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Abstract. The response of tall buildings to gust buffeting is usually evaluated assuming tha
structural damping is of a viscous nature. In addition, when dampers are incorporated in the de
mitigate the response, their effect is allowed for increasing the building modal damping ratios 
quantity corresponding to the additional energy dissipation arising from the presence of the devices
though straightforward, this procedure has some degree of inaccuracy due to the existence of a 
effect, associated with the damping mechanism, which is neglected by a viscous model. In this p
more realistic viscoelastic model is used to evaluate the response to gust buffeting of tall bu
provided with energy dissipation devices. Both cases of viscous and hysteretic inherent dampi
considered, while for the dampers a generic viscoelastic behaviour is assumed. The Laguerre Pol
Approximation is used to write the equations of motion and find the frequency response function
procedure is applied to a 25-story building to quantify the memory effects, and the inaccuracy 
when the latter is neglected.
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1. Introduction

For wind engineering applications, it is customary to model flexible structures as linear dyn
systems provided with viscous damping. In the case in which Energy Dissipation Devices (E
are added, it is often assumed that the viscous behaviour of the system is not changed. The
of the dampers are, then, accounted for increasing each modal damping ratio by a quantity 
effective damping. The latter represents the additional viscous modal damping to be provided 
plain structure in order to make it experience the same steady state response, under 
excitation, as the structure with the dampers would.

For the above approach to be consistent, two conditions have to be met: (a) the structure i
damping has to be viscous, and (b) the devices have to be viscous dashpots rigidly connecte
main structural system. In real life, however, both conditions quite often fail to be satis
Structural systems in many cases exhibit a damping mechanism which, even though linear fo
amplitude oscillations, proves to be weakly dependent on frequency (Nashif, Jones and Hen
1985, Sun and Lu 1995). A linear hysteretic model (viscoelastic), therefore, provides a 
accurate description of their behaviour than a viscous model. On the other hand, dampers e
variety of types of behaviour, which in many cases are far away from being of a linear vi
nature. For the mitigation of the wind induced response viscoelastic dampers are usually a
(Soong and Dargush 1997), as their damping capacities, even though of a lower magnitud
respect to metal yielding dampers used in seismic applications, do not suffer from fatigue da
Moreover, also in the case in which viscous dashpots are used, their global behaviour turns
be viscoelastic, when not rigidly connected to the main structure (e.g., in the case in which f
braces are used for their connection). Based on the two above observations, it is clear
viscoelastic model, rather than a viscous one, would be adequate to describe the behaviour 
exposed flexible structures provided with damping devices.

One of the principal characteristics of a viscoelastic system is that of having a memory beh
This means that knowledge of displacement and velocity at a particular time instant, together w
external excitation, does not allow prediction of the system evolution. Indeed, knowledge of the 
previous displacement history is required, meaning that displacement and velocity do no
describe the state of the system. When a viscous approximation is used to model a system f
a viscoelastic behaviour, the memory effect is lost, and this affects the accuracy of the analys
the loss of accuracy depends on the characteristics of the viscoelastic memory and of the exc

In this paper a procedure is presented for the analysis of tall buildings subjected to gust bu
including the viscoelastic memory of both main structure and additional dampers. The Lag
Polynomial Approximation method (Palmeri, et al. 2003, De Luca, et al. 2002) will be applied to write
the equations of motions and derive the frequency response functions of the system. Fina
procedure is used for the analysis of the response of a 25-story moment resisting frame building, 
and with the addition of viscous dashpots connected to the main structure through elastic brac

2. Equations of motion for buildings with viscoelastic behaviour including
viscoelastic dampers

2.1. Equations of motion in Lagrangian coordinates

The motion of buildings featuring linear viscous damping is described through the equation:
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where x(t)=[x1(t) ... xn(t)]T is the array listing the time histories of the n Lagrangian coordinates of
the system, M , C and K  are the mass, damping and stiffness matrices, respectively, f (t)=[ f1(t) ...
fr(t)]T is the array listing the time histories of the r external loads, and L f is its influence matrix.

In the case in which the building is provided with EDDs, the damping matrix in Eq. (1) is
sum of two terms, one accounting for the inherent damping, the other accounting for the additional
damping arising from the presence of the EDDs.

Eq. (1) can be solved in the frequency domain as:

X (ω)=H (ω)F(ω)
H (ω)=[K −ω2M +jωC]−1 L f (2)

where X (ω) and F(ω) are the Fourier transforms of the response x(t) and of the excitation f (t),
respectively, and H (ω) is the  frequency response matrix of the system in Lagrang
coordinates.

In Eq. (1) the displacement x( t) together with the velocity  fully define the state of th
system; as a consequence, the memory effect is neglected. The system described through E
of Kelvin-Voigt type, and is the only viscoelastic system without memory.

More generally, the equations of motion for a building featuring a linear viscoelastic beha
including memory can be written as (Fig. 1(a)):

Mx·· t( ) Cx· t( ) Kx t( )+ + L f f t( )=

n r×

x· t( )

Fig. 1 Schematic of building with viscoelastic dampers (a) and decoupled modal representation (b
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where r (t)=[ r1(t) ... rn(t)]T is the array listing the internal viscoelastic forces, p(t)=[ p1(t) ... pl (t)]T

is the array of the viscoelastic reactions of the additional EDDs, �(t) and �(t) are the relaxation
matrices of the structure and of the l EDDs, respectively, V is the  matrix associating the
relative displacements at the EDDs to the building displacements, and Lp is the  matrix
associating the building displacements to the relative displacements at the EDDs. Eqs. (3) h

, and it is assumed that the structure is at rest for .
The internal viscoelastic forces can be expressed as the sum of n terms, each associated with on

particular Degree of Freedom (DoF) of the building. Therefore the second of Eqs. (3) take
expression:

i = 1, ..., n (4)

in which  is the time history of the viscoelastic force in the i-th DoF, associated with
a unit step displacement in the j-th DoF at t=0.

The function  is termed a relaxation function, and can be expressed as the sum o
constant portion , representing the purely elastic part of the viscoelastic reaction
a time-varying portion , which takes into account the viscoelastic memory.
(4) becomes:

i = 1, ..., n (5)

or, in a matrix form: 

(6)

where:

(7)

Mx·· t( ) r t( ) L p p t( )+ + L f  f t( )=

r t( ) � t τ–( )x· τ( )dτ
0

t

∫=

p t( ) � t τ–( )Vx· τ( )dτ
0

t

∫=













l n×
n l×

t 0≥ t 0<

r i t( ) ki j,
0

t

∫
j 1=

n

∑ t τ–( )x·j τ( )dτ          =

ki j, t( ) kj i, t( )≡

ki j, t( )
ki j,

∞ ki j, ∞( )=
ki j,

* t( ) ki j, t( ) ki j,
∞–=

r i t( ) ki j,
∞ xj t( )

j 1=

n

∑ ki j,
*

0

t

∫
j 1=

n

∑ t τ–( )x·j τ( )dτ        +=

� t( ) K ∞ K * t( )+=

K ∞

k1 1,
∞ k1 2,

∞ ... k1 n,
∞

k2 2,
∞ ... k2 n,

∞

kn n,
∞

;   K * t( )

k1 1,
* t( ) k1 2,

* t( ) ... k1 n,
* t( )

k2 2,
* t( ) ... k2 n,

* t( )

kn n,
* t( )

==

... ...sym

... ...sym
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which brings the second of Eqs. (3) to be rewritten as: 

(8)

In Eq. (7),  is the long term stiffness matrix of the plain building, playing the same role a
stiffness matrix K  in Eq. (1).

Following the same approach, the viscoelastic reactions of the additional EDDs can be exp
as the sum of n terms, each associated with one DoF of the building. The third of Eqs. (3) take
expression (similar to Eq. (5)):

i = 1, ..., l (9)

 and  being the constant and the time-varying parts of the relaxation function of thi-th
viscoelastic EDD.

In a matrix form (similar to Eq. (6)):

(10)

where  and  are matrices listing
the constant and the time-varying parts of the relaxation functions of the viscoelastic EDDs. F
the third of Eqs. (3) can then be rewritten as (similar to Eq. (8)):

(11)

2.2. Equations of motion in modal coordinates

Eqs. (3) can be expressed in modal coordinates, defined through the transformation:

(12)

where ΦΦΦΦ=[φ1 ... φm] is the modal matrix of the plain building evaluated for  (that 
accounting only for the long term stiffness matrix) whose columns are the first  struc
modes, and where q(t)=[q1(t) ... qm(t)]T is the array of the modal coordinates.

Substitution of Eqs. (8) and (11) into Eqs. (3) provides the equations of motion in m
coordinates:

r t( ) K ∞x t( ) K * t τ–( )x· τ( )dτ
0

t

∫+=

K ∞

pi t( ) gi
∞

j 1=

n

∑ Vi j, xj t( ) gi
*

0

t

∫
j 1=

n

∑ t τ–( )Vi j, x·j τ( )dτ       +=

gi
∞ gi

* t( )

� t( ) G∞ G* t( )+=

G∞ diag gi
* t( ); i 1 ... l, ,={ }= G* t( ) diag gi

* t( ); i 1 ... l, ,={ }=

p t( ) G∞Vx t( ) G*

0

t

∫ t τ–( )Vx· τ( )dτ+=

x t( ) ΦΦΦΦ q t( ) φ iqi t( )
i 1=

m

∑= =

t ∞→
m n≤
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where ΩΩΩΩ=diag{ω i ; i=1, ...,m}, , is the matrix containing the natural circula
frequencies of the plain building, obtained as solutions of the eigenproblem ,
where ΓΓΓΓ(t) is the matrix containing the time-varying parts of the building modal relaxa
functions:

ΓΓΓΓ(t)=ΦΦΦΦTK * (t)ΦΦΦΦ (14)

The equation governing the i-th modal coordinate is:

(15)

where  is the i-th modal excitation,  is the projected EDD
reaction on the i-th mode, and where  is the projected time-varying p
of the structure relaxation functions on the i-th mode, i.e. the time history of the i-th modal force
due to a unit step displacement in the j-th mode.

For buildings with viscous damping, it is often assumed that the eigenvectors are orthogon
respect not only to the mass and stiffness matrices, but also with respect to the damping ma
consequence the equations of motion in modal coordinates are decoupled (Fig. 1(b)). This res
be extended to the case of viscoelastic damping, assuming that at any time instant the eige
are orthogonal with respect to the time-varying part of the relaxation matrix K *(t). As a
consequence Eq. (14) becomes: 

ΓΓΓΓ( t)=diag{γi(t) ; i=1, ..., m} (16)

where for simplicity γ i, i( t) has been written as γi(t). Under this hypothesis, Eq. (15) becomes:

(17)

where the only coupling derives from the viscoelastic forces exerted by the EDDs:

(18)

q·· t( ) ΩΩΩΩ2q t( ) ΓΓΓΓ
0

t

∫ t τ–( )q· τ( )dτ ΦΦΦΦTL pp t( )+ + + ΦΦΦΦTL f  f t( )=

p t( ) G∞V ΦΦΦΦq t( ) G*

0

t

∫ t τ–( )V ΦΦΦΦq· τ( )dτ+=











ω1 ... ωm≤ ≤
K ∞φ i M φ iω i

2=

q··i t( ) ω i
2qi t( ) γi j, t τ–( )q· j τ( )dτ

0

t

∫
j 1=

m

∑ ui t( )+ + + wi t( )=

wi t( ) φ t
TL f  f t( )= ui t( ) φ i

TL p p t( )=
γi j, t( ) φ i

TΓΓΓΓ t( )φ j γ≡ j i, t( )=

q··i t( ) ω i
2qi t( ) γi

0

t

∫ t τ–( )q· i τ( )dτ ui t( )+ + + wi t( )     i 1 ... m, ,==

ui t( ) φ i
TL p G∞V φj

j 1=

m

∑ qj t( ) G*

0

t

∫
j 1=

m

∑ t τ–( )V φ jq
·

j τ( )dτ+
 
 
 

=
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In the following section, Eq. (17) will be written for the particular cases of buildings with ei
linear viscous damping or linear hysteretic damping.

3. Equations of motion for buildings with viscous or hysteretic inherent damping

3.1. Buildings with viscous inherent damping

The case in which the structural damping is of a viscous nature (i.e., without memory) ca
be seen as a particular case of Eq. (17). The i-th relaxation function  of the building with
viscous damping is (Lockett 1972):

(19)

where, ζi is the i-th viscous damping ratio, and where δ(t) is the Dirac delta function. Substitution
of Eq. (19) into Eq. (17) brings: 

(20)

Eqs. (20) are a set of m equations coupled by the terms ui(t), which in a matrix form can be
written:

(21)

where:

(22)

The frequency domain solution of Eq. (21) is:

(23)

Q(ω) being the Fourier transform of the modal response q(t), and (ω) being the modal
frequency response matrix of the building with viscous inherent damping and viscoelastic EDD

(24)

where Im is the identity matrix of order m, and where the overbar indicates the terms related to
viscoelastic behaviour of the EDDs:

(25)

γ i
V t( )

γ i
V t( ) 2ζiω iδ t( )=

q··i t( ) ω i
2qi t( ) 2ζ iω iq

·
i t( ) ui t( )+ + + wi t( )     i 1 ... m, ,==

q·· t( ) ΞΞΞΞVq· t( ) ΩΩΩΩ2 ΦΦΦΦTL pG
∞V ΦΦΦΦ+( )q t( )+ +

ΦΦΦΦTL p G*

0

t

∫ t τ–( )V ΦΦΦΦq· τ( )dτ ΦΦΦΦTL f  f t( )=+

ΞV 2diag ζiω i  ; i 1 ... m, ,={ }=

Q ω( ) H̃
V ω( )ΦΦΦΦTL fF ω( )=

H̃
V

H̃
V ω( ) ΩΩΩΩ2 ΩΩΩΩ2

+( ) ω2I m– jω ΞΞΞΞV ΞΞΞΞ ω( )+[ ]+{ }
1–

=

ΩΩΩΩ2 ΦΦΦΦTL pG
∞V ΦΦΦΦ=

ΞΞΞΞ ω( ) ΦΦΦΦTL p� G* t( )〈 〉V ΦΦΦΦ=
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in which  stands for the Fourier transform operator. The elements of the matrix 
related to the dynamic stiffness of the EDDs, which can be directly measured by mea
sinusoidal tests on the dampers.

In general, neither matrices defined through Eqs. (25) are diagonal, which brings the freq
response matrix  to be sparse. Nevertheless, if the distribution of the EDDs in the struc
almost homogeneous, then it is expected that the off-diagonal terms of the  matr
negligible. In the latter case, Eqs. (25) become: 

(26)

with:

(27)

Eqs. (26) decouple Eqs. (20), which become:

i=1, ..., m (28)

Then, the solution of Eq. (28) in the frequency domain is:

(29)

where  and , while:

(30)

3.2. Buildings with hysteretic inherent damping

If compared to the viscous model, in many cases the linear hysteretic model has been fo
provide a better description of the real damping of buildings (Nashif, Jones and Henderson
Sun and Lu 1995), as for a wide range of structural materials the energy loss per cycle app
be almost frequency independent. The analytical model commonly used to describe the
hysteretic damping in the time domain involves the Hilbert transform operator (Bracewell 1
This was proved to be a pathologic model (Inaudi and Kelly 1995, Inaudi and Makris 1
because it does not meet the causality requirement. In two recent papers, Makris and Zhang
and Spanos and Tsavachidis (2001) suggested that the Biot model (Biot 1958) be u
approximate linear hysteretic damping. This model is causal and physically realisable, and b
closed form time domain representation. Using the Biot model, the time-varying relaxation fun

�  .〈 〉 � G* t( )〈 〉

H̃ ω( )
H̃ ω( )

ΩΩΩΩ2
diag ω i

2; i 1 ... m, ,={ }≅

ΞΞΞΞ ω( ) diag �  γ i t( )〈 〉 ; i 1 ... m, ,={ }≅

ω i
2 φ i

TL pG
∞V φi=

γ i t( ) φ i
TL pG* t( )Vφ i=

q··i t( ) ω i
2 ω i

2+( )qi t( ) 2ζ iω iq
·

i t( ) γ i

0

t

∫ t τ–( )q·i τ( )dτ+ + wi t( )= =

Qi ω( ) H̃i
V ω( )Wi ω( )      i 1 ... m, ,==

Qi ω( ) � qi t( )〈 〉= Wi ω( ) � wi t( )〈 〉 φ i
T= L f� f t( )〈 〉=

H̃i
V ω( ) ω i

2 ω i
2 ω2 jω 2ζ iω i � γ i t( )〈 〉+[ ]+–+{ }

1–
=
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in the i-th mode of a building with hysteretic damping, i.e., the i-th term in Eq. (16) is written as:

(31)

where ηi is the loss factor, εi is a parameter to be calibrated based on the natural frequency o
structure and on the frequency content of the excitation, and where Ei(. ) is the exponential integral
function defined as (Gradshteyn and Ryzhik 1994):

x< 0 (32)

Substitution of Eq. (31) into Eq. (17) gives the equation of motion in the i-th mode for a building
with inherent hysteretic damping:

(33)

which plays the same role as Eq. (20) does for buildings with viscous damping. In a matrix
(corresponding to Eq. (21)):

(34)

in which:

(35)

The modal frequency response matrix has an expression similar to that found for structure
viscous damping (Eq. (24)):

(36)

where:

(37)

γ i
H t( ) 2

π
---– ω i

2η iEi εi t–( )=

Ei x( ) eξ

ξ
----

∞–

x

∫ dξ          =

q··i t( ) ω i
2 qi t( )

2ηi

π
--------  Ei

0

t

∫ ε i t τ–( )–[ ]q· i τ( )dτ–
 
 
 

ui t( )+ + wi t( )     i 1 ... m, ,==

q·· t( ) ΓΓΓΓH

0

t

∫ t τ–( )q· τ( )dτ ΩΩΩΩ2 ΦΦΦΦTL pG∞V ΦΦΦΦ+[ ]+ q t( )=

ΦΦΦΦTL p G*

0

t

∫ t τ–( )V ΦΦΦΦq· τ( )dτ ΦΦΦΦTL f f t( )=+

ΓΓΓΓH t( ) 2
π
---diag ω i

2ηiEi ε i t–( ); i 1 ... m, ,={ }–=

H̃
H ω( ) ΩΩΩΩ2 ΩΩΩΩ

2
+( ) ω2I m j ω ΞΞΞΞH ω( ) ΞΞΞΞ ω( )+[ ]+–{ }

1–
=

ΞΞΞΞH ω( ) � ΓΓΓΓH t( )〈 〉=

2
πω
-------diag ω i

2ηi arctan
ω
εi

---- 
  j 1

ω
ε i

---- 
  2

+ln– ;  i 1 ... m, ,=
 
 
 

=
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and where  and  have been defined through Eqs. (25).
Finally, under the hypothesis of homogeneously distributed EDDs, Eqs. (33) become:

(38)

and the i-th modal frequency response function is:

(39)

4. The Laguerre Polynomial Approximation for linear viscoelastic systems

In section 3 the decoupled modal integrodifferential equations of motion have been deriv
buildings featuring either viscous or hysteretic damping, and provided with an homoge
distribution of EDDs. The equations can be directly solved in the frequency domain, and it ha
shown that the building response is the superposition of the responses of m SDoF modal oscillators,
featuring a linear viscoelastic memory (Fig. 1). For each oscillator, the modal relaxation fun

 fully defines the memory behaviour.
The solution of Eqs. (28) and (38), however, is not an easy task, and approximated mod

usually adopted to handle the viscoelastic memory. Common models are the generalized M
model and generalized Kelvin-Voigt model (Bland 1960), both based on a spring-da
representation of the system. Recently, Palmeri et al. (2003) proposed a new method to evaluate 
dynamic response of a linear viscoelastic SDoF oscillator. The method is based on an approx
form of the relaxation function, in which a linear combination of Laguerre polynomials is use
modulate the relaxation function of a Maxwell element. This approach, termed Laguerre Polyn
Approximation (LPA), brings the introduction of a number of Additional Internal Variables
account for the memory of the system. The LPA method proves to be computationally effectiv
its parameters can be directly evaluated from relaxation tests. This approximation was orig
developed to be applied in time domain analyses; however, for frequency domain analyses it 
advantage of providing a closed form expression for the dynamic stiffness  appear
the Frequency Response Function (FRF). In the following the main features of the LPA metho
be briefly outlined.

The equation of motion for a SDoF oscillator made of a mass M connected to a linear viscoelasti
support (Fig. 2), with relaxation function �( t), at rest for t<0, is:

(40)

where x(t) is the displacement of the mass and f(t) the external excitation. If the elastic portion K

ΩΩΩΩ
2 ΞΞΞΞ ω( )

q··i t( ) ω i
2 ω i

2+( )qi t( )
2η i

π
--------Ei ε i t τ–( )–[ ] γ i t τ–( )+

 
 
 

0

t

∫ q· i τ( )dτ+ + wi t( )=

i 1 ... m, ,=

H̃i
H ω( ) ω i

2 ω i
2 ω2 2

π
---ω i

2ηi 1
ω
ε i

---- 
  2

+ln j arctan
ω
ε i

---- 
 + j ω�+ γ i t( )〈 〉+–+

 
 
 

1–

=

γ i t( )

jω� γ t( )〈 〉

Mx·· t( ) �

0

t

∫ t τ–( )x· τ( )dτ f t( )=+
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Eq.

en

d

and the viscous portion Cδ(t) of the reaction are removed from the relaxation function, then 
(40) becomes: 

(41)

where  is the natural circular frequency, ζ0=M −1C /(2ω0) is the viscous damping ratio
and where γ(t) is the memory kernel, such that �(t)=K+Cδ(t)+Mγ (t).

Eq. (41) coincides with Eqs. (28) or (38) if one sets ω0= , x(t)=qi (t), f(t)=M wi(t), and
either ζ0=ζ iωi /ω0 and γ(t)= , or ζ0 =0 and γ(t)=(2ηi /π)Ei(−εi t)+ .

The memory kernel is expressed in the approximated form:

(42)

in which pN(t) is an (N−1)-order polynomial and t0 is a characteristic relaxation time, to be chos
based on a linear regression of experimental data (Palmeri, et al. 2003).

The role of the polynomial pN(t) is that of modulating the exponential function exp(−t/t0), which
is the relaxation function of a Maxwell element with unit stiffness. The polynomial pN(t) is
conveniently expressed as a linear combination of the first N Laguerre polynomials (Gradshteyn an
Ryzhik 1994):

(43)

where the Laguerre polynomial Li(.) can be evaluated through the formulae:

L0(ξ)=1
L1(ξ)=1−ξ

(44)

x·· t( ) 2ζ0ω0x
· t( ) ω0

2x t( ) γ
0

t

∫ t τ–( )x· τ( )dτ+ + +
1
M
----- f t( )=

ω0 M 1– K=

ω i
2 ω i

2+
γ i t( ) γ i t( )

γN t( ) t
t0

---– 
 exp  pN t( )=

pN t( ) aiL i
t
t0

--- 
 

i 0=

N 1–

∑=

L i 1+ ξ( ) 2i 1 ξ–+
i 1+

-----------------------L i ξ( ) i
i 1+
-----------L i 1– ξ( )     i 2 ... N 2 ...,–, ,=–=

Fig. 2 SDoF viscoelastic system (a) and relaxation function (b)
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Substitution of Eq. (43) into Eq. (42) brings:

(45)

where γN(t) is the N-order approximation of the relaxation function γ( t)  as .
Upon substitution of Eq. (45) into Eq. (41), one obtains:

(46)

where ai and λi( t) are termed the i-th Laguerre stiffness and the i-th Laguerre strain, respectively
The Laguerre stiffnesses can be evaluated from the memory kernel as:

(47)

while the i-th Laguerre strain are defined as:

(48)

By differencing Eq. (48) one obtains the state equations for the Laguerre strains:

(49)

Eqs. (49) and (46) form a set of linear differential equation that approximate the ori
integrodifferential equation of motion. The solution in the time domain can be computed usin
standard numerical technique. As an alternative, the solution of Eqs. (46) and (49) can be o
in the frequency domain as:

(50)

where X(ω)=�  and F(ω)=� , while HN(ω) is the approximated FRF. The function
ξN(ω) describe the frequency-dependent damping properties of the system. Particular cases
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i 0=

N 1–

∑=

θi t( ) t
t0
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undamped oscillator, for which ξN(ω)=0, the oscillator with viscous damping, for whic
ξN(ω)=2ζ0ω0, and the oscillator with hysteretic damping, for which .

5. Numerical example

The procedure presented in the previous sections was implemented in a Mathematica® 4.0 (1999)
code to investigate the effects of viscoelastic memory on the alongwind buffeting response o
story building.

The building (Fig. 3(a)), with a rectangular plan of , 103 m high (Niwa, et al.
1995, Hatada, et al. 2000) has a mass of about  kg. The analyses were carried out on
dimensional model of the longitudinal frames, and the DoFs considered in the analyses are th
drifts. The first three natural circular frequencies are ω1=1.87, ω2=5.61 and ω3=9.77 rad/s. The
inherent damping is assumed to be of Rayleigh type, with ζ1=0.02 and ζ3=0.10.

In a first stage, the response of the plain building (i.e., without additional dampers) in the
cases of viscous and hysteretic inherent damping, are compared. In particular, the hy
damping is approximated using the Biot model, with ηi=2ζi and εi=ωi/10 (Makris and Zhang
2000). In Fig. 4 the modulus  and the phase  of the first three modal FRF
presented, as evaluated through Eq. (30) and Eq. (39), respectively. The figure shows that g
the difference between the models increases with increasing modal damping. In particula

ξN ω( ) ηω0 ω⁄→

44.20 m 32.00 m×
160 106×

H̃i ω( ) H̃i ω( )

Fig. 3 25-story building with viscous damping devices (a) and schematic representation of the spring-d
medel (b)
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resonant peak for the hysteretic damping case is at higher frequencies than that of the 
damping case.

To increase the system damping capacity, at each level viscous damper are installed, conn
the structure through inverted V-shaped brace. Due to the brace axial deformability, the final
behaviour of each device is that of a dashpot in series with a spring (Maxwell element), and
memory effect is expected (Fig. 3(b)). The relaxation function of the i-th EDD is gi (t)=Kiexp[−t /
(βti)], where Ki is the stiffness of the i-th spring (axial stiffness of the brace), ti is the time constant
of the i-th EDD, and β is a parameter used to simultaneously control the relaxation times of a
devices. Ci(β)=βKiti is the viscous coefficient of the i-th dashpot. Different values of the time
constants ti in the range of 0.181 s to 0.251 s were selected at the different levels. In add
values of the β parameter in the range of 0 to 10 were considered, which allowed to asse
influence on the response of the ratio of the average relaxation time to the system first 
period. For β=0, the system is without memory, and therefore behaves as a Kelvin-Voigt sy
For β=10, the ratio of the average relaxation time to the system first natural period is abou
The Fourier transform of the relaxation function is. � ( gi(t)) =Ki /[( β )−1+jω], then one can use Eq
(30) to evaluate the i-th modal FRF,  for the case of viscous inherent damping and assuming
the EDDs are almost homogeneously distributed in the structure. For the purpose of comparis
FRF of an equivalent Kelvin-Voigt SDoF oscillator (without memory) was also considered:

(51)

where the quantities ∆ωi and ∆ζi are computed such that the moduli of  and of 
have the same zero- and second-order moments:

t·i
H̃i

V ω( )

H̃i
V KV, ω( ) ω i ∆ω i+( )2 ω2– 2jω ζi ∆ζi+( ) ω i ∆ωi+( )+[ ] 1–

=

H̃i
V ω( ) H̃i

V KV, ω( )

Fig. 4 Comparison between the Frequency Response Function of the building with viscous and hy
damping
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(52)

being:

(53)

The values obtained for ∆ωi and ∆ζi , such that the variance of the displacement and velo
response to a white noise are the same for the two systems, are related to the relaxation ti
therefore depend on β. As an example the variation of ∆ω1 and ∆ζ1 is shown in Fig. 5. ∆ω1

monotonically increases in the whole range of β, while ∆ζ1 has a peak for .
To check the inaccuracy associated with the use of an equivalent Kelvin-Voigt model, in F

the real and imaginary parts of the first modal dynamic stiffness , together with the mo
and phase of the first modal FRF  are shown, and compared with those obtained 
equivalent Kelvin-Voigt model. The real part of the dynamic stiffness (storage modulus) of the
system with memory increases with increasing frequency, and intersects the constant
pertaining to the Kelvin-Voigt model at the natural frequency of the system with memory, eval
for  (indicated with a dot-dashed line). Also the imaginary part of the dynamic stiffness loss
modulus) intersects the value (linear with ω) pertaining to the Kelvin-Voigt model, and the
frequency of intersection is the natural frequency of the system with memory, evaluated for 
Comparison of the FRFs in Fig. 6 suggests that the memory effect in the EDDs is not neglig
the case of wind excitation, as large discrepancies are found between the FRF of the syste
memory and that of the equivalent Kelvin-Voigt system, both at the background and res
frequencies. In Fig. 6 the agreement between the results obtained through Eq. (30) and thr
LPA of order 2 (Eq. (50)) is shown, which proves quite satisfactory.

∆ω i
µ2 i,

µ0 i,
-------- ω i–=

∆ζi
π

4 ω i ∆ω i+( )µ2 i,
-------------------------------------- ζi–=

µ j i, H̃i
V ω( ) ω jdω

0

+ ∞

∫=

β 1.7≅

K̃1
V ω( )

H̃1
V ω( )

t ∞→

t 0=

Fig. 5 ∆ω i and ∆ζ i parameters for the calibration of the equivalent Kelvin-Voigt system
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Finally, the building alongwind buffeting response was calculated assuming a logarithmic 
velocity profile with a roughness length of 0.50 m and a reference wind speed of 15 m/s at 1
elevation. The longitudinal component of turbulence was modelled using the Kaimal spec
together with the Davenport coherence function with a vertical decay coefficient . A 
coefficient  was used, for a mean wind direction orthogonal to 44.20 m face o
building. The air density was set equal to 1.25 Kgm−3.

In Fig. 7 the spectra of the building tip displacement Y and acceleration  are shown in 
logarithmic scale. Three different cases are considered: (a) three coupled modes including m

Cz 10=
CD 1.3=

Y
··

Fig. 6 Dynacim stiffness and Frequency Response Funciton for the building including memory and f
equivalent Kelvin-Voigt model
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emory.
d, as it

ivalent

r the
(b) three uncoupled modes including memory, and (c) three uncoupled modes neglecting m
Comparison of cases (a) and (b) tells that the use of coupled equations of motion is unjustifie

Fig. 7 Tip displacement and acceleration spectra for the building including memory and for the equ
Kelvin-Voigt model

Fig. 8 RMS tip displacement (a) and percentage error (b) for the building including memory and fo
equivalent Kelvin-Voigt model



106 A. Palmeri, F. Ricciardelli, G. Muscolino and A. De Luca

ison of
n of the

 8(a)
ment

ldings
del has
 which
.
ith the
 that,
s to
s 40%.

l

del”,

trolled

inear

ith a Biot
brings the same result as would be obtained using uncoupled equations of motion. Compar
cases (b) and (c) shows that the use of a viscous model allows a rather accurate evaluatio
building accelerations, but brings an inaccurate estimate of the building displacements.

To globally quantify the effect of the viscoelastic memory on the building response, in Fig.
the RMS tip displacement and in Fig 8(b) percent error in the prediction of the tip displace
associated with the use of a Kelvin-Voigt model, are plotted as a function of β. As expected, the
error increases with increasing the relaxation time, and is larger than 40% for .

6. Conclusions

In this paper a mathematical model for the evaluation of the buffeting response of bui
including memory effects associated with viscoelastic memory, has been presented. The mo
been implemented using an approximated procedure called Laguerre Polynomial Approximation,
allows writing the system equation of motion in differential, rather than integrodifferential, form

An application to a 25-story building has shown the magnitude of the errors associated w
use of an equivalent model featuring viscous damping (Kelvin-Voigt). In particular it was shown
while a Kelvin-Voigt model almost accurately predicts the building accelerations, it tend
underestimate the displacements. The error depends on the relaxation time, and can be as high a
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