper Orthogonal
Decomposition; nonlinear vibrations.

1. Introduction

Due to their light weight associated with great flexibility and low structural damping, suspended
cables are prone to large amplitude vibrations under external and parametric excitations. Theoretical
and experimental investigations have shown that the issues related to wind-induced oscillations of
cables are of great concern at the design stage, in order to prevent damage and fatigue problems c
cable structures and overhead transmission lines. Such problems are mainly caused by typica
instability phenomena like rain-wind induced vibrations, vortex-shedding, galloping, etc.

In some recent works, dealing with cable oscillations under wind loading, consistent mechanical
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models of the cable able to include both geometrical and aerodynamic nonlinearities, have been
adopted (Desaiet al. 1995, Luongoget al. 1998, Pascegt al. 1998, Gattulli,et al. 2001, Martinelli,
et al. 2002, Carassale and Piccardo 2003).

In view of the inherent nonlinearities, Monte Carlo simulation (MCS) technique may be regarded
as the only accurate and versatile tool so far available for analyzing random vibrations of wind-
excited cables. A key step of any Monte Carlo-based procedure is the numerical simulation of time-
histories of input processes with given spectral density distribution. The cross-correlation between
wind velocity fluctuations at different point locations of extended wind-exposed structures requires
the use of appropriate tools for digital simulation of the ensuing aerodynamic forces. Many authors
tackled the problem assuming the loads concentrated at scattered points of the structure. This is
achieved by discretizing the stationary Gaussian random field modeling wind turbulencenikto an
1D stochastic process, i.e., mvector collecting 1V-1D processes (depending only on time), which
represent the realizations of wind velocity fluctuatiomadelected points of the structure. In the
same way, the Cross-Power Spectral Density (CPSD) function of the turbulence field is discretized
into a matrix of orden, providing the complete probabilistic characterization of the nonwviglD
stochastic process.

Basically, two classes of techniques are commonly used for digital simulation of stationary
GaussiamnV-1D random processes: the wave-superposition-based methods (see e.g., Shinozuka 1971
Shinozuka and Jan 1972, Grigoriu 1993, Deodatis 1996, Shinozuka and Deodatis 1996) and the time
series approaches, which include the auto-regressive (AR) and auto-regressive moving average (ARMA]
algorithms (see e.g., Spanos and Mignolet 1986, Naganeimal, 1987, Deodatis and Shinozuka
1988, Li and Kareem 1990). The first methods require the repetitive factorization &fPBB
matrix at each frequency step, which is usually performed by means of Cholesky decomposition.
The most important issue in practical applications of spectral methods concerns the computation
speed and the storage requirements as the number of simulation points increases. On the other han
the main drawback of time series approaches is the difficulty in choosing a suitable model order to
obtain good match with the target flow properties. Several improved algorithms have been proposed
to enhance the computational efficiency of both spectral approaches and ARMA-based techniques.
In this regard, it has to be mentioned that the Proper Orthogonal Decomposition (POD) (Loeve
1955, Papoulis 1965) represents an effective tool to overcome the severe limitations imposed on the
number of simulation points. The POD expresses a multi-dimensional/variate random process as
summation of fully coherent component processes uncorrelated in some statistical sense, which are
referred to as modes of the process. Li and Kareem (1993, 1995) proposed an approach based o
stochastic decomposition, which transforms the original space to one in which the component
processes are either fully coherent or non-coherent. Furthermore, through the joint application of the
POD and classical modal analysis, a technique called Double Modal Transformation (DMT) has
been set up to evaluate the dynamic response of linear structures subjected to random load:s
(Carassaleet al. 2001). Recently, the POD has been successfully applied to develop a very efficient
wave-superposition-based technique for digital simulation of multivariate wind velocity processes
(Di Paola 1998, Di Paola and Gullo 2001). This procedure expresses the target process as &
summation of fully coherent independent stochastic processes, taking full advantage of the
decomposition of the CPSD matrix into the frequency-dependent basis of its eigenvectors. The
attractiveness of this particular choice lies in the meaningful physical interpretation of the
eigenproperties of the CPSD matrix. Within a continuous formulation, the POD of a bi-dimensional
non-homogeneous process has also been employed in a recent work (Carassale and Solari 2002) ft
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the evaluation of the dynamic response of wind-excited mono-dimensional linear structures.

In the present work, second-order analysis of nonlinear in-plane and out-of-plane random
vibrations of long-span suspended cables under transversal wind is carried out by extending a
simulation technique recently proposed by the authors (Di Pebkd. 2002) for shallow cables on
the left of the first crossover point (Irvine 1981). This procedure stems from the application of
DMT concept within a nonlinear setting. Since to the authors’ knowledge, DMT method has been
so far applied to linear problems only, one of the main purposes of the paper is to investigate the
performances of such approach in the dynamic analysis of nonlinear structures under stochastic
excitation. The cable is modeled as a mono-dimensional elastic continuumaduatyinting for
geometrical nonlinearities (Luonget al. 1984). By referring the analysis to flat-sag cables, which
may be reasonably regarded as horizontal string-like exposed structures, wind velocity fluctuation is
treated as a one-variate bi-dimensional (1V-2D) zero-mean Gaussian random field (depending on
time and a single spatial variable ranging over the span), stationary in time and isotropic in space.
The aerodynamic forces are defined referring to a spring-mounted damped rigid cylinder of
indefinite length in the quasi-static regime (i.e., at much lower oscillation frequencies than the
vortex-shedding frequency (Simiu and Scanlan 1996)), under the assumption of small turbulence
with respect to the mean wind component (Piccardo 1993). Numerical investigations have
demonstrated that the influence of nonlinear aerodynamic terms on first and second-order statistical
moments of cable response is negligible. Since the proposed approach is aimed at second-orde
analysis of wind-induced cable vibrations, linearized expressions of the aerodynamic forces (Pasca,
et al. 1998) are here assumed in order to simplify the theoretical formulation and reduce the
computational effort. The time-domain analysis of cable response is carried out by Galerkin's
method, expressing the displacement components in terms of eigenfunctions of the associated linea
problem and generalized coordinates. Following closely the wave-superposition-based approach
proposed in Refs. (Di Paola 1998, Di Paola and Gullo 2001) for multivariate 1D processes, a very
efficient technique for digital simulation of the generalized aerodynamic loads is developed starting
from the POD of wind turbulence field into the basis of the frequency-dependent eigenfunctions of
the CPSD function. The joint application of the POD of wind velocity fluctuation and Galerkin's method
provides considerable computational savings in buffeting response analysis of long-span suspendec
cables. In particular, the physical meaning of both the eigenproperties of the CPSD function and the
mode shapes of the vibrating cable suggests a natural truncation procedure according to which jusi
the first few significant loading and structural modal contributions are retained.

Some numerical results concerning two cables with different geometrical and mechanical
properties are presented. Beside the accuracy and efficiency of the simulation technique developec
in the paper, the appropriate selection of the order of the discretized model and the effect of spatial
correlation of wind turbulence on cable vibrations are also examined.

2. Suspended cable under turbulent wind: continuous formulation
2.1. Cable model

Consider a uniform elastic cable hanging under its own weight between two fixed level supports
subjected to turbulent transversal wind (Fig. 1). Oatyz be a Cartesian coordinate system with
origin O at the left-hand support of the cabl®@e £ A ) and zhaxis aligned with the mean wind
direction. Following the Lagrangean approach, cable motion is referred to the initial static
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Fig. 1 Suspended cable under transversal wind

equilibrium configurationC®, which lies in the vertical planeOky) and is represented by the
functiony(s), s [0, l] being a curvilinear abscissa dadhe unstretched cable length. The varied
configurationC' under external excitation is described by the dynamic displacement components
u(st), v(s t) andw(st) of a given pointP(s), measured from the initial undisturbed configuration

C° along the coordinate axesy andz, respectively.

By referring the analysis to shallow cables, namely those with small sag-to-spam Mat@e.,
d/1<1/8 (Irvine 1981)), a curvilinear elemens dan be approximated witbkdConsequently, the
static equilibrium configurationc® can be adequately described through the parabolic profile
y(x)=4d[x/I-(x/1)?], which in turn implies a constant static tension equal to its horizontal
componentNy(s) OH . Furthermore, the following assumptions are introduced (Luetgal
1984): i) the gradient of the horizontal component of the dynamic displacement is negligible with
respect to unity, i.e., moderately large rotations occur in the motion; ii) the initial strain is negligible
with respect to unity, which entaild/EA«1 , whdteandA denote the modulus of elasticity and
the cross-sectional area of the cable, respectively.

Under the previous assumptions, the extended Hamilton’s principle yields the following set of
nonlinear coupled partial differential equations, governing wind-induced cable vibrations referenced
to the configuratior?® (Pascaet al 1998):

mu(x, t) + p,u(x, t) —[EAe(x, 1)]' = 0 (1)
my(x, t) + uV(x, t) ={ HV'(x, t) + EA[ Y (X) + V'(X, D] &(x, )}" = f(x, 1) (2)
mvi(x, t) + u,W(x, t) —{w'(x, )[H + EAg(x, )]}’ = f,(x, 1) 3)

where a dot and a prime indicate derivative with respect tottiamel abscissa, respectivelym is
the cable mass per unit length;, u, and i, are the damping coefficients of the calfl€x,t) and
f,(x,t) denote the aerodynamic loads alongytendz directions, whose explicit expressions will be
given in the next section; at last(x,t) is the Lagrangean strain, defined as follows:

E06 1) = U(X ) +y OV (X 1) + %[v’z(x, £+ w2(x 1] )

Egs. (1)-(3) are supplemented by homogeneous boundary conditions]in [O,
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In view of the assumptions on cable geometry previously introduced, the inertiaintigfxmnt) in
Eqg. (1) can be neglected and the horizontal displacement compdargntcan be eliminated by a
standard condensation procedure. So operating, the elongation turns out to be a function of time
alone, given by:
|

O O
() = 1 [ 00V () + 21v7(x, 1) + Wk, 1) Cox (5)
0

where the superscript in parentheses stands for “condensed”.
Substituting the previous relation into Egs. (2) and (3), the following two reduced partial integro-
differential equations in the transversal displacement compowent3 andw(x,t) are recovered:

MU, t) + V(X 1) —{ HV'(x, t) + EAL Y (X) + V'(x, ] €91} = f,(x, 1) (6)
MV(X, 1) + t, WX, t) —{W'(x, )[H + EAED (D]} = f,(x, 1) @)

Egs. (6) and (7) contain both quadratic and cubic nonlinearities, which are due to initial curvature
and cable stretching, respectively. The aforementioned equations are accurate for studying
suspended cables used in overhead transmission lines.

2.2. Stochastic modeling of wind loads

Once a consistent continuous model of the suspended cable, fully accounting for geometrical
nonlinearities, has been defined, the aerodynamic Idgdst) andf,(x,t) (see Eqgs. (6) and (7)),
need to be properly characterized on the basis of a realistic model of natural wind.

Neglecting the contribution of the horizontal and vertical turbulence fluctuations, the instantaneous
wind velocity is defined just by its component in the along-wind directzcaxis), i.e.:

W(x ) = W(h) +W(x, t) ®8)

where the first and second term on the right-hand side represent the mean and fluctuation,
respectively. The mean wind velocity/( h) is modeled as a deterministic function of the teight
above ground, measured at the level suppdktar(d B). The fluctuating componeriV(x, t) is
treated as a random function of timand the spatial variable 0 [0,1] , namely as a one-variate
bi-dimensional (1V-2D) stationary zero-mean Gaussian random field, whose complete probabilistic
characterization is ensured by the knowledge of the Cross-Power Spectral PeRSD) function.

If x andx, are the abscissas of two different point locatiBhsand P, along the cable and
denotes the circular frequency, neglecting the imaginary pespectrum), the CPSD function of
W(x;, t) and W(x,, t) can be expressed as follows:

S, (%5 % @) = S W) Coh,(viy, ) (9)

In Eq. (9) Sy (w) = Swiwi(xj, X;;w) is the PSD function cﬁV(x, t) fog=x, , which is assumed
constant over the spatial domain I[D,as usual for_extended horizontal structures under wind
action. Since in the present context, the random &I, t) is isotropic, i.e., its autocorrelation
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function depends only upon the absolute value of the separation digia{ge|=|x—X| between
two point locationsP; and Py, the coherence functioi€ohg,(vjy, w) is defined according to
Davenport model (1968), as follows:

Cony(vy, @) = expl-a(wwl;  a(e) = Sl (10

whereC, is an appropriate exponential decay coefficient.

It has to be mentioned that the stochastic model of natural wind above defined is referred to
shallow cables, which may be reasonably regarded as horizontal string-like exposed structures. To
cover also deep-sag cables, the present formulation should duly account for the variability of the
PSD function over the spatial domain [[),caused by the change of the mean wind velocity along
cable profile. Furthermore, a consistent definition of the coherence function should be assumed.

The aerodynamic forces are determined referring to a spring-mounted damped rigid cylinder of
indefinite length with two translational degreesh@fedom subjected to the mean wind velocity
W(h) and the longitudinal zero-mean quctuaUW(x t) , in the quasi-static regime (i.e., at much
lower oscillation frequencies than the vortex-shedding frequency (Simiu and Scanlan 1996)),
(Piccardo 1993). Numerical experience has shown that the first and second-order statistical moments
of cable response are weakly influenced by the nonlinear aerodynamic terms. Since the proposec
procedure is aimed at second-order analysis of wind-induced cable vibrations, such terms are here
neglected to enhance the computational efficiency. It is worth noting, however, that the present
formulation can be properly extended to include nonlinear aerodynamic contributions as well. Under
the previous hypotheses and assuming small turbulence with respect to the mean wind velocity, the
linearized expressions of the drag force components acting on a cable of circular cross-section along
they andz axes read, respectively (Pasetal 1998):

f,(x,t) = —%pCDbVV( hv(x, t) (11)

f,(x,t) = %pCDbWz(h)— PCobW( WW(X, t) + pCpobW( HW(X, t) (12)

wherep is the air densityCp is the drag coefficient andl denotes a characteristic dimension of the
body, which in the present case coincides with cable diameter (indefinite circular cylinder). Notice
that the drag force component in the across-wind diregt{ont) (Eqg. (11)) provides just a positive
aerodynamic damping contribution, so that in-plane vibrations are only indirectly excited through
the nonlinear coupling terms. Conversely, in the along-wind direction, beS|de a linear aerodynamic
damping, the blowing wind induces two external excitations, a cons,tﬂgb(w (h)/2 ) and a
time-varying one pCpobW( h)W(x, t) ), associated with the mean and fluctuation of wind velocity,
respectively. Owing to the random nature of wind turbulence, the time-varying term gives rise to a
stochastic dynamic excitation.

3. Monte Carlo-based analysis of wind-induced nonlinear cable vibrations
In view of the nonlinearity of the equations governing cable motion (see Egs. (6)-(7)), Monte

Carlo simulation (MCS) method is here selected as an effective tool for the psilgabili
characterization of wind-induced random vibrations in terms of first and second-order statistical
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moments. According to Double Modal Transformation (DMT) approach (Carassalke2001), the
time-domain analysis of buffeting response is carried out through the joint application of Galerkin’s
method and the Proper Orthogonal Decomposition (POD) of wind turbulence field. So operating, a
computationally efficient technique for digital simulation of the generalized aerodynamic loads is
developed, as will be outlined in the following.

3.1. Galerkin’s discretization of the equations of motion

The time-domain analysis of cable response to the aerodynamic loads defined in the previous
section is here performed by assuming the following expressions of the transversal displacement
components/(x, t) andw(x,t):

VD = T 000G Wx 9= T BIn( (13)
i k=1

i=1

where ¢i(x) and yx(x) are the in-plane and out-of-plane (or swinging) eigenfunctions of the
associated linear problem obtained dropping all the nonlinear terms in Egs. (6) and (7) (see
Appendix A). Hereinafter, thereforegi(x) and ¢i(x) will be referred to as linearized
eigenfunctionsp;(t) andr,(t) are the corresponding generalized coordinates.

Substituting the previous relations into Eq. (5), an approximate expression of the time-varying
elongationg()(t) is recovered:

A (C) nV nV nW

e'(1) = Yy bPg()+ Y bPat)gt) + Yy bPré(t) (14)

ji=1 ih)=1 k=1

where the superimposed hat (*) means that use has been made of the series expanéhtj‘)ﬁs (13);
b{? and b{® are coefficients defined in Appendix B. By applying Galerkin’s method and taking
into account Eq. (14), the partial integro-differential Egs. (6) and (7) are replaced by the following
set of n,+n, nonlinear coupled ordinary differential equations in the generalized coordméties
andr(t):

G(1) + () + 3 afa () + | a® + zvaﬁ"*)q,-(t) £9() =0, (i=12..n); (15

i=1 j=1

Fo(t) + Ll (1) + @Ryl (1) + P E@O )1 (t) = Fat Fax(t), (k=1,2..n,) (16)

where [1,; andi, are modal damping coefficients including the positive contribution due to linear
aerodynamic damping (see Appendix Bl denotes the natural frequency of #¢h out-of-plane

mode for the associated linear problem (see Appendixaf);a”, af’ and a{” are coefficients

whose expressions, listed in Appendix B, depend on both cable parameters and the selected mod
shapes. Furthermore, the generalized force on the right-hand sidekahtbat-of-plane modal Eq. (16)
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is expressed as sum of a constant load of deterministic n&ture, , associated with the mean winc
velocity, and a stochastic time-varying excitatiény(t) , related to wind turbulence:
— 1 —
Fok = EpCDbFﬁ)WZ(h) (17)
~ J— I ~
F.k(t) = pCpbF2W(h) JWO)W(x, t)dx (18)
0

whereF{) andrF{? are coefficients defined in Appendix B.
3.2. Proper Orthogonal Decomposition of wind velocity fluctuation

Embedding the above defined Galerkin-type discretized model into a Monte Carlo framework
requires the digital simulation of the fluctuating generalized drag fdfegs) (Eqg. (18)), which is
here performed by properly extending a procedure recently proposed for multivariate 1D random
processes (Di Paola 1998, Di Paola and Gullo 2001). This technique starts by decomposing the 1V-
2D stationary zero-mean Gaussian random figlfx, t) , modeling wind turbulence in the spatial
domain [0l], as a summation of fully coherent independent stochastic fields (Li and Kareem 1993),
according to the POD (Loeve 1955, Papoulis 1965):

W(x, t) = z\“/r(x, ) (19)
r=1
The previous representation is not unique as the definition of the rgndom\}i(e}ds) depends
on the way in which the CPSD function of wind velocity fluctuatidf(x, t) is decomposed.

Within a discrete setting, in Refs. (Di Paola 1998, Di Paola and Gullo 2001), the decomposition of
the CPSD matrix into the frequency-dependent basis of its eigenvectors has been adopted,
emphasizing the physical meanings and the computational advantages connected with this particula
choice. In a similar way, since, by definition, the CPSD function is bounded, symmetric and
positive-definite, the following spectral decomposition is here exploited for digital simulation
purposes:

~;\7Vk(xj’ X W) = i }\p(a}) (pp(XJ-, w) (pp(Xk, w) (20)
p=1

where A,(w) and @,(x, w) denote the frequency-dependent eigenvalues and eigenfunctions of the
CPSD function, respectively. It can be verified thatSify, (X;, X @) _ is decomposed according to
Eqg. (20), the Priestley (1999) representation of the random figl¢s, t) takes the following
expression:

Vi(x, t) = f./}\r(w)@(x, w)€“'dB, (w) (21)
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i being the imaginary unit an®,(w) a zero-mean normal complex random process having
orthogonal increments, i.e.:

E[dB,(w)] = 0; dB/(w) = dB;(-w); E[dB(wy)dBs(wn)] = &s0mndwn (22)

where E[ -] and the star mean stochastic average and complex conjugate, respedgtivisiythe
Kronecker delta symbold=0, r #s; ds=1, r=s). Ind~eed, the autocorrelation function of the
random field \7V(W, t) decomposed as in Eq. (19) with(x, t) expressed by Eq. (21) coincides
with the Inverse Fourier Transform of the CPSD function (20):

oo +oo

i (Hio ) = EIW t+ DWW (6, 0] = § [ A(@) @ (%, @)@ (X, w)e“dw  (23)

r=1-o

Sorting the eigenvaluek,(w) in decreasing order and taking into account that only the first few
spectral modes, sayl, exhibit a significant power, the random fieWl(x, t) can be expressed by
means of the following truncated series expansion:

Wix ) = Y Vi(t) = 5 [ /A(Q)a(x w)edB () (24)

If the circular frequency domain is uniformly discretized, the previous relation may be employed
to digitally generate wind velocity time-histories at selected point locations.

The eigenproperties of the CPSD function, exploited in the above described orthogonal decomposition
of wind turbulence field, are the non-trivial solutions of the following Fredholm integral equation of
the second kind:

|
I Sty (%55 X @) (X, @)dx; = Ap(@) (X @) (25)
0

which, substituting Egs. (9) and (10), may be rewritten as:

|
S @) [ expl—a(w)[x— ;|1 @ (X, w)dx; = Ap(w) @p(X, w) (26)
0

Since the CPSD function (9) is real, symmetric and positivertefiit possesses real and non-
negative eigenvaluesd,(w); the eigenfunctiongg,(x, w) are real, form a complete set and can be
normalized so as to satisfy the following condition:

|
_[cpp(x, W) @y(X, w)dx = Gy, Hw (27)
0

It can be verified that the eigenfunctions and eigenvalues solutions of Eq. (26) read, respectively
(Carassale and Solari 2002):
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2S5 w)a(w)

B2(w) + a*(w)

Bo(w)

(o) (28)

cpp(x,w)=cp§sin[ﬁp(w)x]+ COS[ﬁp(w)X]EI A (@) =

whereC, are constants defined imposing the normalization condition (27), Bifid@ are the roots
of the following trascendental equation:

_ B(w)  a(w)
2cot[I By(w)] = —a"(?)— B,() (29)

The solution of Eq. (26) may be found also in Refs. (Van Trees 1968, Spanos and Ghanem 1989),
where different expressions for odd and even eigenproperties are given. Likewise out-of-plane
linearized mode shapes of a suspended cable, odd and even eigenfunctions are symmetric an
antisymmetric about cable mid-span, respectively. Furthermore, it is worth noting that the
eigenfunctions depend only indirectly upon circular frequesdiirough the functiong,(w).

The main drawback of the previous POD of the random W¢(d, t) consists in the evaluation of the
frequency-dependent eigenproperties of the CPSD function, which implies the numerical solution of
the trascendental Eq. (29) at each frequency step. In this regard, it would be desirable to know
analytic expressions of the solutions of the eigenproblem (26), like the approximate ones derived in
Ref. (Carassale and Solari 2002). Though their evaluation may be time-consuming, the eigenproperties
of the CPSD function lend themselves to a meaningful physical interpretation, whgtitezis the
mutual interaction between wind loading and structural vibrations within the framework of mode-
superposition analysis. It appears, in fact, that the eigenvalues and eigenfunctions may be regarded &
the powers of the random field (x, t) (see Eg. (21)) and the mode shapes associated with wind
velocity field, respectively. Therefore, Eq. (24) suggests an analogy between the above described
representation of wind velocity fluctuatioW(x, t) and classical modal analysis. Specifically, as a
structural vibration is decomposed into a series of independent structural mode shapes, in the sami
way, the 1V-2D random fieldV(x, t) is expressed as summation of a sufficient number of fully
coherent uncorrelated fields which, therefore, can be chltedng mode®f wind velocity field.

3.3. Digital simulation of the generalized aerodynamic loads

As far as digital simulation of the aerodynamic loads on a wind-excited suspended cable is
concerned, the previous orthogonal decomposition of the randomViigklt) (see Eqg. (24)) in
conjunction with Galerkin’s discretization of the motion equations (see Egs. (15) and (16)), provides
substantial computational savings, mainly related to the above discussed physical interpretation. In
this connection, let us substitute Eq. (24) into Eq. (18), so that the fluctuating component of the
generalized aerodynamic loa#sk(t) can be expressed as follows:

Fa(t) = pCobF2W( h)%}m A (WD (w)e“dB (w), (k=12 .., 1n,) (30)

where:

|
Dir(w) = [(x) @ (X, w)dx (31)
0
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are functions of the circular frequency obtained by projecting the-th blowing mode shape on

the k-th out-of-plane linearized eigenfunction of the cable. Subdividing the frequency range into
intervals of equal amplituddcw, Eqg. (30) can be rewritten in the following discretized form, useful
for digital simulation purposes:

Fat) = pCDbFézk)\TV(h)g S JAd@)daD (@)™ PP, (k=1,2.,n)  (32)

r=1n=-N

where ah=nAw, NAw=w, is the upper cut-off frequency arf" denote mutually independent
zero-mean normal complex random variables with unit variance, i.e.:

E[P{] = 0; E[PYPY] = 8:0,m P = PO (33)

Alternatively, Eq. (32) may be rewritten in real form as follows:

. _ M N
Fa(t) = pCobFRW(R) Y S JA(@n) AwDie(wn) [RiPcos ant) = 1 sin(ent)],
r=1

=1n=-=N

k=1,2,..n,)  (34)

where R(" andI{" are mutually independent zero-mean normal random variables with variance
1/2, representing the real and imaginary parP®f , respectively, tR§Y is R +il (7

The shapes of the eigenfunctiofigx) (see Appendlx A) angi(x,w) (Eq. (28)) are such that for
k odd (symmetric out-of-plane cable mode shape)raeden (antisymmetric blowing mode shape),
or vice-versa, the integraBy,(w) (Eg. (31)) vanish identically, since structural and wind modes are
orthogonal. Furthermore, numerical investigations have shown that kvhedr are both odd or
even the contributions of the integrddg(c) with different indices (#k ) are almost negligible,
namely ¢ (x) and @ (x,w) are quasi-orthogonal. Since the functidhg(w), (r=1,2,...M), may be
regarded as a measure of the influence of the Mirdtllowing modes on thé&-th cable swinging
mode, physically this means that tkeh out-of-plane structural mode is actually dominated just by
the k-th wind mode. It follows that at leas}, blowing modes should be considered to simulate the
first n, random Ioadsf:zk(t) . Moreover, it has been observed that the fun@ligfg are nearly
constant except in a very small low-frequency range, as will be shown next through numerical
results. In view of these interesting properties, the computational efficiency of the digital simulation
technique based on the use of Eq. (34) may be greatly enhanced by means of the following
assumptions: i) only the terms related to the functidgéw) with equal indicesrEk) are retained
in the summation; ii) over the whole frequency range each funBligfaw) is given the constant
value Di(wx), corresponding to the upper cut-off frequengy According to these hypotheses, Eg.
(34) may be conveniently simplified settibg,(w)=0 for r Zk andDy(w)=Dy(cx)=const i.e.:

N
Fa(t) = pCobFRW(h)Dyy( ) > JAdwn)Aw[R{cos(wnt) - 1{9sin(wnt)],
N

n=-—

(k=1,2,..%)  (35)
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The previous relation ensures a drastic reduction of the computer time required by digital simulation
of the random processdsi(t) . The main advantages associated with the use of Eq. (35) may be
summarized as follows: i) it is required the evaluation of very few eigenproperties of the CPSD
function, sayn,, as many as are the out-of-plane linearized mode shapes of the cable included in
Eqg. (13); ii) the integral®(w) (Eq. (31)) and, therefore, the eigenfunctianéx, ) need to be
calculated only forew=cy; iii) the onerous evaluation of the double summation appearing in Eqg.
(34) is avoided. .

It can be easily demonstrated that Kaéh fluctuating loadF.(t) , defined by Eq. (30), is a 1V-
1D random process, whose PSD functi&g, (w) , is proportional t&-theeigenvalueA(cw) of

S\Mv”vk(xj’ X, ) , 1.e.:
S (@) = (PCobFRW(H)D (@) A@), (k=1,2, ... 1) (36)

Hence, once the first, eigenproperties of the CPSD function of wind turbulence N@(ck, t) are
known, digital simulation of the aerodynamic forces acting on the suspended cable may be
performed through conventional wave-superposition-based procedures commonly employed for 1V-
1D random processes with given spectral distribution (see Eq. (35)). So operating, the present
procedure is able to model the cross-correlation between wind velocity fluctuations at different point
locations more efficiently than widely used approaches based on the spatial discretization of wind
turbulence field into amV-1D stochastic process, being the number of the selected simulation
points. In particular, conventional spectral methods for digital simulation of stationary Gaussian
multivariate random processes require the repetitive factorization ofCBH®D matrix at each
frequency step, which is usually performed by Cholesky decomposition. It can be verified that, if
the CPSD matrix is decomposed as the product of two frequency-dependent triangular matrices, the
computer time for the generation of @v-1D random process increases with the la@a+1)/2,
becoming actually prohibitive when a large number of variates is involvegkfditee the main drawback
of these procedures lies in the severe limitations imposed on the number of simulation points.

Based on the previous observations, it may be stated that the proposed simulation algorithm
allows one to carry out a Monte Carlo-based analysis of wind-induced cable vibrations with a quite
reasonable computational effort. The following steps are involved in implementing the overall
procedure:

1) evaluation of the firsih, eigenvaluesi;(w) of S;\,i\;\,k(xj,xk; w), with w ranging over the

interval [0, ax], and of the corresponding eigenfunctigméx, w) just for w=x;

2) calculation of the integraBu(w), (k=1,2, ...,ny), for w=ax;

3) digital simulation of samples of the random proce$se@) k=1,@,...ny) through Eg. (35);

4) evaluation of response time-histories by numerical integration of Egs. (15) and (16);

5) processing of response samples to obtain the desired statistics.

4. Numerical applications

In this section, the effectiveness of the proposed procedure for analyzing wind-induced cable
vibrations is demonstrated by examining two different cables, referred to as CaldadNN2. The
main geometrical and mechanical properties of calite &te defined as followd:=266.984 m,
d/1=1/45, EA/H=486, m=1.8 kg/m andb=2.81010°m. The same properties for cablé2Nare
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given by: =850 m, d/I=1/25, EA/H=735.257,m=2.52 kg/m andb=3.580010°m. The elasto-
geometric parametek?=64(EA/H)(d/1)? (Irvine 1981), governing cable dynamics (see Appendix
A), takes the value\®=15.36, on the left of the first crossover poiat<4s7), for cable N1 and
A?=75.29, between the first and secold=(L677) crossover point, for cable®l (see Fig. 11). In
Table 1 the first four in-plane and out-of-plane linearized mode shapes of the two cables along with
the corresponding natural frequencies are reported.

The mean wind velocity is here assumed to vary as a function of the heajiuve ground,
according to the well known logarithmic profile:

ndho
Wb = Fing g (37)
whereu-[m/s] is the shear velocitk=0.4 is the Von Karman’s constant aidm] is the roughness
length. The two-sided PSD function of wind velocity fluctuation proposed by Kagtrall (1972)
is adopted:

Spi @) = ~=200u (38)

ar (h)E‘H 5OJQ_EF/3

2nwW(h) U

The parameters characterizing wind velocity field and the ensuing aerodynamic loads are selected a:
follows: W(h) =25 m/s,p=1.25 kg/m, Cp=1, C,=16 (see Eq. (10)%=0.01 m,h=20 m for cable

N°1l andh=50 m for cable R2. The upper cut-off frequenay. is set equal to 6 rad/s. Moreover,

the modal damping ratios are assumed equal for all modes, s&ttifig=0.004 andd,={u=0.001

for both cable RL and N2 (see Appendix B). Newmang-method 3=1/4, y=1/2) associated with

full Newton-Raphson iterative procedure is applied to integrate the nonlinear ordinary differential
Egs. (15) and (16) ruling cable response in the generalized space.

Before examining the computational and physical aspects connected with the analysis of cable
vibrations by the proposed procedure, the main features of the spectral decompositioGRbIhe
function of wind velocity fluctuation are briefly outlined (see Eq. (20)). For this purpose, some
numerical results concerning the representation of wind turbulence field on CabéeeNpresented.

In Fig. 2 the first six eigenvalueg,(w) of SW;\M(XJ" X,; w) versus frequency are plotted. Notice that

in the low-frequency range the first eigenvalue dominates the other ones, while for higher values of
w all the eigenvalues tend to the same value. Physically, this means that for low frequencies the first
blowing modes exhibit the major power content so that they represent almost completely the
random fieId\7V(x, t) . In Fig. 3 the first six eigenfunctioggx, w) of SM\M(XJ" Xy, w) for different

Table 1 First four in-plane and out-of-plane linearized mode shapes and natural frequencies (Cadobels N
N°2)

Cable N1 (A%<4rP) Cable N2 (4r2<A?<1677)
In-plane wrad/s] Out-of-plane w,[rad/s] In-plane w,[rad/s] Out-of-plane w,[rad/s]
1°  Sym. 21338 1 Sym. 1.4282 Antisym. 11932 1  Sym. 0.5966
2° Antisym. 2.8565 2 Antisym. 2.8565 Sym. 14574 2 Antisym. 1.1932

1
2
3 Sym. 43238 3 Sym. 42847 3 Sym. 19574 3 Sym.  1.7899
4° Antisym 57129 4 Antisym 57129 4 Antisym. 2.3865 4 Antisym 2.3865
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Fig. 2 First six eigenvalues of the CPSD function versus frequencable N1)
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Fig. 3 First six blowing mode shapes for different values of frequan@able N1)

values of frequency are shown. It can be seen that the blowing mode shapes vary appreciably in the
low frequency range, while after a certain valueuathey remain practically unchanged. As already
mentioned, the eigenfunctiong(x,w) indeed depend only indirectly upon frequency through the
functions B,(w) (see Eq. (28)), which are nearly constant except for low frequencies (Dj Paala
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2002). Furthermore, it is interesting to underline the similarity between the blowing mode shapes
and the corresponding out-of-plane linearized eigenfunctions of the suspended cable. As will be
shown next, the aforementioned similarity actually represents the core of the proposed simulation
algorithm. In Fig. 4 the convergence of the eigenfunction expansion of the PSICR®D
functions to the target spectra is illustrated Xg¥x.=|/2 andx=1/4, x=1/2, respectively. Notice

that in both cases few eigenproperties are enough to obtain a satisfactory match with the target
spectrum, though for the PSD function (Fig. 4a) the convergence is rather slower.

Let us now focus our attention on the time-domain analysis of cable response under wind loading.
For a better understanding of the simplifications introduced in Eg. (35), in Fig. 5 the functions
D« (w) (Eq. (31)) associated with the first four out-of-plane linearized eigenfunctig(s,
(k=1,2,...,4), of cable M. and the first six wind mode shapg$x,w), (r=1,2,...,6), are plotted. It
clearly appears that the contribution of the cross termsDigc) with r Zk , can be reasonably
neglected. Moreover, the frequency dependence of the fund@igf®) with equal indices can be
disregarded as well, assuming for convenieBggw)=Dw(w). In Fig. 6a the legitimacy of the
above discussed assumptions concerning the intelgdits) is demonstrated through an appropriate
comparison between samples of the random proeggs) generated by Eq. (34) and Eq. (35) (for
k=1). Fig. 6b displays an analogous comparison between the corresponding samples of mid-spar
out-of-plane vibrations of cable®N computed assuming=n,=M=4. It appears that Eq. (34) can
be conveniently repted by Eq. (35) for digital simulation purposes, without affecting remarkably
the accuracy of results.

A crucial aspect to be investigated is represented by the suitable number ofMyimad cable
modes K, and n,) to be included in the analysis. Numerical experience has revealed that the
number of blowing modes affecting cable vibrations is less than the one required to accurately

Target Target
————————————— p=10 ceeeenem p=10
_____ ng
— - --p=b6
- — - — p=4
e
14
vy
= T
. 0 0.15 0.3 0.45 0.6 0.75
@ [rad/s] o [rad/s]
(@) (b)

Fig. 4 Comparison between target power spectrum of wind velocity fluctuation and eigenfunction expansion
for an increasing number of spectral modes (Eq. (20)): (8Fx=1/2; (b) x=1/4 andx=1/2 (cable
N°1)
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Fig. 5 FunctiondD,(w) versus frequencw, for k=1,2,..., 4 and=1,2,...,6 (cable N)

represent wind turbulence field over the spatial domait].[@pecifically, it has been observed that
samples of cable response may be adequately predicted considering just the insti modes
according to Eqg. (35). On the other hand, the appropriate order of the Galerkin-type discretized
model, obtained approximating the transversal displacement components through Eq. (13), is
dictated by the geometrical and mechanical properties of the cable (Irvine parathemwell as

by the phenomena to be investigated within the framework of nonlinear dynamic behavior. In Fig. 7
samples of out-of-plane vibrations of cabled Mnd N2 atx=1/4, obtained including one to three
structural and wind modes, are plotted. Notice that a two-degree-of-freedom discretized model
(nv=n,=M=1) seems satisfactory for cabl@INwhose first in-plane eigenfunction is symmetric (see
Table 1). Conversely, such a model is quite inadequate to predict the response of°2aklach

its first in-plane mode is antisymmetric and therefore is not excited by the first wind mode. In fact,
in that case the nonlinear coupling terms appearing in Eq. (15) vanish identically and a pure
swinging motion of the cable is devised. It follows that at least the first two structural (in-plane and
out-of-plane) and loading modes\,£n,=M=2) should be included to allow for the vertical
vibrations to be excited. Nevertheless, further investigations reveal that a two-defyjeselam
discretized model is always inaccurate, even for cables on the left of the first crossover point, since
it is unable to capture the loss of coherence induced in the response process by the spatially
correlated wind turbulence. Indeed, including only one blowing md&elj in the orthogonal
decomposition (24) means assuming that wind velocity field is fully coherent. The previous concept
is exhaustively illustrated in Figs. 8 and 9. Fig. 8 shows samples of out-of-plane vibrations of cable
N°L at x=I/4 andx=3/4 (vx=133.492 m) evaluated assuming botFn,~M=1 (Fig. 8a) and
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Fig. 7 Samples of out-of-plane vibrations at the quarter-span point obtained retaining one to three cable
(nv=ny) and wind M) modes: (a) cable 9 and (b) cable f
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Fig. 8 Samples of out-of-plane vibrations of cabl&l Nat x=I/4 and x=3l/4: (a) n,=n,=M=1 and (b)
n,=n,=M=2

n~=n,=M=2 (Fig. 8b). It can be seen that, if a two-degree-of-freedom discretized model is employed,
identical responses at the two point locations are predicted, since as stated previddsly, Ex. (24)
actually represents a fully coherent random field. Conversely, just the second wind mode and the
second swinging cable mode (both antisymmetric) are enough to reveal the loss of coherence
between the random process#s;, t) andw(x, t). Fig. 9 displays the projection of the steady-state
out-of-plane mean configuration plus/minus one standard devigtighg,, , ddxthplane for
cables N1 and N2. The comparison between the results provided by discretized models of different
orders shows once more the fundamental role played by cable and wind modes of higher order than one.
The previous results point out that the effects of spatial correlation of wind velocity fluctuation
over long-span suspended cables are quite important. For comparison purposes, the mean value ar
standard deviation of in-planeu( ¢,) and out-of-plane ,, g,) vibrations of the two cables here
examined have been computed also under the assumption of uniform wind turbulence. To this aim,
a conventional wave superposition-based technique has been employed to simulate the 1V-1D wind
velocity process. In order to quantify the effect of spatial correlation, the following percentage error
is introduced:

(%) = x 100; U O (39)

q(C) — éU)‘

S

q{
where the subscripts=v,w denotes in-plane and out-of-plane vibrations; the superscripts in
parentheses, C and U, indicate that the response stgtistievaluated assuming spatially correlated
and uniform wind velocity fluctuation, respectively. Tables 2 and 3 list the percentage 8§?)rors
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Fig. 9 Steady-state out-of-plane mean configuration plus/minus one standard deviation computed by MCS for
two different orders of the Galerkin-type discretized model: (a) cable ahd (b) cable #

obtained employing Galerkin-type discretized models of different orders for cableand N2,
respectively. Equally spaced pointsidx, i=1,2,...,7, withAx=33.373 m for the first cable and
Ax=106.25 m for the second one, are considered. According to the concepts outlined above, Table 2
shows that a two-degree-of-freedom discretized model yields constant percentage errors over cable
span. It can be seen that both the mean value and standard deviation of in-plane and out-of-plan
vibrations are, in general, overestimated when uniform wind turbulence is assumed. An analogous
conclusion may be drawn from Fig. 10, which displays the comparison between the projections of

Table 2 Effect of spatial correlation of wind velocity fluctuation upon mean and standard deviation of in-
plane and out-of-plane cable displacements at different point locatiopsrcentage errors defined
by Eq. (39), (Cable 1)

n,=n,=M=1 n,=n,=M=3
g (%) ') ) &%) %) M%) &%) el (%)

X1 3.7877 7.7122 139.3087  72.783/ 3.3006 0.8985 123.6801  73.8052
Xo 3.7877 7.7122 139.3087  72.7837 3.4568 0.8172 131.8017 71.8754
X3 3.7877 7.7122 139.3087  72.7837 3.6221 0.7201 140.5465  69.0385
Xa 3.7877 7.7122 139.3087  72.7837 3.6983 0.6598 1445902 67.3311
X5 3.7877 7.7122 139.3087  72.7837 3.6221 0.6696 140.5465  68.0517
X6 3.7877 7.7122 139.3087  72.7837 3.4568 0.7287 131.8017  70.0074
X7 3.7877 7.7122 139.3087  72.7837 3.3006 0.7886 123.6801  71.3559
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Table 3 Effect of spatial correlation of wind velocity fluctuation upon mean and standard deviation of in-
plane and out-of-plane cable displacements at different point locatiggercentage errors defined
by Eqg. (39), (Cable Rp)

nV:nW:M:Z nV:nW:M:3
g0 ) ) M) &)  en) %) e (%)
X1 0.8371 1.0358 92.9411 62.432V 1.0426 0.9353 69.6493 70.7444
Xo 0.8371 1.0018 92.9411 68.1167 1.1197 0.7804 71.7121 67.4199
X3 0.8371 0.9509 92.9411 73.9280 1.1830 0.5919 75.0675 62.3636
X4 0.8371 0.8908 92.9411 75.2942 1.2176 0.4682 77.4852 59.0249
Xs 0.8371 0.8306 92.9411 70.3921 1.1830 0.4735 75.0675 59.7222

X6 0.8371 0.7795 92.9411 62.3431 1.1197 0.5734 71.7121 62.6728
X7 0.8371 0.7453 92.9411 55.7033 1.0426 0.6785 69.6493 64.8673
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Fig. 10 Effect of spatial correlation of wind velocity fluctuation upon steady-state out-of-plane mean
configuration plus/minus one standard deviatioF§,=M=3): (a) cable RL and (b) cable Rp

the steady-state out-of-plane mean configuration plus/minus one standard deviation @xz the
plane, obtained through a six-degree-of-freedom discretized model both including and neglecting
spatial correlation of wind turbulence. The previous results show that the widely used model of
wind velocity fluctuation as a stationary zero-mean Gaussian random process, uniform over the
spatial domain, turns out to be conservative when extended wind-exposed structures, such as long
span suspended cables, are dealt with.
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5. Conclusions

A Monte Carlo-based approach for analyzing buffeting response of long-span suspended cables
has been presented. Aiming at second-order analysis of the response, this procedure fully account
for geometrical nonlinearities inherent in cable behavior while it neglects nonlinear aerodynamic
terms in view of their weak influence on first and second-order statistical moments. By referring the
analysis to flat-sag cables, wind velocity fluctuation is treated as a one-variate bi-dimensional zero-
mean Gaussian random field, stationary in time and isotropic in space. The time-domain analysis of
cable response is carried out through the joint application of the Proper Orthogonal Decomposition
of wind turbulence field and Galerkin's discretization of the equations of motion, according to
Double Modal Transformation technique. Following a recently proposed approach, the Proper
Orthogonal Decomposition of wind velocity fluctuation is performed on the basis of the frequency-
dependent eigenfunctions of the CPSD function. So operating, a very efficient technique for digital
simulation of the generalized aerodynamic forces is developed. The main drawback of this approach
is that it requires the evaluation of the frequency-dependent eigenproperties of the CPSD function,
which may be time consuming. However, the similarity detected between the blowing mode shapes
and the along-wind linearized eigenfunctions of the cable provides remarkable computational
advantages, mainly due to the orthogonality properties shared by wind and cable mode shapes. Ir
particular, by virtue of these properties time-histories of spatially correlated wind loads can be
generated via numerical simulation of few one-variate one-dimensional random processes, as many
as are the out-of-plane vibration modes of the cable included in the Galerkin-type discretized model.
Hence, the cross-correlation of wind velocity fluctuations at different point locations is modeled in a
more efficient way than conventional spectral approaches, which rely on the spatial discretization of
wind turbulence field itself and the subsequent factorization of the CPSD matrix at each frequency
step. Some numerical results have been presented and discussed in the paper, in order to assess
accuracy and efficiency of the proposed simulation procedure. The appropriate selection of the order
of the discretized model and the effects of spatial correlation of wind velocity fluctuation on
buffeting response have also been investigated through numerical applications.

Appendix A-Linearized eigenfunctions and natural frequencies of a suspended cable

The symmetric in-plane eigenfunctions and the corresponding natural circular frequencies of a suspended
cable are given by Irvine (1981):

di(x) = A[ tani%sm(ﬁx) cos(ﬁx)} (A1)
W, = %JE (i=135..) (A.2)

whereA; is a normalization constant ariyy are the roots of the characteristic equation

. ) 3
Pin_ %_Adig A3)

@5 0% 27 20

A2=64EA/H)(d/1)? being the Irvine parameter.
The antisymmetric in-plane eigenfunctions and the associated natural circular frequencies are defined as
follows:
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Natural frequenciesin

Fig. 11 Dimensionless natural frequencies of in-plane and out-of-plane vibration modes of a suspended cable
versus the elasto-geometric paramatém

— g0
#i(x) = sing 7 (A.4)
it H .
w,; = TJ%’ (i=246..) (A.5)
The out-of-plane eigenfunctions and the corresponding natural circular frequencies are given by:
_ i KXO
() = sing (A.6)
_ km H _
Wk = g (k=1,23..) (A7)
Fig. 11 shows the dependence of the dimensionless natural frequengfeém)./m/ H=39,/m and

wu(l7mym/ H = k of in-plane and out-of-plane modes, respectively, on the cable parahiatefFor
concisenessSym.vandAntisym.vdenote the symmetric and antisymmetric in-plane modes, respectively, while
the out-of-plane modes are simply indicated by the letteNotice that only the natural frequencies of the
symmetric in-plane modes vary with the elasto-geometric parathéteras they are the roots of the trascen-
dental equation (A.3). Moreover, internal resonance conditions occur at the crossoverGpointich are
located atA/m=2j, (j=1,2,...). Physically, the modal crossover phenomenon is explained by the continuous
transition from the behavior akin to a taut string to the one of a sagging cable.

Appendix B-Coefficients of the discretized equations of motion

In order to define the expressions of the coefficients appearing in the discretized equations of motion, the
following integrals are first introduced:
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Pr(x)dx;

ol— —

|
187 = [e2(x)dx; 5% =
0

W (X)dx; (B.1)

ol— —

|
1£7 = [oi()dx; I
0

| I
19 =[5 0085 (dx; 189 = [wR(x)dx;
0 0

where ¢;(x) and g, (Xx) are the in-plane and out-of-plane linearized eigenfunctions of a suspended cable (see
Appendix A).
The coefficientsh™, b® andb introduced in Eqg. (14) are given by:

@ = 84,0 p@ = B 1ER
bj = |—3|1]j; bi] = ol : bk :—2‘|— (B.2)

2)

while the coefficients”, a®?, af andal® appearing in Egs. (15) and (16) are defined as:

alh) = ﬂﬂ a(z)_S_dE_Aﬂ. (3)_E_A£i)j.. (4)_E_I§l2 (B.3)
P T mig A w0 g '
Furthermore, under the assumption of mass-proportional damping,  [wand (see Egs. (15) and (16)) are
given by:
. pCobW(h) . pCobW( h)
i = 280y + o m T ke = 24t (8.4)

{,; and {,x being the modal damping ratios for théh in-plane mode anl-th out-of-plane mode, respectively.
At last, the coefficient&{Y) andF2 (see Egs. (17) and (18)) are defined as follows:

F = L0 F@ = 1 (B.5)
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