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Abstract. A number of methods based on various ideas have been proposed for simulating the non-
Gaussian stationary process. However, these methods have some limitations. This paper reviewed severz
simulation methods based on the translation method using logarithmic and polynomial functions, which

have emerged in the history of statistics and in the field of civil engineering. The applicability of each

method is discussed from the viewpoint of the reproducibility of higher order statistics of the object

function in the simulated sample functions, and examined using pressure signals measured from wind
tunnel experiments for various shapes of buildings. The parameter estimation methods, i.e. the method of
moments and quantile plot, are also reviewed, and the useful aspects of each method are discussec
Additionally, a simple worksheet for parameter estimation is derived based on the method of moment for
practical application, and the accuracy is discussed comparing with a set of previously proposed formulae.

Keywords: non-Gaussian process; translation method; nonlinear static transformation; simulation; wind
pressure.

1. Introduction

Models representing wind characteristics are often assumed to be Gaussian stationary processe
due to convenience in analyses and modeling. However, experimental results in recent years have
shown that the Gaussian assumption is not appropriate for representing pressure fluctuations in
whole pressure fields of bluff structures. For example, surface regions influenced by separated flow
experience strong non-Gaussian effects in a pressure distribution characterized by high skewnes:
and kurtosis (Peterka 1983, Okadd, al 1992). The negligence of non-Gaussian properties in
application to the pressure fields may lead to greater damages to roof panels and higher fatigue
effects on cladding components (Xu 1995).

In order to more accurately estimate loads acting on such components, it is essential for the
probability distributions to be more precisely described. For further statistical studies, e.g., extreme
value estimation by the Monte Carlo Method, statistical properties such as higher order moments
and spectral characteristics should be correctly reproduced through the simulation process. However
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the method based on spectral representation using uniformly distributed phase angles and Discrete
Fourier Transform (DFT), in spite of its high performance, does not satisfy these demands. This is
because simulated results for any given spectral characteristics are limited to the Gaussian proces
due to the central limit theorem (Yang 1973, Shinozwtaal. 1991, Grigoriu 1993, Chogt al.

2003). Various methods have been proposed to complement the lack of reproducibility. These
methods can be divided into three categories as follows: 1) ARMA class model with non-Gaussian
white noise, 2) phase signal correction and DFT and 3) translation, or nonlinear static transformation
(NST), from the Gaussian random variables (RV) to non-Gaussian RVs.

Category 1 methods, e.g.,, EAR(1), TEAR(1) (Gaetral. 1980) etc., generate time series with
specified spectral characteristics and a non-Gaussian probability density function (PDF). However, it
is difficult to produce the spiky features in the natural time history signal and impossible to control
the higher order moments (Seordd, al. 1993). For category 2, Seongf, al. (1993, 1997, 1998,

2001) proposed a more reproductive method for the statistical properties obtained from the non-
Gaussian observed data, called EARPG (exponential autoregressive peak generation) method, b
taking advantage of both the ARMA models and the DFT method. As a similar method, Kueiar,

(1997, 1998, 1999, 2000) proposed a revised method called the EPG (exponential peak generation
method under the assumption that the number of parameters in the EARPG method is inadequate
obtain the fundamental characteristics of a non-Gaussian signal such as skewness and kurtosis
Since the EPG method depends on only one probabilistic parameter, which controls the intensity as
well as the frequency of spikes in the phase signal, it may be relatively easy to estimate the requirec
parameter in comparison with the EARPG method. Simulation results show fairly good agreement
with experimental results. However, there are some unusual tendencies of the EPG method. First,
the skewness and unbiased kurtosis of the simulated sample function do not approach zero (callec
the normal point) as the probabilistic parameter, Isaycreases. This tendency can be interpreted

as indicating that the central limit theorem does not hold. Second, as for lognormal distributions,
there exists a deterministic mathematical relationship between skewness and kurtosis of the
simulated sample functions regardless of the paranhetamhich will be discussed in this study.
Third, the relationship is almost the same as that of the gamma distribution éClabi,2001),

which can be deduced from the exponential distribution based on the regenerative property (Hald
1952, Rubinstein 1981). These facts mean that the EPG method is very restrictive in application.
Moreover, since both methods include iteration procedures to fit the required statistical properties,
their efficiencies are generally not good.

The NST method, of category 3, is the oldest method for representing skew probability
distribution characteristics, dating back more than 100 years. In the field of civil engineering,
Grigoriu (1984a, 1984b, 1995, 2002) studied on the application of the translation method, which is
called the memoryless transformations, to simulate stationary non-Gaussian stochastic processes an
called the transformed processes as the translation processes. These studies can be considered a
milestone in the application of the method to civil engineering problems. However, since considered
translation functions in the studies are limited in simple functions such as exponential and cubic
functions, detailed information on the applicability was not described. Meanwhile, Ammon (1990)
indicated that if the probability distribution differs too much from the Gaussian distribution, the
existence conditions of the equivalent spectrum may not be satisfied. However, recent studies by
Gioffre, et al. (1999, 2000, 2001a, 2001b) have shown that there is no significant violation in the
spectral density function with the use of logarithmic transformation, which is the oldest form of
NST function, and Kumaret al. (2000) has also indicated the same feature for a polynomial
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transformation according to the study by Gurkyal. (1996). If it is true that there is no significant
violation with application of NST for a wide range of skewness and kurtosis, the method seems to
be most efficient to simulate the non-Gaussian stationary processes with the DFT method.

In this study, the limitations of various NST methods from the viewpoint of reproducibility of
higher order statistics up to the fourth order and the preservability of the spectral characteristics are
discussed based on the algebraic investigations and by comparison with wind pressure measuremer
results obtained from the wind tunnel experiments for various shapes of buildings.

2. Applicability of some NST functions
2.1. Evolution of the basic ideas and assumptions

Most NST functions for translation from Gaussian RVs to non-Gaussian RVs were developed
from the end of the nineteenth century to the first half of last century. The basic ideas in those
transformations were initiated by Galton (1879) and McAlister (1879) in the study whereby medium
value among the arithmetic mean and the geometric mean is better. The study introduced an
asymmetric distribution, i.e., lognormal distribution. Meanwhile, F.Y. Edgeworth (1892~1924)
attempted to generalize the method and named the technique the “Method of Translation”. Although
there exist some trials to generalize the normal distribution as the distributions of families of
transformed normal RVs during this period, they can also be categorized into this method and some
discussions on the priority may be helpful to understand the evolution of the method (Pearson 1905,
1906, Pearson 1967 and Stigler 1978). Those early trials can also be found in Hald (1952) except
Edgeworth’s polynomials, which have been overshadowed by others up to present. Since not all of
them are necessary for the present purpose, only two kinds are investigated: logarithmic
transformation including Johnson’s system and polynomial transformation.

The basic idea of the translation method started from following hypothesis. To begin with, let
andy be the standard normal RV and non-Gaussian RV,@RrHd ®(x) andf(y), F(y) be their
probability density function (PDF) and cumulative distribution function (CDF), respectively. As
such, a translation function can be defined as a functiog which satisfies following relationship
(McAlister 1879).

p(x)dx="1(y)dy 1)
In this paper, it is called the probability mass preserving condition. Meanwhile, Eq. (1) can be

rewritten by CDF in the following manner. This expression may be more preferable because the
assumption of the absolute continuity of CDF is not necessary.

a =P (Xa)=F(Ya) (2)

in which, a indicates non-exceedence prolliahiand x,, y, are a-quantiles for each distribution.
Therefore, the translation function is defined as follows (Grigoriu 1984a, 1984b).

Ya=F 7 0®(Xq) =9(Xa) (3)

From Eq. (2), since the CDF is a (right) continuous non-decreasing function mapped on [0,1], i.e.,
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if y-Y, y2y, then F(y) - F(yy) . F(y)2F(y,) andF(-») =0 ,F(+®) =1 , the
translation functiong(x,) is also non-decreasing function. Therefore, the translation function
should hold the following non-decreasing condition (e.g. Capieskd|. 1999).

dy, _ dg(x)
dx,  dx, 20 4)

If the CDFF is assumed to be an absolutely continuous function, that means PDF is defined for
y, the non-decreasing condition of Eq. (4) can also be deduced from Eq. (1) as follows.

o) _ dy
f(y) ~ dx ®)

Since ¢(x) is a positive finite function arfly) is a non-negative finite function by its definition,
the left hand of Eq. (5) is defined dn” [ (0, ») . Therefore, the translation function should be a
monotonic increasing function, i.edy/ dx>0 , regardless of the modalitgydf If the equality in
Eq. (4) is permitted, then there does not exist the one to one relationship betweeny, and for
any a O[O0, 1] .

The assertion on the monotonicity implies two properties related to the measure preserving or the
measure invariant transformation. Especially, one of the properties permits the introduction of a
non-monotonic translation function, which is described in textbooks on statistics and engineering.
The first property is a point isomorphism by Halmos and von Neumann (1942). The definition of
point isomorphism is as follows. Let;({ X;}, m;)  ant({ X;}, m,) be measure space and, { }
and m indicates measurable set and a measure in each measure space, respectively. Then, a poi
isomorphism betweeKX; andX, is a one to one mapping from almost alXgfon almost all ofX,
such thatx, 0 X; if and only ik, = g(x;) O X, , and then,;(x;,) = m,(x,) . If such a mapgng
exists, X; and X, are point isomorphic. This definition is no more and no less than to rewrite Eq.
(2), Eqg. (3) and the assertion from Eg. (5) in the measure theoretic expressions. Moreover, since the
isomorphism implies the existence of its inverse one to one mapping, the fupatimuld be an
increasing (or decreasing) monotonic function. Meanwhile, a necessary and sufficient condition that
a measure space of total measure one be a point isomorphic to the unit interval is that the measur
space is complete, properly separable and non-atomic. From the property of the properly separable
space or simply of the properly decomposed non-overlapped space, the non-monotonic translation
function can be introduced (e.g., Doob 1994). For this case, it may be helpful to take a practical
example such ay = X, which is a most famous non-monotonic translation function and the
function leads the standard normal distribution to the central chi-square distribution with single
degree of freedom. As it is known, the measure space rfirstly divided into two spaces for
x>0 and x<0 , and then the translation function maps from almost @IX O [ on almost all
of yO YOO" with an isomorphic manner in each decomposed space. Meanwhile, this example
also shows a most important condition to decide whether a non-monotonic translation function is
applicable. That is, if a setK, is defined d§, = Ker(dy/ dX , then the PDF for
Yk = g(x0O K,) becomes infinity and it contradicts the definition of PDF. Therefore, it can be
asserted that the applicability of non-monotonic translation function fully depends on the property of
the setK,. , whether the problem requires the existence of PDF or the absolute continuity of CDF
and on the definition range of PDF. If the cardinal numbeK of is greater than two, the condition
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for the existence of PDF seldom holds, but some special cases sugh- aslIcoswx or
y=a[inwx for which the range of is restricted on(—a, a) , and the rangeyofs also mapped
on a discontinuous real space in an unusual manner.

On the other hand, if the CDF wpfis assumed to be an absolutely continuous function, then it can
be said thatF(y) is absolutely continuous with respect t@(x) because there exists an
isomorphism. As such, the Radon-Nikodym derivativeHs(y)/d®(x) should be positive, i.e.,
dF(y)/d®(x)>0 (e.g., Maharam 1966, 1969). If we put the relationshipdefy)=f(y)dy and
do(x)=@(x)dx into the derivatives, the condition for the translation functigfdx>0 is acquired
by the analogy for Eq. (5). This is the second property.

Based on preceeded discussions, the translation function is restricted as a monotonically
increasing continuous function in this paper. The same condition can also be found in Johnson’s
conditions (Johnson 1949) and they are; (1) It should be a monotonic funcio(2pfit should be
simple in form and easy to calculate. (3) The range of values of the NST function corresponding to
the actual range of possible values of RVshould be from—co to+eo . Although a good
approximation may sometimes be obtained even when this requirement is ignored, it is highly
desirable that it should be satisfied, since R\s assumed to vary frorro  tooot . (4) The
resulting distribution systems gf (and so ofx) should include distributions of most, if not all, of
the kinds encountered in collected data.

Additionally, it is also required for this study that the higher order moments and their spectral
characteristics should be preserved after transformation.

For parameter estimation in the NST function, the following methods are available: (1) the
method of probability plotting, (2) the method of moments, and (3) the method of maximum
likelihood. Since method (3) is rather difficult to apply to a translation system (Johnson 1949), the
first two methods are adopted in the study. The availability of NST functions is examined on the
basis of comparison with wind pressure data in wind tunnel experiments and ease of parameter
estimation. For convenience, both GaussianxXRénd non-Gaussian RV denoted ypyare assumed
to be normalized with their mean and standard deviationE(®)=E(y)=0, Var(x)=Var(y)=1.

2.2. The logarithmic transformation

In the nineteenth century, the normal distribution was commonly used. It was assumed that
observations of a single phenomenon, homogeneous with respect to all but random, individually
insignificant factors, would follow the normal distribution. In the late nineteenth century, a path
breaking work by Francis Galton (1879) was directed at the separation of these normal worlds into
non-normal worlds (Stigler 1986). Galton had introduced a powerful way of dealing with
asymmetry and enlarged the scope of applications for normal distribution with his suggestion that
the logarithms of the observed data should be analyzed. He asked Donald McAlister to carry out a
mathematical investigation (McAlister 1879). McAlister thus appears to have been the first person
to set down explicitly and in some detail a theory for the lognormal distribution, which is termed by
Gaddum (1945). A more detailed historical background can be found in Aitckisah(1957).

The most generalized form of the logarithmic transformation, which Johnson (1949) t&rmed
transformation, can be expressed as:

x_gy = log -L{; = logy (6)
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y =900 = &+ rexpf 510 (7)
y = exp=H ®)

The shifted lognormal transformation by Grigoriu (1995) is a special case for whicli. Another
three-parameter lognormal distribution for a negatively skewed distribution by Fisher (1936) is also
categorized into this as a special case.

Since ther-th moment ofy’ can be obtained from

2 .

20 0262 0
u(y) = = [ et 850 S = expd 2oy ©)
J_ 0 0 0

the first four statistics are:

w = exp(87), p= exp(-y/ d)

E(y) = Jwp, Var(y) = wp*(w-1)

=B = (w-1)(w+2)* (10)
Vo= Bp—3 = w+2w +3w —6

in which, y; andy, are skewness and unbiased kurtosis coefficients, respectively.(Poipts
for lognormal distributions therefore lie on a curve of approximatglyl1.85y2 , called a
lognormal line defined by the parametric Eq. (10). It is worth noting that the approximation is only
valid for & less than about 0.5, at which coefficients of skewness and unbiased kurtosis are 1.75 and
5.9, respectively. Fod greater than 0.5, the approximation is not valid because discrepancies
between Eq. (10) and the approximation grow rapidly. However, the coefficients range for practical
purposes may not greatly exceed this range as described by Pearson (1901) and Edgeworth (1914).
The approximation is shown in Fig. 1 with some wind tunnel experiment results plotted in
(4, o) plane. In the figure, the legend for “experiment” indicates the pressure data from 240 points
located over the surface of a square section prism with aspect ratio 4 under suburban flow
conditions, i.e., a power law exponent=0.22. The data is sampled with a sampling frequency of 400
Hz after passing through low pass filter with cut-off frequency of 200 Hz. The sampled data is
averaged by one second moving average window in full scale. Coefficients of skewness and
unbiased kurtosis plotted in Fig. 1 are for a wind direction of 45 degrees. As shown in the figure,
the lognormal line cannot cover all the data, which correspond to the skewness and unbiased
kurtosis coefficients for measured wind pressure data from the wind tunnel experiments for various
shapes of buildings. This restriction of the locus @t ¢ ) is easily expected since the skewness
and the kurtosis in Eqg. (10) are determined by only one parawmet@onsequently, application of
the shifted lognormal transformation to pressure data as shown in Gabfake (1999, 2000, 2001a,
2001b) and of three parameter lognormal distributions as shown in Caldetale(1993, 1994),
Li, et al. (1999) and in Matuiget al. (1982) are not appropriate for various conditions of higher
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* lognormal line
— boundary for unimodal PDF
O  Experiment, Kim et al. (2001)
8 A CAARC data, Gioffre et al. (2001)
B low build. flat roof, Tamura (2001)
low build. roofs, Kumar et al. (1999)

Unbiased kurtosis v,

Skewness vy,

Fig. 1 Comparison of lognormal line and boundary for unimodal PDF of third order polynomial NST with
some experiment results

statistics. As a reference, the locus ¢f, {, ) of the gamma distributions is also restricted on a
curve that can be expressed by = 1.5y2 . Therefore, if the locusyof,( ) from the EPG
method is restricted as shown in Kumat al. (1999), which can be approximated by

¥, 01.542+ 0.8 for |y;| 20.4, it may be asserted that the applicability of the EPG method would
also be restricted by the similar manner of gamma distributions.

2.3. Extension of logarithmic transformation

Despite its successful applicm in a number of cases to engineering problems, the logarithmic
transformation has restricted flexibility as shown above. It thus seems reasonable to assume tha
useful extensions of the NST function might be obtained by using a different functior§;The
function by Johnson (1949) is one of most flexible functions and is defined as follows.

A5E = sinn P54 (11)
or y = .%E = SinhE]]X_gZE - %{ e(x—y)/é_e—(x_y)/a} (12)
From these, the PDF of is:
__0 1 01 ) JIZ— 2[J
ply) = = expi5{ v+ dlog(y' + Jy“+ 1)} O (13)
J2mfy?i O 0
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and four parameters, i.g4 8, £ andA, in Eq. (11) or Eqg. (12) can be estimated from the first four
moments of observed data. Conversely, the moments can also be calculated from the four given
parameters. For the former case, Leslie (1959) obtained a set of formulae for the estimation of
skewness and unbiased kurtosis based on the formulae derived by Johnson (1949), and later, it i
modified by Johnson (1965) as follows.

E(y) = —JwsinhQ, Var(y) = 1/2(w-1)(wcosh2Q + ]

m(w-1[4@+2Am+ 3w+ 1)) _ (@=DIA@N +A(@)m+ A(w)]

V= 2(2m+ w+1)3 ’ 2(2m+ w+1)° oo
in which, w=exp(©@?), Q=y/d and
m=wsinltQ={E(y') }2, Ay(w)=8(w’+ 3w+ 6w+6)
A (w)=8(af+3w+6r+ Tw+3), Ay(w)=w+ 3af+6w*+ 100 +9w+3 (15)

Oncew and Q are determined from Eq. (14) and Eqg. (15and A can be determined from the
following relationship.

A% = Var(y')/Var(y), & = E(y) —AE(Y') (16)

in which, E(y') andVar(y') are given by Eq. (14). However, it is the most difficult step to use the

S function, and because of the absence of an analytical solution, a numerical iteration is needed to
obtain the parameters. There have been some valuable studies on estimation of the parameters. F
instance, Hill, et al. (1976) described an iteration algorithm for the method of moments for
Johnson’s system in ISO Fortran, and Wheeler (1980) proposed an estimation procedure by mean:
of quantile estimators. However, the results are generally not good for modest sample sizes.
Furthermore, Johnson (1949) gave an abac for gdvamd Q, and a table for gively and d in

terms of y2 andy,+3 (Johnsoet al 1965). The applicable range of t&g transformation is
upward of the lognormal line in Fig. 1. However, there are both difficulties and irrational
assumptions in the estimation of the parameters near the lognormal line. As described by Johnson
when yincreases from zero to infinity;, y,)  varies fro(ﬁ,O.Soo4 + 0 — 1.5) to a point on the
lognormal line. Meanwhile, a® moves from infinity to zerow varies from unity to infinity.
Therefore, if (y;, ») is located near or on the lognormal line including the normal point, an
iteration procedure does not converge, depending on the convergence criteria. Moreover, Johnson’s
system is based on the assumption that if a giveny,) is located on or below the lognormal line,
the PDF for that region should have the form of one end or both ends bounded. However, there is
no evidence that this assumption is correct at any time. From the viewpoint of practical application,
the existence of RV's bound becomes a weak point because many of the pressure data located i
this region as shown in Fig. 1 and in the tails of PDF seems to have significant meaning in
engineering problems.
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2.4. Polynomial transformation

As aforementioned, toward generalizing the normal distribution, which is to consider the
distributions of families of transformed normal RVs, Edgeworth (1892) set forth a polynomial
transformation. The idea was named the “method of translation” in later study (Edgeworth 1898,
Stigler 1978). As the first trial, he examined a quadratic function and its generalized form can be
expressed as follows.

y = ag(x+ by’ +c, (17)

in which, a4, by and cy are parameters. It is well known thatfollows a non-central chi-square
distribution with single degree of freedom. Furthermore, Edgeworth (1898) made another assumption
that the weight of a man is proportional to the cube of his height and that the frequency of men’s
height is normal, and examined the third order polynomial. That is,

O 3xp . x, X
= k(x+ g° = kg’ + 20 + 2+ 20 18
Y = Kox+ 9° = k'l g%tgggzg% (18)
Eq. (18) is generalized as follows (Edgeworth 1924).
y=a+bx+cx+dx® (19)

in which, a, b, candd are parameters. It is easy to understand that Eq. (17) is a special case of Eq.
(29), if we putd=0 in Eg. (19).

Meanwhile, Pearson divided asymmetrical distributions into two distinct classes: a heterogeneous
one composed by two or more homogeneous events, and a homogeneous one in which the tendenc
to deviate to one side of the mean is not equal to the tendency to deviate to the other side. For the
heterogeneous class, he suggested a method using a mixture of two normal RVs (Pearson 1894
which is now callech stable RVs (e.g., Grigoriu 1995) if the mixture holds the Levy’s hypothetical
lemma (LeCam 1986). For the homogeneous class, he derived a generalized form of asymmetrical
PDF based on the hypergeometrical series, which is expressed in the following form (Pearson
1895).

1 dity) .y
f(y) dy Co+ CrY + G’

(20)

The right term of the equation is closely related to Edgeworth’s polynomial function (Pearson
1905, 1906) and is slightly different from the form referred at present. Based on the probability
mass preserving transformation,

f(y) dy=g(x)dx (21)

Taking logarithmic differentials,

1 dfy) _ 1dedx, d’  dx
fly) dy  ¢x dx dy gy dy

(22)
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Sincex follows the standard normal distribution as assumed in this study, the following relationship
is established.

_1 de(x) _
®x) dx T (23)

Eq. (23) describes Pearson’s main idea and the idea is closely related with the standard norma
distribution (Pearson 1895). Let= f(y) and substituting it into Eq. (23):

1 dfty) _ vy
= —2 24
W dy - Fy) (e4)
in which,
~ [ f(y)/ dx
Py - o ST (25)
fy)(dF(y)/dx)"—d*T(y)/dx
Since?(y) is an arbitrary function as written by Edgewol?t(y) can also be selected arbitrarily
regardless of Eq. (25). As an alternative R¢y) , by taking up to the second order terms of the

Maclaurin series expansion &f(y) , the result coincides with Eq. (20). If an analytical function,
e.g., f(y)=log y or Kapteyn's polynomial fornf(y)=(y+a)¢ (Kapteyn 1903), is assumed, each
result from Eq. (21) and Eq. (24) should be exactly the same through the relation of Eq. (25).
Therefore, it can be said that the two methods are intrinsically the same, except for the difference of
whether the normal distribution is introduced explicitly, even though Pearson claimed a lack of
physical meaning in the relation = f(y) (Pearson 1905). However, explicit introduction of the
normal RV would help complement the simulation method based on spectral representation with
uniformly distributed phase angles and DFT for non-Gaussian stationary processes, if no excessive
distortion remains in the spectral characteristics of the translated stochastic processes. The relative
advantages of these two systems are summarized and discussed by Edgeworth (1916, 1917).

The reason why Edgeworth and Pearson take only finite terms in their arbitrary functions can be
summarized as follows (Pearson 1904): 1) an empirical reason: fairly wide experience shows that
polynomials of the second and third order suffice as rules to describe the skewness of the regressiol
line betweerx andy; 2) a mathematical reason: the higher powers involve moments of the fifth and
higher orders and their probable errors are very large, which is called a statistical fluctuation (e.g.,
Kendall, et al 1977). These two reasons are still valuable and useful for many practical problems
studied at present because many of events are modeled based on the information from observation
and experiments, i.e. an empirical insight, rather than a theoretical insight.

In a biographical essay on Edgeworth, Stigler (1978) indicates that Edgeworth has remained one
of the least known major figures in the history of mathematical statistics. The method of translation
is not an exception. Especially, the validity of Eq. (19) has been buried in so many achievements in
modern mathematical statistics until the date of its resurrection in 1978, but with different names
and its inventor. In 1978, A.l. Fleishman proposed a method, termed the power method, for
simulation of non-normal RVs from normal RV by using two kinds of polynomial functions of
These polynomial functions are exactly the same as Eq. (17) and Eq. (19), respectively. He also
computed the parameters in Eqg. (19) based on the method of moments and tabulated them with
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respect to skewness and unbiased kurtosis coefficients. However, the table and derivation methoc
based on the given first four moments were shown by Edgeworth (1914, 1924), and an enlarged
table was accommodated by Bowley (1928) based on a slightly different form of the RCiBr of

y-ain Eq. (19). Edgeworth and Bowley used the PDF with standard deV|at|0t7f—2()f , Whereas
Fleishman used the standard normal PDF. The even order moments for each case are as follows. |
this study, the latter is used.

2 E8XP(XD) o (20)!rdd

o = X2 Xe = 26

”2 I—oo ﬁ 2 [l Dzlj ( )
cexp(=x’/2 2r)!

Loy :J’ 2 p( )d ( ) (27)

— 2T 2'r!

The power method is more celebrated than the translation method. For instancegtKaltz,
(2000) introduced Fleishman's method with some references for various application examples
including the method of generating bivariate non-normal RVs. And also, Joheisah, (1994)
described the translation method in only four lines as “not often used method at present”. However,
the translation method for non-normal bivariate had already been shown and discussed by
Edgeworth in 1914. On this aspect, Kendall (1968) also has indicated that the method of translation
to bivariate surfaces never seems to have been adequately followed up after Edgeworth. It is
interesting to note that the description of the translation method by Jolehsdn;ontrasts with the
relatively long and detailed description of the Johnson’'s system and may be corrected by the
description by Pearson (1967), in which Pearson briefly mentioned the contributions of the
translation method to later studies, i.e. the Johnson’s system. A wrong eponym may not be a rare
event at this time, because there exists a law called Stigler's Law of Eponymy (e.g., Stigler 1999),
which in its simplest form states that no scientific discovery is named after its original discoverer.

2.5. Theoretical infinite polynomials and some truncated forms

The proofs of the central limit theorem show that the distribution of the sumirafependent
RVs with finite moments may be expressed in a series form (e.g., Hald 1998). The Gram-Charlier
and the Edgeworth series, which are substantially the same, are the most well known series. Thes
series are generally used with finite terms, e.g., three terms for the Gram-Charlier series and four
terms for the Edgeworth series approximations, because the series expansions with many terms d
not always provide more accurate approximations. However, the truncated series have significant
defects such that negative PDF appears (e.g., 8iral 1999) and the approximation breaks down
not very far from the center of the probability distributions for relatively large skewness and
kurtosis. For this reason, Edgeworth recommended the method of translation rather than the series
form (Edgeworth 1917, 1926). Furthermore, Dragtral (1972) shows the regions for unimodal
PDF and for positive definite of the Gram-Charlier and the Edgeworth series approximations. On
the other hand, if all order of moments are available for a distribution such as theoretical non-
Gaussian distribution, the infinite series expansion based on the Hermite-Chebyshev polynomials
would be orthogonal decomposition of the non-Gaussian PDF with weight functigix)obecause
the Hermite-Chebyshev polynomials constitute the orthonormal system of the Hilbert space
L%(0, d®). However, this fact does not mean that the series expansion can approximate any form
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of PDF. In order that the series convergesf(g), some conditions should be satisfied
(Kendall, et al. 1977).

Meanwhile, Cornish and Fisher (1937) and Fisher and Cornish (1960) used the Edgeworth series
to find an asymptotic expansion of the quantiles of the distributionwath known cumulants in
terms of the corresponding normal deviate. There are two types of expressions: 1) finite form and 2)
infinite form. The finite form generally assumes the existence of the cumulants up to the eighth or
lower order (Koninget al 1988). Even in infinite form, cumulants higher than sixteenth order are
seldom used (Leet al 1992).

Using the cumulants up to the fifth order, it can be expressed as:

ya = Xa + z Bj(xa) (28)
j
in which,j=1,2,3 ... and
K
By(xa) = F(x~1)

K K2
By(Xa) = 5(X = 3%a) = 35(2X¢ ~5x,)

3
K KaK K
1—250(xg—6xg, +3)—ﬁ(xg—5xg+2) 32

In the equationg; is thej-th order cumulant.

Since it is unusual to use moments higher than the fourth order for measured data, and many
terms are needed to acquire good approximation, e.g. more than six terms for chi-square distributec
RVs (Zar 1978) and more than ten terms for Weibull and gamma distributed RVs éCladi,

2002), the Cornish-Fisher series expansion is generally used to approximate a theoretically
distributed RV. Although the higher order Cornish-Fisher series expansion provides an excellent
approximation, derivation of the inverse function of the series is quite difficult, which is necessary
to ensure the existence of PDF and to correct the distortion of correlation functions by an algebraic
method, which will be discussed in 84. On the contrary, if the series is truncated to avoid a
statistical fluctuation or to obtain analytic inverse function, i.e., using the first three terms, a good
approximation cannot be expected. For these reasons, Eq. (19) may be the most probable
approximation of Eq. (28) under the constraint for available moments.

Meanwhile, the same invention can also be found in the field of civil engineering. Winterstein
(1988) proposed a translation method to approximate non-normal responses based on a serie
approximation of PDF (Crandall 1980), which is based on the Gram-Charlier series and semi-
invariants, i.e., cumulants. That is,

By(X,) = (12x4 —53x2 + 17)

324

y = hp{x+ hy(x* — 1) + h,(x* - 3x)} (29)
or arranging terms with respect to each ordex, dhen

y = —h,hy + (h,—3h,h,)x + h,hx* + h,h,xX° (30)
213 2 2014 213 24
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in which, h, is a scaling factor to ensure unit variancer.o€omparing Eq. (29) with Eq. (28), it is

easily seen that Eq. (29) is a truncated form of Eq. (28) at the first teldny ahd Eq. (30) has the

same form as Eqg. (19). He also showed approximated parameter estimators for Eq. (29) or Eq. (30)
to be applicable to most possible values of skewness and unbiased kurtosis greater than zerc
ensuring unimodal PDF. The estimators are as follows:

. [T+ 15y,-1
h, = (1+2h2+6h2) Y2 h, = h h, = Ve

T 4+2/1+ 15, 18

However, in order to ensure the unimodal PDF, the following relationship should be satisfied as
written by Winterstein, but the accuracy and the availability of Eq. (31) were not fully verified in
the stated region ofy;, V,)

(31)

dy
ax >0 (32)

On the other hand, Fleishman (1978) showed that the numerically solvable region of Eq. (19)
regardless of the unimodality of PDF or the monotonicity of the translation function, which can be
approximated byy, > 1.59y2—1.14 , is narrower than the limit of possible skewness and unbiased
kurtosis for all distributions, i.ey, > y# -2 . Therefore, the unimodal definite region of Eq. (19) or
Eq. (29,30) may be narrower than the solvable region. This means that Winterstein’s assertion on
the applicable region may not be correct, and this point will be discussed in following section.

This method is also referred to as moment-based Hermite transformation by Togetualli,
(1997a). Moreover, Toganarelét al. (1997b) developed an iterative procedure for the estimation of
the polynomial coefficients and showed that Eq. (31) provides relatively good solution. The method
is also used by Gurlegt al (1997a, 1997b, 1998) to develop a procedure for the correction of
distorted correlation function.

One of the remarkable models for the translation function has been studied bgtRLi¢2002).

The basic idea is not different from the orthogonal decomposition of PRvih respect to that

of the standard normal PDF, but that the orthogonal decomposition is applied to the translation
function itself with respect ta. The model assumed that the translation function is an element of
the Hilbert spaceLZ(E],dcb) . If the assumption is true, then the translation function can be
expressed as a linear combination of the Hermite-Chebyshev polynomials: there exists a real
sequence of coefficients,), such that

9(x) = Fa®d(x) = 3 coHu(X) (33)
n=0

in which, Hy(x) means the Hermite-Chebyshev polynomials,

Ho() = 1, Ho(x) = (-1)e”/ 2L g2 34
o(X) (x)=(-1)e e (34)

Cn = (n!)_lj’Dg(X)Hn(X)(P(X)dX (35)
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the series being convergentl'Lﬁ(D, do)

In order to guarantee the convergence of the right hand of Eq. (f)X}o for@ny , the
following condition should be satisfied becaygd,(x)} is complete for the class of functions
which holds the following condition (e.g., Kanelas,al. 1984).

[ {90} e(x)dx < oo (36)

As the condition holds, the coefficients of the Hermite-Chebyshev polynomi#&sds to zero as
n - o . Consequentlyg(x) is approximated by the polynomials having infinite (or finite) terms in
the sense of quadratic mean. That is,

909 = 3 ao 37)
k=1

If the range ofx restricted in a compact finite interval @ , Eq. (37) convergeg(t9 in the
meaning ofL” approximation by the Weierstrass’ polynomial approximation theorem (e.g., Yajima
2002). Eqg. (37) and the estimation method of coefficients can also be found in a series of studies on
the development of a practical mathematics theory of stochastic processes by Kuehettov
(1965).

However, the difficulty in the derivation of inverse function as discussed on the higher order
Cornish-Fisher series expansion still remains unsolved. On the other hand, even though the accurac
of approximation is important, the ease of use also cannot be ignored for practical purpose as
described by Johnson (1949). For such reasons, this paper sheds light on the applicability of the
third order polynomial of Eq. (19).

3. Parameter estimation in polynomial NST function

As aforementioned, there are two practical methods for estimating parameters in NST functions:
1) the method of probability plotting and 2) the method of moments. In a number of situations, the
method of moments is quite adequate, although it cannot be regarded as giving the best solution ir
any sense. However, it is not always a desirable procedure. In particular, if the moments are
subjected to sampling error due to extraordinary outliers, the results may be strongly affected and
the former method may be more desirable. Consequently, these two methods are complementary tc
each other.

3.1. General conditions for parameters

In order to satisfy the monotonicity of translation function, the first order derivative of Eq. (19)
should be greater than zero. It follows that

%}C = 30 + 2cx+ b>0 (38)
In order to satisfy Eq. (38), it is necessary thdt- 3bd < 0 . If the condition holds, the
unimodality also holds as stated by Winterstein (1988). The boundary diy,thg) plane for the

monotonicity and unimodality can be estimated from the following condition and the estimated
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boundary indicates the lower bound (64, V,) for application, but no upper bound exists.
¢®~3bd = 0 (39)
3.2. Method of moments

For Eqg. (19), the method of moments has already been developed by Fleishman (1978) based or
Eq. (27). The parameters can be estimated from the following parametric equations.

E(y) = a+c=0 (40a)
Var(y) = b’ +6bd+2c¢” +15d° = 1 (40b)
v(y) = 2c(b®+ 24bd + 105d° + 2) (40c)
B(y) = 24{bd+ E(1+b”+28bd) + d*(12+ 48d + 141c” + 225d°)} (40d)

In order to estimate the parameters, Eq. (40b~d) must be solved simultaneously, and for this
purpose an algorithm like the least squares method for nonlinear parameters is needed. Meanwhile
for computational efficiency, it would be desirable to reduce the number of equations to be solved
simultaneously. An available form was introduced by Edgeworth, even though it was based on Eq.
(26) (Edgeworth 1914). It is relatively easy to modify the form based on Eq. (27) as shown below.

Since parametea is a location parameter, subtracting it from both sides of Eqg. (19) and denoting
it by y', the equation can be expressed as follows.

y =y—a=b{x+cx*+dx%} (41)

Using Eq. (27) instead of Eq. (26) for Eqg. (41), the parametric equations corresponding to Eq.
(40a~d) can be expressed as

E(y’) = bc (42a)

Var(y) = b{1+2c" +6d' +15d'} (42b)
(6 + 8¢ +72d" +270d'%)°

Ry = & ) (420)

(1+2¢" +6d' +15d'%)°

24{ 2c' + 2¢’'2 + 36c'd' (1 + 5d') +d' +18d'? + 135d"° +405d'“}
(1+2¢" +6d' +15d'%)°

ya(y) = (42d)

in which, ¢ = ¢'%, ¢ =c/b, d =d/b.

When Eg. (42c) and Eq. (42d) are solved with respectto dand  for Qwen) , parameter
b can be estimated from Eq. (42b). Therand d are straightforwardly obtained. Finallg, is
estimated from the relatiok(y)—a = E(y') = ¢ , i.e., Eq. (40a). It is worth noting that the sign
of parametec follows that of skewness.
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In order to solve the parametric equations, an algorithm for the least squares method for nonlinear
parameters is used, and it is confirmed that the accuracy of the results is sufficiently high. Through
the solving processes, the lower bound is estimated and it can be approximated by

¥, = 0.0372y|° + 1.4489y,|* + 0.0218y| (43)

Modifying it to the form of the lognormal line equation, it can be expressegg([@.57y7 . Thus,
the applicable range of the third order NST function becopmesl.57y? and the range is wider
than that of theS, function, but narrower than the limit of all distributions, ig.2 y? -2 . The
results are compared in Fig. 1. In the region above the boundary line, no insoluble region is found,
but in the region below the boundary line, in which some experimental data are located, the method
may not be appropriate because Eq. (38) cannot be satisfied, and absolutely continuous PDF doe

not exist in a strict sense. However, if two rootsdgf’ dx = 0 are sufficiently separated such that
®d(xy) — P(x ) =1 for the two roots—o <x, <0<xy <o , the translation function may be utilized
for the range between two roots. And also,d@fx,) OO for positively skewed distribution or

@(x, ) O1 for negatively skewed distribution, the approximation by Eqg. (19) may be available with
the restriction of the range of in y> g(x,) or y<g(x) , respectively. Whereas, the PDFyof
does not exist in any sense when two roots are close to each other. Therefore, before extending th
applicable range below the boundary line, the rangg aid the locus of roots should be carefully
considered.

Some examples related to above discussions are shown in Fig. 2 for theoretical distributions
whose (y,, y,) are located above and below the boundary line. The considered theoretical

8 8r 7
—— Theoretical 4 —— Theoretical —— Theoretical :
—— Edgeworth ——- Edgeworth 6 | —— Edgeworth
6lL== Cornish—Fisher (8,9) 6lL== Cornish—Fisher (6) —— Cornish—Fisher (8)
5
> > >
8 8 4| 84
:: * k:
4 g g 3}
i © s
4 E 2t 3 2}
S @ o
o} o =
® ? oIy
[u] [u]
£ 2 o E
8 8 8 0f
7] o 7]
- -1}
=2 upper : «=2.0, B=1.0 upper: c=15
lower : «=4.0, p=1.0 - lower : c=2.5
_..4 1 1 1 ] ._4 1 1 1 ) ..3 1 1 1 J
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
standard normal variates x standard normal variates x standard normal variates x

(a) Standard Gumbel (type 1) distribution  (b) Standard gamma distribution (c) Standard Weibull distribution

Fig. 2 Accuracies of the Edgeworth’s third order polynomial translation function (Eq. (19)) with moment
method and the Cornish-Fisher series expansion compared with some theoretical distributions
(Numbers in the brackets indicates the maximum order of cumulant)
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distributions are as follows. Parameters in the distributions are adjusted, such as the mean and th
variance of each distribution be zero and one, respectively.

(a) standard Gumbel distributiop; > 1.57)%

~(y-n)/o

f(y) = o'e exp[-e Y9y, 01.14, y, = 2.40

(b) standard gamma distributiog; < 1.57y2 (y, = 1.5)2)

a-1
(y—4¢,) ;:ﬁi—;y—fg)/ﬁ}’ a>0, B>0;y> &y 1= 2a7Y2 y, = 6a
a

-1

fy) =

(c) standard Weibull distributiong, < 1.57y%
f(y) = c{(y—&)/A} “Texp[H{(y-&)/A}], y> &,
Vi = (M5 —3u5 Y +2UR)/ K2, Yo = (U5 — Aps ) —3uR + 1205 p'2 —6u%)/ K3
py = T(r/c+1), K=y —pp?

In each case, although there exist some departures compared with given theoretical functions in
lower and upper tail region, the accuracy of the Cornish - Fisher series expansion with high order
cumulants, which is computed by using the algorithm by le¢egl. (1992), is sufficiently good
regardless of the locus @¥;, y,)  and the accuracy of Eq. (19) for the case of (a) is better than the
series expansion in upper tail. The numbers in the brackets for the Cornish-Fisher series expansior
indicate the maximum order of cumulants. It is worth noting that the maximum order of cumulant,
which provides the best approximation, for the standard Gumbel distribution is different (for
i.e., the eighth order, and fap0, i.e., the ninth order. Meanwhile, the accuracy of Eq. (19) with the
method of moments depends on the locu§yefy,) in the outside of the boundary. For the case of
(b), sincexy is less than - 3.0, the accuracy in the upper tail is shown as sufficiently good.
However, for the case of (c) with the parametec®®.5, some discrepancies are shown in lower
and upper tails dcause the two roots &f andxy are close to each other. And also, for the case of
c=1.5, the good approximation in upper tail breaks down over the figured rangeFmm the
figures, it can be indicated that Eq. (19) may be applicable in accordance with the purpose of
application, even though the locus @f, v,) is located below the boundary line and then the PDF
can not be defined in a strict sense.

The parameters in Eq. (40) or Eq. (42) can be approximately estimated from Table 1 in the
following manner.

{bcd = {T}{b}Hc}{d}] (44)

in which, T; indicates the second column in the table, afgH{[}{ d}] means the coefficients
column vectors in the table, which are estimated from the results of Eq. (40) by means of the least
squares method.



374

Hang Choi and Jun Kanda

Table 1 Coefficients in Eq. (44) for the parameters of Eq. (19)

j T b G d
. 1p<l1.5 =15 1p<l1.5 p=1.5 <15 =15

1 1 9.9996E-1 9.6982E-1 1.5632E-6 1.1607E-3 1.4790E-5 1.1225E-2
2 Vi -1.3648E-3 -3.0509E-2 1.6683E-1 1.5664E-1 7.3214E-4  1.2924E-2
3 Y -1.2383E-1 -7.6541E-2 -6.5683E-6 -8.7296E-4 4.1217E-2  2.3597E-2
4 v 1.2237E-1 5.5809E-2 1.9494E-3 -2.3561E-3 -4.6869E-2 -1.7687E-2
5 13 3.5256E-2 5.3702E-3 -1.3070E-5 2.3911E-4 -1.3118E-2 -1.7871E-3
6 13 -4.9116E-2 -3.4754E-2 6.5320E-2 4.6615E-2 2.5750E-2  2.1619E-2
7 1B -8.5046E-3 -1.9598E-4 8.0788E-5 -1.6859E-5 3.2899E-3  6.4808E-5
8 ViYo 2.7301E-3 1.8146E-2 -3.9729E-2 -1.5542E-2 -9.2631E-4 -6.0632E-3
9 V2y,  -7.6755E-2 -1.2970E-2 1.7815E-2 2.3649E-2 3.1404E-2  8.7385E-3
10 v,Y2 ~ -7.5293E-3 -4.1057E-3 1.8298E-2 2.6161E-3 2.0800E-3  1.5638E-3
11 s 1.3432E-2 2.9246E-3 -6.8372E-3 2.3482E-3 -1.0848E-2 -9.0710E-4
12 V,V3 7.0720E-4 2.6559E-4 -1.7732E-3 -1.8345E-4 1.0438E-3 -1.1160E-4
13 V2y2  -1.0054E-2 -1.9448E-4 -7.0658E-3 -2.8937E-3 1.7648E-3 -5.0330E-4
14 A 1.0331E-2 1.1388E-4 1.3560E-2 5.2661E-5 2.1617E-4 -2.7428E-5
15 Y3y2  -3.2158E-2 -1.7751E-4 -1.6720E-2 -1.1379E-3 1.6541E-2 -1.1518E-4
16 V23 1.2655E-2 2.1626E-5 2.0708E-2 4.7728E-5 -3.2886E-3 -1.2981E-7

16 16 16
Parametersb = Tb c= Tc d= T.d.
it i it

j=zl jZl J'Zl

Table 2 Comparison between given,(y,) and values calculated from Table 1 and Eq. (40) in () and from

Egs. (30,31) and Eqg. (40) in [].

Calculated from

Calculated from

Given (1, y2) Table 1 and Eq. (30,31) VN 04 o) Table 1 and Eq. (30,31)

(0.0, 0.0) (9.38E-6 , 3.55E-4) (-03,02) (-3.00E-1, 2.00E-1)
[0.00, 0.00] [-2.99E-1, 3.18E-1]

0.0, 0.1) (5.26E-6 , 9.98E-2) (05, 0.4) (-5.00E-1 , 4.00E-1)
[0.00, 1.00E-1] [-4.96E-1, 7.21E-1]

0.0, 0.3) (3.83E-6 . 3.00E-1) (08, 1.0) (-7.99E-1 , 1.00E+0)
[0.00, 3.02E-1] [-7.87E-1, 1.80E+0]

(0.0, 0.5) (3.40E-5 , 5.01E-1) (-0.8 , 4.0) (-7.89E-1 , 4.04E+0)
[0.00, 5.06E-1] [-8.03E-1, 5.38E+0]

(0.0, 1.0) (4.51E-4 , 1.00E+0) (1.0, 1.6) (-:0.99E-1, 1.66E+0)
[0.00, 1.03E+0] [-9.79E-1, 2.84E+0]

(0.0, 3.0) (2.08E-3 , 2.99E+0) (15, 3.5) (-1.49E+0 , 3.51E+0)
[0.00, 3.41E+0] [-1.45E+0, 6.25E+0]

(0.0, 5.0) (6.58E-3 , 5.06E+0) (15, 6.0) (-1.51E40 , 5.99E+0)
[0.00, 6.12E+0] [-1.46E+0, 9.48E+0]

(0.0, 9.0) (4.38E-3 , 9.00E+0) (-2.0 , 6.5) (-1.98E40 , 6.53E+0)

[0.00, 1.21E+1]

[-1.89E+0, 1.14E+1]

Some calculation results are also shown in Table 2 with the results from Eqg. (31). For the result
from Table 1, each maximum difference is less than 0.06 for a given unbiased kurtosis and is
sufficiently small for a given skewness, respectively. It is worth noting that Table 1 is for negative
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and zero skewness. Therefore, if the coefficients for positive skewness are needed, it can be
obtained by following manner: 1) calculate for negative skewness and 2) change the sign of
Additionally, Eq. (44) is available for the region below the boundary line.

Meanwhile, the results from Eq. (31) are shown relatively good agreement compared with the
given values for small skewness and unbiased kurtosis as discussed by Togmhakl([1997h).
However, the accuracy of Eqg. (31) becomes worse with increase in skewness and kurtosis, and
especially, the estimated unbiased kurtosis are significantly departed from the given values. This
tendency becomes distinct with increase in skewness. Such discrepancy may be caused by ove
simplified form of Eq. (31).

3.3. The method of probability plotting

As an alternative method for the estimation of the polynomial coefficients, the method of
probability plotting is partly more flexible than the method of moments. This method is
fundamentally based on an empirical cumulative distribution function (ECDF) of twoxRfe]y.

There are basically two kinds of probability plots: quantile versus quantile plots (Q-Q plots) and
percent versus percent plots (P-P plots). An elementary property of Q-Q plots is that the relationship
betweerx andy directly appears in the corresponding Q-Q plog.iff a nonlinear function of, then the
corresponding Q-Q plot will be nonlinear. This invariance property has made the use of Q-Q plots
appealing and valuable. Moreover, where the variables have long tails, the Q-Q plot tends to emphasize
the comparative structure in the tails and to blur the distinctions in the middle where the densities are
high. However, the P-P plot is usually sensitive to discrepancies in the middle of a distribution rather
than in the tails (Wilket al. 1968). Thus, the former method is more appropriate for this study.

If the standard normal RV is used as reference quantiles, the Q-Q plot will show “skew
correlation” between normal RV and non-normal RV. Therefore, if the ECDF of each RV is
available, the skew correlation can be estimated. As an appropriate ECDF, Hazen’s plot, i.e., a plot
of the i-th ordered value as ordinate againstl{2)/N as abscissa, is adopted in this study. The
estimation procedure is as follows: (1) sort observed ydataascending order, (2) estimate ECOH (
for eachy;, (3) estimaten-quantiles ofx(x,) from unit normal distribution, (4) plot§, y,), and (5)
approximate the functiog,=g(X,). If the number of each observed data, Nays the same, the results
of processes (2) and (3) can be used repeatedly. For the procedure of (5), the function can be
approximated by the least squares method. If the squared mean error lyetmekg{x) is denoted by
S, parameters could be obtained by the minimizatio&, efith respect to each parameter.

N
S =3 (yi-(@+bx o +d) (45)
i=1

From the condition{d/ da, d/ db, 0/ dc, d/0d}S, = {0} each parameter is estimated more
directly as follows.

5Ki=Ks Ko Ke=3K

a=-¢b=—5— c=5, d=""5

(46)

in which, K; = E[xjy] . The reproducibility of higher order statistics can be confirmed by
substituting parameters into Eq. (40) or Eq. (42).
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3.4. Comparison with experiment data

Fig. 3 compares the results of Eq. (19) using two kinds of parameter estimation methods and

experimental data. Th&, function is also shown as a reference.
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Fig. 3 Q-Q plots of experimental results with approximations by third order polynomial function and the
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Y | Type :S Y Type:J y
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Fig. 4 Types of Q-Q plots for pressure signals measured from wind tunnel experiments

From the result, it is clear that Eq. (19) has almost the same degree of applicabilitySgs the
function, except in the region near the normal point and near the lognormal line. The higher order
statistics reproducibility of Eq. (46) based on the Q-Q plot is fairly good compared with that from
the method of moments, and their differences are less than 5% in most cases. Such differences ma
be reduced by the exclusion of some extremes in the observed data. It is worth noting that the tail
features do not sufficiently appear in detail with a ten thousand of data and some difficulties always
exist to decide whether the applied translation function is appropriate.

Tendencies of Q-Q plots can be briefly divided into four types as summarized in Fig. 4. These are
1) Type S (e.g., No0.133 in Fig. 3), which has large kurtosis rather than skewness; PDF’s tails
elongate in both positive and negative directions, 2) Type J (e.g., No.16 and No.236), which has
relatively large skewness rather than kurtosis; PDF’s tail elongates in one direction, 3) Type | (e.g.,
No0.170), similar to normal PDF and 4) Type U (e.g., N0.193 and No.227), PDF’s tails are bounded
in both direction. Types S and |, which appear in the regiop Bf1.57y? , can be approximated by
Eq. (19) with high accuracy and with excellent reproducibility of higher order statistics. Miggnw
for Type J, which appears below the lognormal line, Egq. (19) may not be an appropriate
transformation in a strict sense because the bound in either tail cannot be perfectly approximated, cf.
the standard gamma distribution shown in Fig. 2(b). This kind of limitation cannot be avoided in
the application of polynomial function regardless of the maximum order, if the rangesafiot
restricted in a compact finite interval af or the approximated translation function is not ensured
its monotonicity. Furthermore, Eq. (19) cannot be applied to Typevhich appears below the
boundary line and it may be more preferable to select a different form of translation function.
However, in most practical problems, even though we vaguely know the existence of bounds, to set
a strict bound ofRV is difficult and it generally depends on an engineering judgment. In this
meaning, TypeU distribution may be less important and an unbounded polynomial NST
approximation including Eq. (19) is useful, even though it may lead to an overestimation of
extremes. From the those reasons, Eq. (19) with the method of Q-Q plots could be a good choice a:
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shown in Fig. 3. It is worth noting that the loss of the reproducibility of given statistics does not
always lead to a loss of approximation accuracy over the whole range of RVs, because higher order
statistics are often strongly affected by a local fluctuation of observed data in the tails.

4. PDF and correlation distortion
4.1. Probability density function of y

Sincey=g(x) is a monotonic function, there is only one root. Therefore, the PDfcain be
deduced by using an inverse functiong™(y) as follows.

1
| g'(g™ )

From a formula for the root of the third order polynomial, the inverse fungfit{y) can be
expressed as

fu(y) = A9 () (47)

19
3d

T, = 3T+ JT3+T2, T,=3/T,— JT3+ T2

9id2(3bd— @), T, = 54%13{ 9bcd—27d%(a—y) - 2¢%

y =giy) =T, +T,—==, d(x) =3dxX’+2cx+ b (48)

—
w
1

in which T;=0 might be guaranteed if the condition of monotonicity in Eq. (38) holds.
Consequently, the PDF gfbecomes

1 O
fv(y) = eXpE}i—

J2m(3dy? + 2cy +b)?

,2
y
2

(49)

[ |

4.2. Correlation-distortion and its correction

In order to correct the distortion of the given spectral characteristics due to nonlinear
transformation, two kinds of methods are available at present: 1) an iterative method based on the
spectral density function by Yamazaki and Shinozuka (1988), and 2) an algebraic method for the
correlation function. For the former method, some studies have been presented and it has beer
indicated that the method cannot be applied for the case of excessive skewness and kurtosis
(Popescuget al. 1998, Deodatiset al 2001). Meanwhile, the latter method dates from the era of
Edgeworth. The basic concept can be formulated as follows.

Let Rr and RL be a given auto-correlation function and it's a realization by simulation,
respectively. ThenR}, is changed R}, through the translation, denot8&. d6 the inverse
function of $; exists, the distorted auto-correlation functigf, can be algebraically corrected by
using the inverse functior’z® as follows, and the corrected spectral density function can be
obtained by applying the Wiener-Khintchine relationship to the corrected auto-correlation fijgtion
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Riy = Wr(Rh) = Rh = YR(R})

RZ = YRY(RL) O Ry = We(RZ) = Wi ¥r(RL)} = Rk=Ry (50)

For Eq. (19), according to the definition, the auto-correlation function of a+ bx+ cX +dx’
is obtained from

3 . . 3 3 .
Ry(T) = T a2E[X(0)X(t+1)] + aa E[X ()X (t + 1)] (51)
yy jZO i z z Al

j=0k>]
in which, a;=a, a=b, a=c, a;=d. And, let Ri(T)=E[¥(t)X(t+1)], ¥(t)=x{, x¥(t+T)=x,

Rxx(T)=p. Then, from the property of the standard normal distribufRyFp, Riz=Rs:=3p,
Ry,=1+20%, Ry3=6p°+9p. ConsequentlyR,(7) can be expressed as follows (Edgeworth 1914):

Ryy(1)=60?Re (1) +2c?Ré (1) + (b?+6bd+9d?)R( T) + (a+C)? (52)

However, sincea+c=0, i.e., Eq. (40a)R, (1) can be rewritten in the following form. The inverse
function Wg* is derived from this equation.

Ry(1) = {@ +b'R(T) + C'R(T)} Re(T) (53)

in which, a’ =?+6bd+9d?, b'=2c% andc' =6 In Eq. (53),a' +b' +¢’' should be one from the
condition ofVar(y)=1, and it will be satisfied by the high reproducibility of the method. Therefore,
Ry(1) has the same value Rs(1) for R«(7)=0 and 1. However, for other valuesRE( 1), Ry(1),

is distorted as indicated by Ammon (1990). The maximum difference appeBgg @&=-1 by as
much as ' . In Fig. 5, contour lines are drawn with respecbte 2=-0.95, -0.90, -0.85 and

10 v — v

: * lognormal line

boundary for unimodal PDF
Experiment, Kim et al. (2001)
CAARC data, Gioffre et al. (2001)
\ AT \ low build. flat roof, Tamura (2001) .\

B low build. roofs, Kumar et al. (1999)
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v 1 1
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N
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Fig. 5 Degree of correlation distortion with respect to skewness and unbiased kurtosis
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' a
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-0.6 ,

N

08 ¥,

-1 -0.5 0 0.5 1
Ryx (7)

Fig. 6 Relation between distorted and undistorted autocorrelation funetiobh, (c and d indicate contou
lines shown in Fig. 5)

-0.80 with experimental data. In Fig. B,(7) for each ' -1 value are shown with respect to
R«(T). The necessity of correction strongly depends on the spectral characteristics and given higher
order statistics. For example, if the auto-correlation function is a positive definite function, e.g.
Rr=exp(—a|1]), a >0, the isomorphic inverse function always exists and the distortion is not
serious as discussed by Gioffe¢,al (2001a, 2001b) and Sakamogd,al. (2002). However, for the
case of Ry = exp(-al1)cosw,T) , this means that the spectral density function has a spectral
peak centered aiy, the necessity of correction strongly depends on the minimum auto-correlation
coefficients and given statistics. If the minimum auto-correlation coefficient is too small and the
given distribution is highly skewed such thagt, ,) located below the boundary line, there exists
such case that the inverse function has no root. Therefore, it can be said that the applicability of this
method also has a limitation.

In the use of this procedure, it is also worth noting thais not always isomorphic even in the

boundary for the monotonicity. The region on g, y,) plane in wHigls not isomorphic, can
be expressed approximately lpy<—0.035| + 1.73)3 or simph< 1.63y7 . Therefore, if given
(vi, Vo) is located in this region, the most similar value R (1) compared RKT) Rror

should be chosen from the three roots estimated by following equations.

bl

30 1 =1, 2 3(54) (54)

; 0 . 2
Rui(7) = 2/Q cosZ +(j -5~

1

4c'®

-1

B 9c,2(b’2_33'0'), R =

Q' {9a'b'c’ +27¢'’R,(1) — 2b"*}

6 = cos(R/ Q%)
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4.3. Numerical example

As an example for the preceded discussions, following tiondiare considered.
1) Assumed one-sided power spectral density function and its auto-correlation function are
following exponential cosine type functions. As required parametefsy and,=1.0 are used.

g 1 1 g
G+(f) = 2ap 2 2 2T 32 2 2L
" +4rf(f+f,)” a +4m(f-f,)" 0O
Rr(7) = exp(-a|1) Ccos( 27, 1) (55)
2) Desired probability density function of RY is assumed as following exponential gamma
distribution.
f(y) = —L—exp — exp(y) 0 (56)

For Eq. (56), first four statistics to be reproduced are as follows.
E{y} = O,vVar{y} =1,y = -1.54y, = 4.0

3) From the given statistics, the third order polynomial function, i.e., Eq. (19), becomes as
follows from Table 1.

y = g(X) = 0.2237+ 0.8558—0.223%* + 0.0298¢ (57)

As such, the theoretically reproduced first four statistics are [0.0, 0.9993, -1.5387, 3.990].

4) In order to simulate Gaussian process, following spectral representation method is used and the
number of frequency components is assumed'aso2ensure the normality and the cut-off
frequency is set as 35

y(t) = /2 g JG(kAw)Aw cos(kAwt + 6,) (58)
k=1

The results are shown in Fig. 7 for a sample function. It is easy to find that the given spectral
density function is distorted by translation through Eq. (57) as shown in Fig. 7 (2). Figures from
(3a) to (6a) show the correction procedure based on Eg. (50). In this procedure, AR method with
Levinson algorithm, denoted as AR-ACC, is used to estimate the auto-correlation function and
MEM is adopted for spectral analysis for figurative simplicity. The correction results shown in Fig.
(3a) and (4a) are quite satisfactory and the probability density distribution gfiRWell coincided
with given theoretical function. In figures from (3b) to (6b), the results from the application of
Yamazaki-Shinozuka’s iterative correction algorithm, denoted as YSA, are shown. In Figs. (3b) and
(4b), an incompleteness of the correction can be found on the right side of the peak and around the
minimum auto-correlation coefficient. This incompleteness was not improved by increase of
iteration count. However, it can be said that both methods are almost equivalent in the applicability
under the assumption that the translation function is monotonic.
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Fig. 7 Numerical example for the translation method with Eqg. (19) and for the correction of the distorted
spectral density function due to the translation by two different algorithms AR-ACC and YSA
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5. Conclusions

From the end of the nineteenth century, many ideas have been examined for expressing the
statistical characteristics of non-Gaussian events, and these efforts are still continuing. Some of
these ideas, e.g. lognormal models, have achieved great success and are often utilized. Howeve
since the characteristics of events happening in nature are so complex, no single specified mode
can be applied to all kinds of events. The lognormal model also has a significant restriction in
application to wind pressure signals, which show a wide variation of skewness and kurtosis. Thus,
based on a survey of previous studies, we have attempted to find a method without such restrictions
to simulate non-Gaussian stationary stochastic processes including fluctuating pressure signals ir
separated shear layers. This study focused on the method of translation with third order polynomial
function proposed by F.Y. Edgeworth. Even though there is a region of skewness and kurtosis in
which the method cannot guarantee good reproducibility of higher order statistics and good
approximation of quantile-quantile relationships, it shows very high applicability to non-Gaussian
properties of pressure signals. It is also found that the applicability may be improved by an appropriate
parameter estimation method that enables more direct parameter estimation with saffcuiesty
compared with a numerical iteration algorithm and the previously proposed formulae. An
approximated parameter estimation worksheet may provide a convenience in practical applications.
Furthermore, a method to correct a distortion in the auto-correlation function due to nonlinear
transformation is reviewed and discussed on its limitation. On the other hand, some problems are
still remained in unsolved. For example, more detailed study is needed to clarify the limitation of
the iterative correction method indicated in some previous studies comparing the algebraic method
discussed in this paper. And also, the accuracy of the approximations for theoretical translation
function should also be investigated to apply the method to the problem related with extremes.
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