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Wind flow over sinusoidal hilly obstacles located
in a uniform flow
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Abstract. The wind flow over two-dimensional sinusoidal hilly obstacles with slope (the ratio of height

to half width) of 0.5 has been investigated experimentally and numerically. Experiments for single and
double sinusoidal hill models were carried out in a subsonic wind tunnel. The mean velocity profiles,
turbulence statistics, and surface pressure distributions were measured at the Reynolds number based c
the obstacle height€40 mm) of 2.6< 10°. The reattachment points behind the obstacles were determined
using the oil-ink dot and tuft methods. The smoke-wire method was employed to visualize the flow structure
gualitatively. The finite-volume-method and the SIMPLE-C algorithm with an orthogonal body-fitted grid
were used for numerical simulation. Comparison of mean velocity profiles between the experiments and
the numerical simulation shows a good agreement except for the separation region, however, the surface
pressure data show almost similar distributions.
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1. Introduction

The flow over a complex terrain has received considerabletiatterecently. Especially, the flow
over wavy obstacles becomes an important research subject and has many engineering applicatior
such as evaluation of environment impact by pollutant dispersion, positioning of wind mills and airports,
etc. Air pollution due to rapid industrialization has also attracted increasing attention as a public
environmental problem. The sources of air pollution are often located at hilly terrain in which the
pollutant dispersion is strongly influenced by local flow condition. The complex flow structure such as
flow separation, downwash flow, abrupt change of flow direction, and disconnection of streamlines can
be caused by topographical boundary conditions. Therefore, it is prerequisite to understand the flow field
over hilly obstacles for predicting the wind environments and environmental impacts accurately.
There are several previous studies on the flow over wavy obstacles. Jackson and Hunt (1975)
investigated the turbulent flow over a gentle-sloped hill using a lineaytanéieory. Recently,
Taylor (1997) reported the effect of the turbulent boundary layer flow over several topographies. Pearse
(1982), Boweret al (1977) and Siegel (1976) carried out wind tunnel experiments and gave useful data
for understanding the wind flow over hilly terrains. Glekasl (1987), Bergeles (1985), and recently
Kim et al (1997) simulated numerically the flow over a two-dimensional topography using the RANS
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(Reynolds-Averaged Navier-Stokes) equation with some turbulence modelings. However, there were
limited investigations on the turbulent structure of shear layer separated from the hill crest.

Most previous studies have investigated the flow over a simple topography within a neutrally
buoyant atmospheric boundary layer. However, the wind flow over a complex hilly terrain has
received relatively little attention. For exampleerth are few studies on flow over multiple hills,
especially on the effect of gap distance between multiple hills. In addition, the study on flow over
hilly obstacles embedded in a uniform flow is essential to understand the underlying basic physics
of flow structure. The main objective of this study is to investigate the flow structure of wind over
sinusoidal hilly terrains submerged in a uniform flow experimentally and numerically. The flow structure
over a double-hill was compared with that over a single hill.

2. Experimental apparatus and method

The present experiments were carried out in a closed-return type subsonic wind tunnel with a test
section of 0.72 m wide, 0.6 m high, and 6 m long. The free stream veldgitywas fixed at 10 m/s
and the corresponding Reynolds number based on the height of mountaih=Hi{ll im) was
Re=2.6< 10". Free stream tbulence intensity in the test section was less than 0.08% afl0 m/s.

Wind tunnel test section and experiment setup are shown in Fig. 1.

The hill models with smooth surface were made of fiber reinforced plastic material and resin. The
model hills have the sinusoid shapeysfh/2(1+cos@x/L,)), whereh is the height and,; is the
half-length at the upwind mid-height of the hill. The hill slope is defined as the average slope for
the upstream top-half of thall crest, i.e.s=h/(2L,). For the double-hills, the gap distance between
adjacent Hls was varied to b&s/L;=1, 2, 3, and 6, respectively. In order to embed the sinusoidal
obstacle in a nearly uniform flow, the distance between the sharp leading edge of the flat plate and
the first obstacle was reduced as short as possible. The boundary layer thickness measured :
upstream location of the first obstacle was abdih=0.125~0.15. The sinusoidal hill and
coordinate system used in this study are shown in Fig. 2.

The schematic diagram of the velocity and pressure measurement system is shown in Fig. 3. Fo
surface pressure measurements, pressure taps were installed along the longitudinal center plane
the model with a 5 mm interval. The pressure taps were connected to the scannivalve system (48J9
1) and analog pressure signal from the scannivalve was digitized by a high precision A/D converter
(DT2838). At each channel, the pressure data of 16384 samples were acquired at a 500 Hz samplin
rate, after low-pass filtering at 200 Hz. In scanning each channel, about 10 seconds time delay was
given for dynamic pressure recovery.
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Fig. 1 Wind tunnel test section and experimental setup
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Fig. 2 Schematic diagram of the wind flow over sinusoidal hill models
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Fig. 3 Schematic diagram of the velocity and pressure measurement system

The pressure difference between the surface pregsarel the reference static presspgewas
non-dimensionalized by the dynamic pressure witle-Btream velocity).. and air density to give
the pressure coefficien,

Co=(p—p,)/0.50U % (1)

The pitot-static tube and hot-wire probe were traversed to measure sjmttibutibns of the
mean velocity and turbulent intensity profiles. At each measurement pointityesigoals from the
hot-wire probe wereiditized at a 4 KHz sampling rate.
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3. Numerical method

The numerical model used for the solution of the RANS (Reynolds-Averaged NtkesS
equation was developed on the basis of the finite-volume method in an orthogonal, body-fitted
coordinate system. The hybrid scheme (Patankar 1980) was used to approximate the convectior
terms and SIMPLE-C pressure correction algorithm was applied. The coordinate system employed
in this study is the right-hand Cartesian coordinate system in whiBhrepresents the location of
the hill crest and the vertical coordinaterepresents the height above terrain aefas shown in
Fig. 2.

In the present numerical study, the standard turbulence model and the low-Reynolds-number
model were used. The standdrde turbulence model has been used widely and validated in many
engineering applications. It has achieved notable successes in a wide variety of practical applications
especially for several confined flows where the Reynolds stresses are most imptaaener, due
to the underlying assumption of isotropic turbulent eddy-viscosity, the stahkda&rdurbulence
model has some limitations in application to the flows with adverse pressure gradient. Therefore, the
low-Reynolds-number model (Launder and Sharma 1974) has bedoyedthpn addition to the
standardk—¢ turbulence model as an effective turbulence model, especially farasegp shear
flows. These models have been known to be simple, but reliable and efficient for this kind of flow
analysis (Wilcox 1993).

The vectorized form of the governing equations in a Cartesian coordinate system is as follows :

Ex+ F=S (2)
and
0 pu O 0 pW 0 O 0 O
0 0 0 0 0 0
E]pUU — MU % %pWU—utUz % E](/JtUx)x+ (/Jth)z—pr]
E= 0 PUW — W, 0 F= DPWW_l’ltWZ 0 S= 0 (l*ltUz)x"' (l*lth)z_pz O 3)
HpUk—pks/acd  HpWk-pk/o 5 G-pe .
UpUe—- e/ 0,0 UpWe - e,/ o, U O (C,G-Cype)e/k O

The subscriptx andz denote partial derivatives in the respective coordinate directions,) amd
W are thex and z-component mean velocities. Physical quantieesp, [ represent density,
pressure, and turbulent viscosityeffitient, respectively.

The production rat& of turbulence kinetic energy in Eqg. (3) is given as

G = u{ (U, +W,)*+2(Uz +W2)} 4)

From the eddy viscosity hypothesis, the turbulent eddy viscosity is given by

W= pCK/ € (5)

For the standard&—¢ turbulence model (Jones and Launder 1972), the following five empirical
constants were used :
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Fig. 4 Computational grids used in this study

C,=0.09, C;=1.44, C,=1.92
2

g = 1.0 0=K—
R AN

(6)

wherek is von Karman constank 0.41)

The low-Reynolds-number model is a modified version of the standerdurbulence model for
analyzing turbulent flows at low Reynolds number, typically in the rangeesb,000 to 30,000.

Wall damping function is needed to apply in the viscous-sublayer adjacent tolithevaih For
further details of this model, see Launder and Sharma (1974).

Fig. 4 shows the orthogonal grid systems generated with the help of the boundary integral technique
(Kang and Leal 1992). For the single and double-hill models, the grid-size-independency was obtained
with numerical grids of (118 60) points and (138 60) points, respectively (Kirat al 1997).

Together with the standarkt-¢ turbulence model, the following modified wall function (Tani
1987) was used to reflect surface roughness :

Us Us uz2 u?
U:—In—zz;ln(EzJ'), k= £=

Kz @ T kz

Here,z" is defined byu.z/v and, is the model constant associated with the eddy viscosity. In
the law of the wall, the constaktis defined a=exp{k(B—AB)}, B is given as 5.2 andB varies
with surface roughness (Kimat al 1997). For high Reynolds number flows, numerical difficulty
was encountered in locating several grids within the thin viscous sublayelipNmisdition was
imposed on the terrain surface.

The inlet boundary condition for the turbulence quantkiasd e was approximated as

(7)

k=(u2+v'2+w2)/2=15u"2, ¢e=k">/CD (8)

Here, u’, v’,w’ are the fluctuating velocity componer@sjs empirical constant (=0.3) aridl is
the hydraulic diameterd=4A/P=0.6 whereA is the inlet area an® is its perimeter) of the test
section. We used the mass flow boundary condition to specify the outlet boundary condition.
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4. Results and Discussion
4.1. Flow visualization

Figs. 5(a),(b) show the flows around the single and double-hill models visualized using the
smoke-wire method at the reduced free-stream velocity.of2 m/s. For the single hill model, the
flow is accelerated along the windward side and separated froniltheest. The recirculation zone
starts near the hill crest and extends up to the reattachment point. On the other hand, for the double
hill model with gap distance db=L;, the reattachment point behind the second hill is located about
x/h=2.5 from the second hill top. In addition, the turbulent shear layer between two adjacent hills is
deflected upwards. Fig. 6 shows the numerically simulated streamline contours around the single anc
double-hill models. The streamlines are roughly well matched with the streaklines shown in Fig. 5.

The oil-ink dot method (Langston and Boyle 1982) and tuft method were also employed to find the
reattachment point of the separated shear flow behind the sinusoidal hill models. Thesidbration
experiments were carried out at the free-stream velocif 0£10m/s. The reattachment points
determined from this flow visualizations and the numerical prediction are compared in Table. 1. The
numerical results overestimate the reattachment point about 20%, compared with the experimental results.

{a) simegle hil

(' daiilie lall

Fig. 5 Visualized flow around single and double hills
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(b} double hill §G=Ls)

Fig. 6 Numerically simulated flow around single and double hills

Table 1 Comparison of reattachment points

Reattachment Point(Experimental) Reattachment Point(Numerical)
Single Hill 4.2%=+ 0.25 5.0h
Double Hill 2.5+ 0.25 3.0h

It should be noted that the momentum transfer over sinusoidal obstacles is considerably different
from that of bluff obstacles. Petryk and Brundrett (1967) found that the recirculation zone formed
behind a two-dimensional fence extends upxAo=17. Therefore, the recirculation zones formed
behind the sinusoidal hill models tested in this study are amtipely small.

4.2. Mean flow field

Fig. 7 shows the vertical profiles of mean streamwise velocity for the single hill. In this figure, the
solid line behind the hill indicates the separatexirculation region predicted for the singlié tvith
slope of 0.5. The on-coming flow forms a considerably thin boundary layer on the windward
surface of the hill and is accelerated as it approaches to the hill crest. Compared with the previous
results for the hilly terrain immersed in an atmospheric boundary layer, the speed-up on the hill top
in a uniform flow is obviously prominent (Kiret al 1997). Although there is #tle discrepancy in
the separated shear layer behind the hill, the overall comparison between the experimental result:
and numerical prediction show a good agreement.

Flow fields over a double-hill models were investigated with varying the gap distance between
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Fig. 7 Mean streamwise velocity profiles over a single hill,(measurement; — , numerical prediction)

two hills of same shape. Fig. 8 represents the mean streamwise velocity profiles around double-hills
having different gap distance. The comparison between numerical prediction and experimental results
also shows a reasonable agreement. Although the flow over theilfigtdws similar flow pattern,

the shear layer between two hills has different flow structure, especially the shape and size of the
recirculation region formed between two hills are different. Except for the caSe@if;, the flow
separated from the first hill forms a large recirculation region extended to the windward slope of the
second hill. However, the shape and size of the separation bubbles formed behind the second hill
are nearly similar, irrespective of the gap distance. They are about 30~40% smaller than that formed
behind a single hill. This maybe results from the adverse pressure gradient between two hills and
the momentum loss when the flow passes over hills.

4.3. Mean surface pressure distribution

The surface pressure distribution on a single hill is shown in Fig. 9. The pressure codfjicient
decreases on the windward slope due to flow acceleration and has the minimum peak-value near th
hill top where the maximum speed-up takes place. In the leeside of the hill, the momentum loss due
to viscous and vorticity dissipation prevents the surface pressure to recover that of on-coming flow
in the upstream of theilh On the hill top &/L;=0), the numerical result is larger than the measured
pressure coefficient. The discrepancy seems to be caused by the turbulence model that has sorm
limitations in estimating this kind of highly turbulent shedowk. Comjared with the surface
pressure measured for the sanierhodel immersed in an atmospheric boundary layer. (I€inal.

1997) The surface pressures on the sinusoidal hill immersed in a uniform flow have much smaller
values due to relatively high-speed of on-coming flow near the ground surfahevas in Fig. 5.

The surface pressure distributions for the double-hill models are shown in Figs. 10(a)~(d). Similar
to the case of single hill, the calculated pressure coefficients predict well the experimental results
except the region near the hill top. It should be mentioned that the local miniynamthe second
hill crest is about 25~30% smaller than that at the first hill crest. In addition, the mirynanthe
first hill top is nearly unchanged. However, the local minimQgrat the second hill top is decreased
as the gap distance increases. From this, we can see that the approaching flow loses nearly the sar
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Fig. 10 Surface pressure distributions over double-hills

amount of momentum when it passes over the first hill, however, the shear flow separated from the first
hill disturbs the flow over the second hill in a different extent depending on the gap distance. In Fig.
10(d), the surface pressure exceeds its static pressure at the front foot of the second hill. This result

from the reattachment of the separated shear layer in front of the secondshdhasin Fig. 8(d)
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Fig. 11 Turbulent Kinetic energy over a single hill and double hill

4.4. Turbulent statistics

Fig. 11 shows the contour plots of turbulent kinetic energy of flow over the single and double-hill
models. The hilly terrain disturbs the on-comitgwf and the déct of the perturbed flow can be
found in the spatial distribution of turbulent kinetic energy. Bradshaw (1973) mentioned that the
turbulent kinetic energy is ineased due to flow separation in the leeside of the hill. On the other
hand, the mild velocity gradient in the upstream of the hill does not increase the turbulent kinetic
energy enough to recognize. For a single hill, the turbulent kinetic energy has its maximum value at
the location of aboux/L;=4 andz/h=0.6 in the separated shear layer behind the hill. Thereafter it
is decreased slowly by viscous dissipation.

However, for the double-hill model, the shear layer separated from the first hill hits on the
windward slope of the second hill. Therefore, théulent kinetic energy has the maximum value at
the upstream iliside of the second hill. The turbulent kinetic energy of flow passing over the
second hill is recovered slowly with going dowesim.

5. Conclusions

The wind flow over two-dimensional sinusoidal hilly obstacles with slope of 0.5 has been
investigated experimentally and numerically. Mean velocity profileutent kinetic energy, and
surface pressure distributions were measured for single and double-hill models. The numerical
simulation based on the finite-volume-method and the SIMPLE-C algorithm with an orthogonal
body fitted grid system is employed. The resals summarized as follows :
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1. The mean velocity profiles and surface pressure distributions measured in the wind tunnel
experiments are in a good agreement with the numerical predictions except the hill top region.
In the region near the hill crest, the numerical results underestimate the surface pressures
measured in the wind tunnel tests.

2. For hilly obstacles immersed in a uniform flow, the surface pressure coefficient near the hill
crest is smaller than that in an atmospheric boundary layer due to relatively high-speed flow
near the hilly terrains.

3. For the double-hill models having gap distances smaller @w8L,, the flow separated from
the first hill forms a largeecirculation region extended to the second hill. The separation
bubbles formed behind the second hill are nearly unchanged, irrespective of the gap distance.
They are about 30~40% smaller than that behind a single hill.

4. For the double hill models, the surface pressures on the first hill crest are nearly unchanged.
However, the surface pressures on the second hill crest are about 25~30% smaller than those ¢
the first hill top and the difference is decreased as the gap distance increases.

Acknowledgement

This work was supported by NRL(National Research Laboratory) project and POSTECH.

References

Bergeles, G. (1985), “Numerical calculation of turbulent flow around two-dimensional Hills¥ind Eng. Ind.
Aerody, 21, 307-321.

Bowen, A.J. and Lindley, D. (1977), “A wind tunnel investigation of the wind speed and turbulence
characteristics close to the ground over various escarpment sHapesdary-Layer Meteorql12, 259-271.

Bradshaw, P. (1973), “Effects of streamline curvature on turbulent flwgérdograph 169.

Glekas, J., Bergeles, G. and Athanassiadis N. (1987), “Numerical solution of the transport equation for passive
contaminations in three-dimensional complex terrdimt’,J. Num. Meth. Fluids/, 319-335.

Jackson, P.S. and Hunt, J.C.R. (1975), “Turbulent flow over a lowQildst. J. Roy. Meteorol. Sp&01, 929-955.

Jones, W.P. and Launder, B.E. (1972), “The prediction of laminarization with a two-equation model of
turbulence”,Int. J. Heat Mass Transfet5, 301-314.

Kang, I.S. and Leal, L.G. (1992), “Orthogonal grid generation in a 2D domain via the boundary integral
technique”J. Comput. Phys102 78-87.

Kim, H.G., Lee, C.M., Lim, H.C., and Kyong, N.H. (1997), “An experimental and numerical study on the flow
over two-dimensional hills”). Wind Eng. Ind. Aerod66, 17-33.

Langston, L.S. and Boyle, M.T. (1982), “A new surface-streamline flow-visualization techniqe(ijd Mech,
125 53-57.

Launder, B.E. and Sharma, B.T. (1974), “Application of the energy dissipation model of turbulence to the
calculation of flow near a spinning dist’ett. Heat Mass Transfet, 131-138.

Pearse, J.R. (1982), “Wind flow over conical hills in a simulated atmospheric boundary Jaygitid Eng. Ind.
Aerod, 10, 303-313.

Petryk, S. and Brundertt, E. (1967), Department of Mechanical Engineering, Univ. of Waterloo, Res. Rep. No. 4.

Siegel, R. (1976), “Three-dimensional potential flow over hills and oval mounds”, NASA Tech. Note TN .D-8375

Tani, 1. (1987), “Turbulent boundary layer development over rough surfBeespectives in Turbulence Studies
Meier, H. U. and Bradshaw, P., Eds., Springer.

Taylor, P.A. (1997), “Turbulent boundary-layer flow over topograpyid European & African Conference on
Wind Engineering25-44.

Wilcox, D.C. (1993), “Turbulence modeling for CFD”, DCW Industries,,|1460.

CcC



	Wind flow over sinusoidal hilly obstacles located in a uniform flow
	Sang-Joon Lee†, Hee-Chang Lim‡ and Ki-Chul Park‡†
	Pohang University of Science & Technology, San 31 Hyoja-Dong, 790-784, Pohang, Korea
	(Received March 5, 2001, Accepted March 22, 2002)
	Fig.�1�Wind tunnel test section and experimental setup
	Fig.�2�Schematic diagram of the wind flow over sinusoidal hill models
	Fig.�3�Schematic diagram of the velocity and pressure measurement system
	Fig.�4�Computational grids used in this study
	Fig.�5�Visualized flow around single and double hills
	Fig. 6 Numerically simulated flow around single and double hills

	Reattachment Point(Experimental)
	Reattachment Point(Numerical)
	Single Hill
	4.25h�°æ�0.25h
	 5.02h
	Double Hill
	2.5h�°æ�0.25h
	3.0h
	Fig.�7�Mean streamwise velocity profiles over a single hill (�°¤, measurement;�- , numerical pred...
	Fig. 8 Vertical profiles of mean streamline velocity over double-hills
	Fig.�9�Surface pressure distribution over a single hill
	Fig.�10�Surface pressure distributions over double-hills
	Fig.�11�Turbulent kinetic energy over a single hill and double hill






