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Abstract. In the past decades, much effort has been made towards the study of single-mode
vibration controls with dynamic energy absorbers such as single or multiple Tuned Mass Da
(TMDs). With the increase of bridge span length and the tendency of the bridge cross-section bein
slender and streamlined, multi-mode coupled vibrations as well as their controls have becom
important for large bridges susceptible to strong winds. As a simple but effective device, the TMD s
especially the semi-active one has become a promising option for such coupled vibration co
However, despite various studies of optimal controls of single-mode-based vibrations with TMDs, re
on the corresponding controls of the multi-mode coupled vibrations is very rare so far. For the developm
a semi-active control strategy to suppress the multi-mode coupled vibrations, a comprehensive par
analysis on the optimal variables of this control is substantial. In the present study, a multi-mode 
strategy named “three-row” TMD system is discussed and the general numerical equations are de
at first. Then a parametric study on the optimal control variables for the “three-row” TMD syste
conducted for a prototype Humen Suspension Bridge, through which some useful information and a
understanding of the optimal control variables to suppress the coupled vibrations are obtained
information lays a foundation for the design of semi-active control.

Keywords: buffeting; tuned mass damper; mode coupling; long-span bridge; control.

1. Introduction

Under wind excitations, long-span bridges exhibit complex aerodynamic behaviors. Buff
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random response induced by the turbulence of airflow happens throughout the full range o
speeds. As the wind speed increases, aerodynamic instability phenomena such as flutter ma
(Simiu and Scanlan 1996). Much research effort has been made towards mitigating exc
vibrations and improving aerodynamic stabilities for bridges during construction (Conti, et al. 1996,
Takeda, et al. 1998) and at service stages (Gu, et al. 1994, Wilde, et al. 1999). Among all of the
control procedures, dynamic energy absorbers such as tuned mass dampers (TMDs) were
and adopted in suppressing excessive vibrations or maintaining the flutter stability of bridges (Guet al.
1998).

In recent years, the importance of aeroelastic modal coupling to the bridge aerodynamic be
has been recognized (Tanaka, et al. 1993, Bucher and Lin 1988, Lin and Yang 1983, Miyata a
Yamada 1999, Cai and Albrecht 2000). It has been concluded that the coupling tendency of 
depends on their mode shapes and natural frequencies in still air as well as the flutter deriva
the bridge section (Jain, et al. 1996). The adoption of more slender deck and the increase of b
span length tend to result in closer modal frequencies. As a result, modal coupling effects t
aeroelastic forces in high wind speeds increase (Jain, et al. 1998, Namini, et al. 1992, Katsuchi, et al.
1998, Thorbek and Hansen 1998).

The TMD is known to be effective in suppressing single-mode resonant vibrations whe
frequency is tuned to the modal frequency of the structure. When the modal frequencies 
bridge are well separated and modal coupling effects are weak, each TMD is mainly desig
control a single-mode vibration while the effects from other modes on the control are omitted 
and Xu 1991, Kareem and Kline 1995). Abe and Igusa (1995) studied the performances of 
on a coupled system with closely-spaced natural frequencies. Through the assumption of ver
frequencies, some analytical studies were carried out to the strongly coupled system. Stud
multi-mode wind-induced vibration controls are limited to the cases with very weak coupling e
(Chang, et al. 2003) and few works have focused on the vibration controls of bridges with st
aeroelastic modal coupling. 

Considering the complexity of bridge conditions under strong winds, an adjustable TMD sy
is desirable for the control system to be more robust and effective over various circumst
However, the effects of system properties on the optimal variables of the TMDs have not
sufficiently addressed. Such study is extremely helpful in evaluating the control performance 
the real control devices are designed in practice. It also helps in deciding, for the adaptive 
system, what parameters of the bridge-flow system are to be monitored in a feed-back contro
such information, the number of variables to be monitored can accordingly be reduced to the
through which the cost and complexity of the controller can also be minimized.

In this paper, a comprehensive investigation on the optimal variables of the adjustable 
system is made. First, a general formulation of the multi-mode buffeting response contro
multiple TMDs is developed. Second, a control strategy with “three-row” TMDs is discu
especially to study the coupled vibration controls. Finally, the three most important factors o
bridge-flow system are studied numerically with the Humen Suspension Bridge built in China
parametric study is conducted to investigate the factors of the bridge-flow system that will affe
optimal variables of TMDs as well as the control efficiency. These analytical results will be 
useful in carrying out further studies of adaptive control strategy based on the “three-row” 
model in order to “smartly” suppress the wind-induced vibrations.
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2. Multi-mode coupled vibration control with TMDs

Consider a general case shown in Fig. 1 where a bridge has multiple TMDs, displacement r (x, t),
and wind forces consisting of buffeting force fb(x, t) and aeroelastic self-excited force fs(x, r , ).
Assuming that a total number of n1 modes are included in the analysis and a total number on2

TMDs are attached to the bridge deck at the location of xs(s= 1 to n2), the equation of motion for
the bridge-TMD system can be derived as :

(1)

where

(2)

(3)

(4)

(5)

(6)

ξ=generalized coordinate of the bridge; γ =coordinate of TMDs; a superscript prime “ ” represen
a derivative with respect to dimensionless time s=Ut/B ; U =mean velocity of the oncoming wind
t=time; B=bridge width; n1=number of modes; n2=number of TMDs; I =unit matrix; and
Qb=generalized buffeting force. The components of the matrices are:

( i , j=1...n1) (7)

r·

M ηηηη″ Cηηηη′ Sηηηη+ + G=
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Fig. 1 Overview of the general placement of “three-row” TMDs
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( i , j =1...n1) (8)

(9)

(10)

( i , j=1...n1) (11)

(i=1...n1; j=1...n2) (12)

( i=1...n2; j=1...n1) (13)

(14)

(15)

where δ ij =Kronecker delta function that is equal to 1 if i=j and equal to 0 if ; ωi and
ζ i=circular natural frequency and mechanical damping ratio of i th mode, respectively; ρ=air density;
l =bridge length; (i=1−6)=experimentally determined flutter derivatives;  an

=damping ratio and circular natural frequency of the sth TMD, respectively; =ms (the mass of
the sth TMD) for vertical and lateral bending modes or =  (the mass moment of inertia o
the sth TMD) for torsion mode; and ds=horizontal distance between the sth TMD and the torsion

Sij
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ω i
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center of the cross-section (see Fig. 1).
The modal integral ( ) can be expressed as:

(16)

and the mass moment of inertia of the bridge section can be expressed as:

(17)

where ri=hi , pi or αi; sj =hj, pj or α j ; m(x)=mass per length of the deck for vertical and late
bending modes; and m(x)=mass moment of inertia per length of the deck for torsion mode.

The generalized inertia ratio between the sth TMD and the ith mode, , is defined as:

(18)

Buffeting force due to the turbulence of wind can be expressed as:

(19)

(20)

(21)

where u and w=horizontal and vertical turbulence of wind flow, respectively; and CL, CD and CM=
static coefficients of lift, drag and moment of the bridge deck, respectively. A prime ove
coefficients represents a derivative with respect to the attack angle.

Eq. (1) can be Fourier transformed into a new format as

(22)

where  and =Fourier transformation of η and G, respectively. The impedance matrix F has the
general form as , where subscripts i and j=1 to (n1+n2) and

.
The mean square of displacements in vertical, lateral and torsion directions can be writ

follows: 

(23)
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(24)

(25)

(26)

where Suu and Sww=wind velocity spectrum in the horizontal and vertical direction, respectively; 
Cuw and Quw=cross spectrum and quadrature spectrum of u and w (Jain, et al. 1996), respectively.

Control efficiency of displacement at the location of x on the bridge span and in the direction ofr
is defined as

(27)

where  and  are the root-mean-square (RMS) of displacement after and before con
the location of x and in the direction of r , respectively; r=h, p or α representing vertical, lateral and
torsion direction, respectively.

3. “Three-row” TMD model

According to the previous studies on modal coupling, there are only a limited number of m
prone to couple together (Katsuchi, et al. 1998). Among all of the coupling cases for streamlin
cross sections, the most common modal coupling is between vertical bending mode and 
mode. Furthermore, in terms of the contribution of individual mode to the total buffeting resp
as well as the flutter occurrence, the vertical bending and torsion modes usually play the majo
Hence, an appropriate control strategy of TMD system will be developed based on such ob
characteristics. It is known that TMDs placed on the center line of the cross section normally h
insignificant control effect on the torsion modes. Therefore, we adopt three rows of TMDs
along the center line of the cross section (named center row hereafter), and other two identic
along the two sides of the cross section (named side rows hereafter) as shown in Fig. 2. This
is to literally separate the TMD control role into vertical bending and torsion modes since the
the main concern of wind-induced vibrations. In other words, the center row TMD is mainly
vertical mode and the two side rows mainly for torsion mode. Such separation of TMD role is
generic and more valid for the situation when modal coupling effect is weak under low wind s
As will be found later, side rows of TMD will also contribute to the dynamic suppression of ve
mode in the high wind speed when strong modal coupling exists. 
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The difference between the multiple-TMD and single-TMD placements is that the multiple
placements are more robust in control since they cover a wider range of frequencies (Karee
Kline 1995, Abe and Fujino 1994). Since the present study is only to disclose the nature of o
variables for coupled vibration controls, only one TMD in each row is considered to reduc
complexity while without losing the generalities. Also, since the damping ratio of the TMD is n
very sensitive variable for TMD (Gu, et al. 1994), damping ratios of all the TMDs are assumed
be the same as ζ t. The frequency and mass of the two identical TMDs on the side rows
assumed to be ω1 and m1, while the frequency and mass of the center TMD are assumed to bω2

and m2 (Figs. 2 and 3), respectively. The total generalized mass of TMDs, greatly related t
efficiency and the cost of the control system, is assumed to be 1% of that of the 1st bending mode
of the bridge.

In the present study, two cases are considered in the analysis of the optimal variables
TMDs. In Case 1, the TMD frequencies ω1 and ω2 under a particular wind speed are set to be 
optimal values based on single-torsion and single-bending mode vibration controls, respec
These optimal values were analytically derived by Fujino and Abe (1993). Under the condition
given total mass of TMDs (1% of the 1st bending mode), the distribution of mass between m1 and

Fig. 2 “Three-row” TMD model

Fig. 3 Overview of the “three-row” TMDs placement for case study of Humen Suspension Bridge
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m2 is varied and studied. This is to simulate the case when the TMD mass can be adjusted w
control objective of each TMD targets a particular mode (e.g., center row for the bending mod
side rows for the torsion mode). In Case 2, the total mass of the two side row TMDs (2m1) is set to
be equal to the center one (m2), maintaining the total TMD mass the same as Case 1. Only
variables ω1, ω2 and ζ t can be adjusted. This is to simulate a case that the mass of each TM
fixed, while the frequency and damping ratio can be adjusted to obtain the optimal c
performance.

4. Optimal variables of “three-row” TMDs

Humen Suspension Bridge with a main span of 888 m is chosen as an example here w
basic data shown in Table 1 (Lin and Xiang 1995). A coupled vibration analysis has shown th
1st symmetric vertical bending mode and the 1st symmetric torsion mode are the two mode
prone to couple together. Therefore, only these two modes, with a modal frequency of 0.17 an
Hz, respectively, are included in the following analysis. Flutter derivatives  and 
shown in Fig. 4 (Lin and Xiang 1995). With the increase of wind speed, the modal prop
including modal damping and modal frequencies can be obtained using complex eige
approach (Chen and Cai 2003). The results of modal properties are plotted in Fig. 5 and the
critical wind speed is identified as 87 m/s for Humen Bridge, which is very close to the result

H1 3–
* A1 3–

*

Table 1 Main parameters of Humen Bridge

Main span (m) 888 Lift coefficient at 0o attack angle 0.02

Width of the deck (m) 35.6 Drag coefficient at 0o attack angle 0.84

Clearance above water (m) 60 Pitching coefficient at 0o attack angle 0.019

Equivalent mass per length (103 *kg/m) 18.34 ( CL/ )|α=0o 0.51

Equivalent inertial moment
of mass per length (103 *kg/m)

1743 ( CM/ )|α=0o 0.62

Structural damping ratio 0.005 ds (m) 14

Natural frequency of 1st symmetric
vertical bending mode (Hz)

0.17
Natural frequency of 1st symmetric
torsion mode (Hz)

0.36

∂ ∂α

∂ ∂α

Fig. 4 Flutter derivatives of Humen Suspension Bridge
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wind tunnel test (Lin and Xiang 1995). Fig. 6 gives the buffeting response in vertical and tor
directions at the center of the mid-span section without control. Results from coupled analysis
on the two modes (vertical bending and torsion) and from the single- mode analysis are com
Strong coupling effects in high wind speeds can be observed from that the results of co
analysis differ obviously from that of single-mode analysis when wind speed is high. 

In the following control studies, the chosen location of interests is at the edge of the mid
section where the largest vertical displacements are expected. The vertical displacement 
location can combine the contributions from the vertical bending mode as well as the torsion 
The contribution from the torsion mode is calculated with the torsion angle multiplying one-ha
bridge width. The TMDs are placed as shown in Fig. 3. The total generalized mass of T
chosen as 1% of that corresponding to the 1st bending mode, is 80,000 kg. For Case 2, th
row and two side rows have the same mass, i.e., 2m1=m2=40,000 kg. The horizontal distance from
the side row TMD to the center of torsion ds (Figs. 1 and 2) equals to 14 m for the Humen Bridge

If only a single-mode-based vibration is considered, the optimal frequency of TMDs at 
velocity 30 m/s can be obtained with formulas by Fujino and Abe (1993) as:

Fig. 5 Variation of modal properties for Humen Suspension Bridge with wind speed

Fig. 6 Buffeting response at the centre of mid-span for Humen Suspension Bridge without contro
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(29)

where, ωh and ωα=natural circular frequencies of vertical and torsion modes, respectively.
discussed earlier, these single-mode-based optimal frequencies are chosen for the TMDs in C

There exist many factors affecting the coupling effects among modes. From the ex
knowledge of the modal coupling, the frequency ratio between the coupling-prone modes a
wind speed are the main possible factors that may affect the optimal variables of TMDs (Ka
et al. 1998). The wind speed greatly affects the aeroelastic modal coupling effects and affe
buffeting contribution from coupling-prone modes. These factors are discussed below.

4.1. Effect of wind speed

Aeroelastic coupling is of a great concern in wind-induced vibration of long-span bri
especially when wind speed is quite high. For most streamlined cross sections, the aero
coupling is directly related to the wind speeds. When the total mass of TMDs is fixed as in C
the predicted optimal mass distributions among the TMDs vary significantly for different w
speeds as shown in Fig. 7. At the wind speed of about 60 m/s, the masses of center and sid
are about equal (2m1/ ). At lower wind speed (say 40 m/s), much more ma
needs to be assigned to m2 (m2/ ) with the bending-single-mode-based optim
frequency. However, at higher wind speed (say 80 m/s), much more mass should be assignedm1

(2m1/ ) with the torsion-single-mode-based optimal frequency. There are probably
main reasons for such phenomena: one is as the increase of wind speed, the contribution
torsion mode to the total vertical response at the edge of the mid-span section increases; the

ω2

ωh

------ 0.99=

ω1

ωα
------ 0.97=

mtotal m2 mtotal 0.5≅⁄≅
mtotal 0.85≅

mtotal 0.80≅

Fig. 7 Optimal mass distribution of TMDs versus
wind speed (Case 1)

Fig. 8 Optimal frequencies of TMDs versus wind
speed (Case 2)
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that the resonant part of the bending mode response is difficult to be suppressed due to i
modal damping (Fig. 6). Another part of bending response in high wind speed is due to the 
coupling effects between bending and torsion modes (Chen and Cai 2003), and it can be sup
with TMD with torsion mode frequency. As stated earlier, the frequencies of TMD are set 
equal to the optimal frequency considering single-mode-based vibrations in Case 1. In ter
vertical response control at the edge of the mid-span section, it is noted that the dominant vi
mode changes from vertical to torsion mode at the wind speed of about 60 m/s.

For Case 2, since the mass of each TMD is fixed, namely 2m1=m2, the optimal frequency
changes with the wind speed especially when the wind speed is high as shown in Fig. 8, whωh

and ωα are the modal frequencies of bending and torsion modes considered in this study, n
0.17 and 0.36 Hz, respectively. Fig. 8 also indicates that with the increase of the wind spe
optimal frequency of TMD in the center row may change dramatically from around the m
frequency of the bending mode (indicated by ω2/ωh=1.0) to around the torsion mode frequenc
(indicated by ω2/ωh=2.0 since ωα is about twice of the bending frequency ωh). This drastic change
occurs at the wind speed of 60 m/s where dominant vibration mode for the vertical response
edge of the mid-span section changes from bending mode to torsion mode. 

Fig. 9 shows the respective optimal damping ratio of TMDs for Case 1 and Case 2. Compa
other variables such as mass distribution and frequency, the damping ratio of the TMDs seem
less sensitive to the change of wind speed. Therefore, it has relatively the least necessity
adjusted in an adaptive control.

With the change of wind speed, the optimal control efficiency of the vertical displacement o
edge at the mid-span section. Rh also varies accordingly as shown in Fig. 10. It is observed that
control efficiency decreases with the increase of wind speed until around 60 m/s, whe
dominant vibration control mode changes from bending mode to torsion mode. Then, the c
efficiency increases with the increase of wind speed. Such phenomenon cannot be observ
single-mode-based control analysis. Hence, this observation is extremely important for the de
a special controller that, for example, controls bridge vibrations under hurricane-induced 

Fig. 9 Optimal damping ratio of TMDs versus wind
speed

Fig. 10 Optimal control efficiency of “three-row”
TMDs versus wind speed
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winds. An ideal TMD system in this case should target the bending vibration when wind spe
less than 60 m/s and then is adjusted to target the torsion mode vibration.

4.2. Effect of frequency ratio

With an optimal searching of the TMD mass under the condition of a fixed total mass
optimal distribution of the total mass among the center and side TMDs has been obtained abo
numerically varying the torsion/bending modal frequencies ratio of the bridge, the effects o
bridge frequency ratio on the TMD optimal variables are studied below considering the wind 
of 30 m/s. It should be noted that for Case 1, the ratios between the TMD and the bridge 
frequencies are fixed as shown in Eqs. (28) and (29), i.e., fixed to the optimal frequency f
single-mode-based vibration control. Therefore, the numerical values of the TMD frequenciω1

and ω2 vary with the change of the natural frequencies ωh and ωα accordingly.
Fig. 11 shows that the optimal mass of each TMD depends on the frequency ratio betwe

torsion and bending modes ωα /ωh. When the value of ωα /ωh is around 1.15, 2m1/mtotal is
approximately equal to m2/mtotal. When ωα /ωh is around 1.76, about 95% of the total mass sho
be allocated to m2 (that targets the bending vibration) for the most efficient control.

Fig. 12 shows the optimal frequencies of the TMDs versus the ωα/ωh ratio when wind speed is 30
m/s, considering Case 2 where 2m1=m2. It can be found from the figure that the ωα/ωh ratio affects
the optimal frequency of the TMDs for coupled buffeting control. When the frequencies of be
and torsion modes are well separated (with high ωα /ωh values, say 1.6), the optimal frequencies 
TMDs shown in Fig. 12 are quite close to those of single-mode-based cases shown in Eqs. (
(29). This finding justifies the common assumptions that the control strategy for weakly co
vibration can be simplified as that of single-mode-based control.

Fig. 13 shows that the optimal damping ratio of the TMD is also affected by the ratio of ωα/ωh

for both Cases 1 and 2. With the increase of ωα/ωh, the damping ratio of the TMDs approaches to that
single-mode-based case (Fujino and Abe 1993). The control efficiency of the vertical buffeting vibration
(the total vertical displacement from both the vertical vibration of the bending mode and the ro

Fig. 11 Optimal mass distribution of TMDs versus
frequency ratio of coupled modes (Case 1)

Fig. 12 Optimal frequencies of TMDs versus
frequency ratio of coupled modes (Case 2)
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of the torsion mode) at the edge of the mid-span section is shown in Fig. 14. With the incre
ωα /ωh, the control efficiency decreases and approach to that of a single-mode-based control.

The results discussed above show that the “three-row” TMD control system has the collab
control effect for the vibration when the frequencies of coupling-prone modes are close, i.e.,
the ratio of ωα /ωh is low. It has been found that when the ratio of ωα /ωh is low, the difference of
the optimal variables for the multi-mode-based and those for single-mode-based contr
significant. When the modal frequencies are well separated (with high ωα /ωh values), both the
optimal variables and control efficiency approach to those of single-mode-based controls. I
case, the TMDs can be designed based on the single-mode control without significantly sca
the accuracy compared to that of multi-mode based control.

4.3. Effect of modal contributions

Different buffeting response contributions among modes actually indicate the energy distrib
of modes and can be varied through changing the static force coefficients in the buffeting
terms, Eqs. (19) to (21). To simulate the relative contributions among modes, the static
coefficient Cm that is related to the contribution of torsion mode is increased numerically wit
amplification factor β. Through changing the quantity of buffeting force for torsion mode, 
relative contribution to buffeting response among modes can be adjusted. Again, the wind sp
fixed at 30 m/s in the following discussions. 

Fig. 15 shows the optimal mass distributions of the TMDs versus the amplification factor β. With the
increase of the torsion mode contribution due to the increase of β, the optimal mass m1 that is mainly
responsible for the control of torsion mode response increases. The mass of TMD for torsion modm1)
is the same as that for bending mode (m2) when β is about 7. It can also be found in Fig. 15 that whenβ
approaches 20, essentially all the mass should be assigned to side rows in order to control the v
from the torsion mode. When β is less than 3, majority of the mass should be assigned to ce
row in order to control the vibration from the bending mode at the given wind velocity of 30 m

Fig. 13 Optimal damping ratio of “three-row” TMDs
versus frequency ratio of coupled modes

Fig. 14 Optimal control efficiency of “three-row”
TMDs versus frequency ratio of coupled modes
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Fig. 16 shows the dependency of the optimal frequencies ratio  and  on the 
β. With the increase of the β, ω2/ωh increases from about 0.982 up to about 0.986 and keeps st
while ω1/ωα decreases from about 0.969 to 0.966. These variations are essentially insignifican

Fig. 17 shows the optimal damping ratio of the TMDs versus β. Since the damping ratio of the TMDs
has relatively insignificant effect on the control efficiency of the whole control system, su
variation range of the optimal damping ratio is not that critical. Fig. 18 shows that with the op
variables of TMDs, the control efficiency increases quickly with the increase of buffeting contributio
the torsion mode, i.e., the increase of β. This implies, for this particular case, that the buffeting respo
induced by the torsion mode is easier to control compared with that induced by bending mode

In summary, different modal contributions of the buffeting vibrations has less significant effe

ω1 ωα⁄ ω2 ωh⁄

Fig. 15 Optimal mass distribution of TMDs versus
amplification factor β (Case 1)

Fig. 16 Optimal frequencies ratio of TMDs versus
amplification factor β (Case 2)

Fig. 17 Optimal damping ratio of “three-row” TMDs
versus amplification factor β

Fig. 18 Optimal control efficiency of “three-row”
TMDs versus amplification factor β
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the optimal frequency and damping ratio if the mass of each TMD is fixed. On the other han
optimal mass for each row varies with the change of the contribution factor β, meaning that mass
allocation among rows depends on the contribution factor β to some extent. Different bridges hav
different contributions of buffeting response from each individual mode. Since other vari
depend less significantly on the contribution factor β, perhaps only the mass allocation should 
made specifically for each bridge. Such feature is helpful to build a general control scheme with
robust control performance for different bridges.

5. Conclusions

The mathematical formulation of the bridge-TMD system is developed and a “three-row” T
strategy is discussed. In this strategy, conceptually, the center TMDs are mainly to contr
vibration from bending modes and the side TMDs are for the vibration from torsion mo
However, in high wind speed when strong modal coupling effect exists, the side TMDs will
suppress the coupling part of the bending mode response. The optimal variables of the TM
predicted based on multi-mode coupled vibrations, instead of single-mode-based mode-by
analysis. The following conclusions can be drawn through the present study:

(1) Wind speed has significant effect on the optimal variables of TMDs, especially when 
speed is high. To efficiently control buffeting vibration over a wide range of wind speed
adaptive semi-active TMD control system that can adjust the optimal variables is necess

(2) The modal frequency ratio between the torsion and bending modes has large effect 
optimal frequencies of the TMDs as well as the mass distribution when the total mass 
TMDs is fixed. When the frequencies of the coupling-prone modes are close, the op
variables of the TMDs based on multi-mode coupled vibration control are significa
different from those of single-mode-based control. In these cases, a specific desig
coupled vibration control should be considered. When the frequencies of the coupling-
modes are well separated (weakly coupled vibrations), the optimal variables of the TMD
close to those of single-mode-based control. In this case, a control strategy based 
single-mode vibration can be used in practice.

(3) The change of buffeting response contribution from the torsion and bending mode
relatively less significant effect on the optimal frequency and damping ratio of the TM
while it has significant effect on the mass distribution among the “three-row” TMDs.

(4) The present finding verifies the common assumption that single-mode-based control s
can be used for bridges with well-separated modal frequencies. However, for coupling-
bridges with low frequency ratio, the control strategy should be based on the analy
coupled vibrations. Many modern long-span bridges may fall in this category.
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