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Abstract. A finite element aerodynamic model that can be used to analyse flutter instability of 
span bridges in the time domain is presented. This approach adopts a simplified quasi-steady form
of the wind forces neglecting the vortex shedding effects. The governing equations used are effecti
for reduced velocities V*  sufficiently great: this is generally acceptable for long-span suspension bri
and, then, the dependence of the wind forces expressions of the flutter derivatives can be neglec
procedure describes the mechanical response in an accurate way, taking into account the no
geometry effects (large displacements and large strains) and considering also the compressed loc
strands instability. The time-dependence of the inertia force due to fluid structure interaction is not cons
The numerical examples are performed on the three-dimensional finite element model of the Gre
East Bridge (DK). A mode frequency analysis is carried out to validate the model and the results
good agreement with the experimental measurements of the full bridge aeroelastic model in the
tunnel tests. Significant parameters affecting bridge response are introduced and accurately investig

Key words: flutter; FEM; aerodynamic.

1. Introduction

In the design of long-span suspension bridges the description of the aeroelastic behaviou
interdisciplinary research subject of great topicality: it involves structural and aerodynamic problems
and is decisive in influencing design choices. The aim of this paper is to study the behaviour 
type of structure subject to instability phenomena of the flutter type.

In the analysis the bridge was schematised by means of finite elements model and the aerod
actions are applied to the deck. This analysis was done in the time domain following an alte
procedure to the traditional one in the frequency domain (Scanlan 1996) and, in compari
shows the considerable advantage of a better physical description of the phenomenon. It also
the effects of both the material and geometrical nonlinearities of the system to be considered.
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The description of the self-excited loads adopts a “quasi-static” formulation for the wind fo
(Diana 1998), in which the relative motion between incident flow and deck is considered. T
actions are function of both the time-history of the incident flow affecting the bridge and the motion
of the bridge itself. Nevertheless, if the dynamic system formed by the bridge and the surrou
flow is assumed to be linear, the buffeting loads do not affect the motion stability (Li 1995). It is
therefore possible, given the aims of the paper, to ignore the effect caused by aerody
turbulence.

2. Governing equations

A 3-D anticlockwise cartesian system is defined, in which the origin coincides with the cen
of the deck section, the axis x horizontal coincides with the longitudinal axis of the undeform
deck and the y and z axes, horizontal and vertical, respectively, are depicted in Fig. 1.

The quasi-static theory starts with the definition of the aerodynamic actions on a given sec
deck in motion, the position of which on the bridge is identified by the longitudinal co-ordinax:
Fig. 1 shows that these actions depend on the interaction between incident flow and deck 
characteristics. 

In the hypothesis of also considering the variability over time of the incident flow, the analy
equations of these actions, per unit length, result as :

,

,

(1)

Fy = −FL sin(ψ ) + FD cos(ψ ) Fz= FL cos(ψ ) + FD sin(ψ ) (2)

α = θ −ψ (3)
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Fig. 1 Aerodynamic forces per unit length according to the quasi-static method for a deck section
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where :

ρ is the air density;
B is the deck width;
U, W represent the speed vectors of the flow in the horizontal and vertical direc

respectively.
VR is the relative flow speed with respect to the section, expressed in vectorial form

VR= (U + W) − VP = V − VP

where VP is the speed of a point of the section. This value changes when
considered point P is varied. It is possible to refer to an equal relative speed for e
point of the section if a particular point is taken for P set at a given distance b1 from
the rotational axis in a horizontal direction ;

ψ is the angle of the slope of the relative speed VR :

(4)

α is the angle of attack of the incident flow with respect to the deck;
CL, CD, CM are the static lift, drag and moment coefficients, measured as functions of the 

of attack α.

This formulation includes the nonlinear effects due to deck motion, those caused by 
turbulence and those generated by the variation of the aerodynamic coefficients with the actua
angle of attack. The dependence is not considered of the aerodynamic coefficients of the r
speed V* = (Vm / fB), where Vm is the absolute value of the average speed of the incident flow, f the
frequency of the bridge motion and B the deck width: the application of Eqs. (1) and (2) is theref
limited only to the cases where V*  is high enough. This corresponds, in other words, to a situa
in which the time taken by the flow to cross the section is much shorter than the oscillation 
of the structure and of the period associated with the turbulence fluctuations: steady-state con
are therefore approached and the angle Ψ (Fig. 1) is narrow, allowing easy treatment of th
trigonometric equations.

The nonlinear discretised equations of the system motion can be written as :

(5)

Ms, Rs, Ks being the structural matrices of the bridge, Fa the vector of the aerodynamic force
that are generally nonlinear functions of the displacements X and velocity , as well as of the
space-time history of the turbulent wind V(x, y, z, t) of the incident flow, and P is the vector of the
permanent loads considered. 

Eq. (5) is nonlinear because of that nonlinear dependence of the aerodynamic forces of X and ;
they also depend linearly on the coefficients of drag, torque and lift Eq. (1), in their turn, gen
nonlinear functions of the wind angle of attack α .

These equations can only be solved numerically and their integration gives the displacemeX,
velocities  and accelerations  of the various nodal points of the model.

To simplify the formulation, Eq. (5) is linearised around the configuration of static equilibri

ψ arc
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solving the problem:

KsX0 = Fa(X0, 0, Vm) + P (6)

where the wind speed is assumed as constant and equal to the average value Vm , of components Um

and Wm .
Once the solution X0 is obtained, the generalised aerodynamic forces Fa(X, , V(x, y, z, t)) are

linearised around X0 from which the following equation is obtained :

(7)

given that :

(8a)

(8b)

are the elastic and damping matrices, respectively, due to the field of aerodynamic forces ev
for V(x, y, z, t)�Vm , i.e., for an average speed, constant in space and time. It can be seen that the
aeroelastic forces constitute a non-conservative field for the positional elements and a non-
dissipative field for the velocity elements: these characteristics are highlighted by the non-sym
of the matrices of aerodynamic stiffness (Eq. 8a) and damping (Eq. 8b).

Defining with :

(9)

the disturbance around the position of static equilibrium defined by Eq. (6), Eq. (5) beco
referring to Eq. (7) :

(10)

and, in the hypothesis of ignoring any form of aerodynamic turbulence :

(11)

Eq. (11) provides the motion of the bridge around the previously defined average value X0. The
aerodynamic coefficients CD, CL and CM are nonlinear functions of the angle of attack α . To
simplify the calculation of Ka0 and Ra0, for the angles |α | < 5°, the aerodynamic forces acting on th
deck section can be linearised, that become, from Eq. (2) :

X
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where the single average horizontal component of the speed of incident flow is considered.
It is therefore possible to calculate the equations of the aerodynamic matrices according 

(8), assuming for simplicity that

α0 = 0 (13)

and substituting them in Eq. (11). 

3. Model for three-dimensional flutter analysis

The bridge is schematised by means of a three-dimensional finite element model capable of de
the static and dynamic behaviour. Particular attention is paid to the modelling of the hange
main cables on the suspension bridges and the stays on the cable-stay bridges to reprod
acting static pre-load; it is also worthwhile predicting a nonlinear behaviour of the hangers and stay

In order to simplify the implementation, further hypotheses are formulated as follows :

� only the horizontal component U of the flow velocity is considered, uniform and constant;
� the horizontal component of the deck motion velocity is ignored;
� α0 = 0 is just taken for an approximation of the aerodynamic forces.

In this way equations Eq. (12) become :

(14a)

(14b)
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where a zero value of the derivative of the coefficient of drag calculated for α = 0 is assumed, in
accordance with the experimental observations for the common sections of the deck.

The actions of the wind are concentrated on a suitable number of nodes along the de
assuming that :

Fy,N= Fy∆LN

Fz,N= Fz∆LN

MN = M∆LN (15)

where ∆LN is the influence length of the load and N is the loaded node.
The calculation code used allows the definition of forcing actions dependent on the displace

of the d.o.f. of the system or on their velocities according to the following method :

uj = {y; z; θ }
Pi(uj) = aijp(uj) i, j = 1, 2, 3 (16)
Qi = bijq

where :
uj is a component of the nodal displacement in the local system y, z, θ ;

 is a component of nodal velocity in the local system y, z, θ ;
aij , bij are scalar elements;
Pi , Qi are the components of the forces and the moments in the directions y, z, θ ;
p, q are generic functions of uj and .

The equations of the forces implemented in the code become :

(17)

          

  

M
1
2
---ρB2U

2 dCM

dα
----------

0

θ ψ–( ) CM0+
1
2
---ρB2U

2 dCM

dα
----------

0

θ θ
·
b1 z·–
U

----------------– 
  CM0+≅ ≅

u· j( ) u· j( )

u·j

u· j

Fy 1 N, , a1y N, f1y θ
·

( ) 1
2
---– ρBUb1∆LNCL0θ

·
Fy 3 N, , a3y N, f3y

1
2
---ρBU2∆LN== CD0= =

Fy 2 N, , a2y N, f2y z·( ) 1
2
---ρBU∆LNCL0z

·= =

Fz 1 N, , a1z N, f1 θ( ) 1
2
---ρBU2∆LN

dCL

dα
---------

0

θ Fz 4 N, , a4z N, f4
1
2
---ρBU2∆LN== CL0= =

Fz 2 N, , a2z N, f2 θ
·

( ) 1
2
---– ρBUb1∆LN

dCL

dα
---------

0

θ
·

= = Fz 5 N, , F5z N, f5 θ
·

( ) 1
2
---ρBUb1∆LNCD0θ

·
= =

Fz 3 N, , a3z N, f3 z·( ) 1
2
---ρBU∆LN

dCL

dα
---------

0

z·= = Fz 6 N, , a6z N, f6 z·( ) 1
2
---ρBU∆LNCD0z·–= =

M1 N, b1 N, g1 θ( ) 1
2
---ρB2U2∆LN

dCM

dα
----------

0

θ= = M3 N, b3 N, g3 z·( ) 1
2
---ρB2U∆LN

dCM

dα
----------

0

z·= =

M2 N, b2 N, g2 θ·( ) 1
2
---– ρB2Ub1∆LN

dCM

dα
----------

0

θ·= = M4 N, b4 N, g4
1
2
---ρB2U∆LNCM0= =



Time domain flutter analysis of the Great Belt East Bridge 485

ark,
ral span
 lateral
ongest
kyo in
ture of

ey are
ends of

et at a
ns of
anchor

etween
ondence

er: the
4. The East Belt Great Bridge

The above-described formulation was applied to the “East Belt Great Bridge” in Denm
inaugurated on 14 June 1998. The total length of the bridge is 6790 m: the suspended cent
is 1624 m, the height above sea level, 65 m and the two lateral spans, 535 m each; two
access viaducts 1567 m and 2529 m long, respectively, complete the bridge. It is the l
suspension bridge in Europe, second only in the world to the recently completed Akashi Kai
Japan. It nevertheless holds the world record for span length, thanks to the orthotropic struc
the box girder with aerodynamic profile and the air spinning technique of main cables.

The main suspension system consists of two parallel cables erected 27 m spaced. Th
supported by special steel saddles on top of the pylon; contained in a splay saddle at both 
the deck and then anchored to anchor blocks.

The stiffening girder is suspended to two cables by means of double pairs of hangers s
transversal interaxis of 27 m. This is rigid both flexure-wise and torsion-wise and has sectio
equal transverse bulk for the entire length of the bridge. There are expansion joints at the 
blocks at either end. The panels that form it are stiffened longitudinally by trapezoidal reinforcements 6
mm thick supported transversely by grid screens every 4 m. Next to the pylons the interaxis b
the screens is reduced to 3 m. The deck is formed by 59 segments 48 m long, and in corresp
to the longitudinal distance between pairs of hangers, 24 m long.

Each main cable is constructed of 18648 high resistance steel wires of 5.38 mm diamet

Fig. 2 Lateral, perspective and transversal section views of the bridge
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total diameter is 827 mm. At the anchors the main cable is separated into 37 strands wound
a semicircular strand shoe. The latter are fastened to anchor blocks by pre-tensile bars embe
concrete.

Each hanger consists of two locked-coil strands; each of these is made up of sockets a
pressed galvanised cables covered by HPDE extrusions (Rolla et al. 1997).

4.1. Description of the FEM model

The piers and towers were schematised with beam elements at 6 d.o.f. per node fixed to t
in correspondence to the foundation; the deck was modelled by a central beam, using
elements without mass similar to the previous ones with inertia characteristics drawn fro
analysis of a section of the type available in the project: the mass of the deck was schematis
concentrated masses that take into account the effective distribution. Other beam elemen
infinite stiffness schematise the stiffening cross beams. Iso-resistant linear elastic behaviour wa
hypothesised for all these elements. An elastic module equal to 35 Gpa was assumed for the 
material, while E = 210 Gpa was set for the steel. The hangers were schematised with 1 d.o.f
elements, not resistant to compression and linearly elastic to traction, with a module equal 
Gpa to model the behaviour of the cables. In total the mesh of the model was made up 
nodes and 938 beam elements (of which 106� 2 = 212 truss elements). The extremity constrain
reproduce the anchoring system to the ground. Table 1 summarises the basic frequencies ob
the model for the static condition of its weight alone. Fig. 3 represents the corresponding modal fo

At the same time a static check was done of the behaviour of the structure subject 
equivalent load given by the wind through the aerodynamic coefficients CD0, CL0, CM0. The speed of
incident flow was set at 38.9 m/s, i.e., the same as the design speed adopted for the structu
distributed load was schematised with a series of concentrated nodal loads appropriately aced
along the deck axis, with an average interaxis of around 100 m.

Adopting the sum of the permanent load and accidental aerodynamic overloading as
combination, the following were obtained at mid-span of the deck :

� vertical arrow: -8.14 m
� horizontal displacement: 1.95 m
� rotation: not evaluated.

The only result available in the literature is the horizontal displacement: the order of magnitu

Table 1 Comparison of the frequencies obtained by the FEM model and the frequencies obtained
complete model in a wind gallery (Danish Maritime Institute)

Wind Tunnel [Hz] FEM [Hz] [%]

Lateral symm.
Vertical symm.
Vertical antisymm.
Lateral antisymm.
Torsional symm.
Torsional antisymm.

0.0523
0.0997
0.1147
0.1270
0.2890
0.3910

0.0524
0.1060
0.1141
0.1220
0.2929
0.4006

0.19
5.94
0.53
4.10
1.33
2.40
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4.2. Analysis of aeroelastic stability

The aeroelastic stability analysis was preceded by the nonlinear static analysis neces
determine the position of static equilibrium (defined as in Eq. 6) around which the motion oc
To schematise the main cables prestressed beams were used in which the pre-loading static 
taken into account. This prestressing (3000 N per wire) was schematised by means of an eq
thermal load. The final vertical arrow at mid-span is about 12m, in agreement with the rea
supplied by the builder COINFRA S.p.A. ( Sparatore 1998)

The Newton-Raphson algorithm was used to solve the problem, with updating of the matri
each iteration.

The aeroelastic analysis showed an exponential trend, damped or amplified depending on w
the incident flow speed was lower or higher than the critical flutter speed (Fig. 4).

The analysis results agree with the experimental results obtained in the wind gallery and ind
critical flutter speed of around 220 km/h, with a ratio value of structural damping in relation t
critical damping ξ = c/ccrit equal to 0.025. The deck motion, in its flexural and torsional compone
is represented in Fig. 5 for a wind speed well above the critical speed.

In order to precisely identify the critical flutter speed, various parameter-indexes were us
study the behaviour of the system (Fig. 6) :

Fig. 3 Flexural and torsional modal forms
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Fig. 4 Responses of the system for U = 41.7 m/s; U = 61.1 m/s; U = 97.2 m/s

Fig. 5 Bridge deformation at instant t = 60s (wind speed = 97.2 m/s)
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� Exponent (EXP) of the regression curve of the absolute value of the vertical oscillation 
mid-span or at the quarters, evaluated against the average displacement in time. The itical
condition was identified by the zero value of this index; a negative value identifies stable beh
(positive global damping); a positive value indicates an unstable situation (negative global damp

�Average amplitude of the oscillations (AMP) at mid-span and at the quarters, evaluated at a fi
moment t*. This index does not give an exact identification of the critical speed, but allows
extent of the structures displacements to be visually rated.

The motion of the structure is symmetrical, in complete agreement with the results obtained
during the designing stage: analysis of the deck deformation shows the coupling of the first v
mode and first torsional mode, both being symmetrical.

Having observed an accentuated dependence of the damping ratio ξ , a sensitivity analysis was
done. The results obtained indicate a more or less linear trend of the critical speed with the v
of ξ (Fig. 7).

Analysis of the aeroelastic forces was done in relation to . Analysing the contributions to
the motion due to the various components of force separately, no form of instability appears for the
usual speed intervals considered (Fig. 8). It is also noted that:

� the elements dependent on torsional rotation θ determine the average magnitude of the forc
and of the displacements;

t θ θ· z·, , ,

Fig. 6 Index parameters

Fig. 7 Wind speed vs critical damping ratio
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� the elements dependent on velocity , alone, cause no motion of the structure in th
they are defined;

� the elements dependent on rotation θ alone determine a stable response of the structure. Neverthe
it is possible in this way to evaluate the phenomenon of the static torsional divergenc
critical speed of which depends exclusively on the torsional characteristics of the deck a
the bending action of the wind, and is in general much higher than the critical flutter speed: 

. In conclusion it is noted that instability of the flutter type is caused

the contemporary dependence of the forces of the deck displacements and velocities.

Given that, in general, aerodynamic coefficients are not identifiable with high precision by m
of a numerical fluid-dynamic analysis, a sensitivity analysis was conducted varying the value 
derivatives of these coefficients. The trend of the flutter index EXP, and therefore of the citical
speed, results as almost linear (Fig. 9). Newmarks algorithm was used to solve the aeroelastic
problem, updating the matrices at each iteration.

All the calculations were done using the MSC-Nastran calculating code on an Alpha S
Digital 2100 4/275 Mhz machine with 3 processors available and 256 MB of RAM. The time necessary
for the solution of the preliminary nonlinear static analysis was around 10 seconds (user 
while the aeroelastic analyses required an average of 15 minutes (user time).

θ
·

z·,( )

UDIV
2kθ

∂CM

∂α
---------- 

 
α α0=

ρB2

-------------------------------------=

Fig. 8 Influence on motion of velocity elements

Fig. 9 Influence of aerodynamic coefficients kL={( )} e kM ={( )}∂CL ∂α⁄ ∂CM ∂α⁄
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5. Conclusions

The analysis in the time domain, following the quasi-static formulation of the aerodynamic l
results as being a reliable alternative to the usual analysis in the frequency domain (Section M
It also allows the structural nonlinearities of the model to be considered and to follow the eff
behaviour of the structure over time.

It has been shown that the uncertainty in determining the critical flutter speed derives, esse
from the inexact estimate of the structural parameters. In particular, it is necessary to pre
evaluate the damping of the structure: variations in the ξ ratio of 10% determine errors in the flutte
speed estimate in the order of 10% (±20 km/h). The model tests and frequency domain 
analysis yield m/s which corresponds to a . The phenomenon is also sli
influenced by an inaccurate estimate of the aerodynamic coefficients: errors of 50% in 
parameters lead to variations of 5% in the critical speed (±10 km/h).
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