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Abstract. The effects of the nonlinear (quadratic) term in wind pressure have been analyzed in 
papers with reference to linear structural models. The present paper addresses the problem of the 
of nonlinear structures to stochastic nonlinear wind pressure. Adopting a single-degree-of-freedom st
model with polynomial nonlinearity, the solution is obtained by means of the moment equation app
in the context of Itô’s stochastic differential calculus. To do so, wind turbulence is idealized as the 
of a linear filter excited by a Gaussian white noise. Response statistical moments are computed f
the equivalent linear system and the actual nonlinear one. In the second case, since the moment e
form an infinite hierarchy, a suitable iterative procedure is used to close it. The numerical analyses
a Duffing oscillator, and the results compare well with Monte Carlo simulation.

Key words: quadratic wind pressure; nonlinear structures; wind response; Itô’s calculus; moment eq
approach; iterative closure method.

1. Introduction

In last years great attention has been paid to nonlinear response to wind action as arising f
interaction between wind and structure, but in general a linear elastic structural model ha
adopted. Among the studies in which this problem has been considered in a stochastic con
means of analytical non simulative methods, we recall: Saul et al. (1976), Soize (1978), Grigoriu
(1986), Bartoli and Spinelli (1993), Caddemi and Di Paola (1995), Floris (1995, 1996), Kareem
his collaborators (1994, 1995, 1997), Gusella and Materazzi (1998), Benfratello et al. (1996, 1997,
1999). On the contrary, the response of nonlinear structures to random wind pressure has 
equal attention. Nevertheless, many structures exhibit nonlinearities under wind action: Ber
Navier beams with second order effects, stayed structures, large antennas, and so on. 
stochastic study on the response of nonlinear structures to wind pressure has its own importa

According to the usual model for representing the wind (Davenport 1961, Simiu and Sc
1996), wind pressure is proportional to the square of the sum of a mean (static) speed U, and a
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dynamic oscillation around the mean, the turbulence u. The turbulence u is assumed to be a
stationary zero mean Gaussian process. Thus, it is fully characterized by its power spectral 
(PSD) Suu (ω ) (Dryden 1961, Davenport 1967, Solari 1987, Mann 1998). In this way, wind pres
is no more a Gaussian process. Strictly speaking, even the response of linear structures is n
Gaussian, and should be characterized by the infinite hierarchy of the statistical mome
cumulants. At least, the first four are required to have an estimate of the non-Gaussianity 
response. The computation of response statistical moments of order larger than two is a hea
when the response is not Gaussian. For that reason, only few authors carried out the comput
moments of order larger than two (Kareem et al. 1994, 1995, 1997, Benfratello et al. 1996, 1997,
1999, Floris and his collaborators 1996, 2001, Gusella and Materazzi 1998).

The computational charge is clearly augmented when the structure is nonlinear. The only m
of general applicability is Monte Carlo simulation, which is notoriously very onerous from
computational point of view. Another method is the Volterra series approach, which has 
applied to wind response of linear structures by Kareem and Zhao (1994), Kareem et al. (1995,
1997), and by Benfratello et al. (1997). It has some restrictions, and requires the evaluation
lengthy multifold integrals. The extension of this method to nonlinear structures has been pre
by Tognarelli et al. (1997). Thus, there is the necessity of a method more attractive fro
computational point of view.

The moment equation approach of Itô’s stochastic differential calculus (Itô 1951a, b, Di 
1993), which avoids the evaluation of multifold integrals, proved to be a very useful tool to do
in the case of linear structures (Benfratello et al. 1996, 1999, Floris 1996, Floris et al. 2001). This
approach is extended herein to nonlinear structures. Since the primary excitation of a
differential system must be a Gaussian white noise, and the turbulence has a colored PSD
approximated as the output of an appropriate linear filter excited by a Gaussian white noise,
been already done for linear structures.

This study is accomplished for single-degree-of-freedom (SDOF) structures with linear visco
damping and nonlinear restoring force given by a polynomial of the structural displacement. Th
assumptions are based on the following reasons: (1) in many cases, the dynamical response
is dominated by the first mode, and Solari (1983a,b) gave a rationale for reducing a complex struc
a SDOF model; (2) a polynomial restoring force can be seen as a truncated Taylor series ex
of a more general non-linearity (Tognarelli et al. 1997). (3) The assumption of linear damping 
made for simplicity’s sake. In fact, a nonlinear damping mechanism analitically expressed by a
polynomial function, such as both Van Der Pol’s and aerodynamic damping, can be equally
with in the context of the moment equation approach of Itô’s calculus.

The equation of motion and the filter equation are transformed into a system of Itô’s stochastic
differential equations. In the first step, the equation of motion is linearized as regards the re
force. Then, the actual nonlinear system is analyzed, for which the equations for the re
statistical moments constitute an infinite hierarchy (Di Paola 1993). Thus, a suitable closure s
is adopted, which operates iteratively, and profits from the computations made on the line
system. The applications regard a Duffing oscillator, and the results of the analytical metho
verified by numerical simulation.
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2. Mathematical formulation

2.1. Preliminary concepts

The equation of motion of an SDOF structure with polynomial nonlinearity in the restoring 
is written as

(1)

where the superimposed dots mean derivative with respect to time, β0 is the coefficient of viscous
damping, ai are real constants, m is a positive odd integer number, and Qd (t) is the random
dynamical force caused by wind flow. 

The summation in the l.h.s. of (1) represents a conservative restoring force deriving fr
potential function of the form U(X) =Σm

i=1 ai X
i+1/ i+1. Physical reasons require that m is odd: in

fact, the restoring force may be asymmetric, but globally it must have the same sign as the
displacement. In addition, only positive values of the coefficient am of the largest power are implicitly
considered. This means a hardening behavior: softening behaviors are encountered in practice, 
may pose problems in a stochastic analysis. In fact, were am negative, the solution of the Fokker-Planc
equation for Qd given by a white noise would lose its significance. Thus, a different approach s
be used such as that by Sobczyk and Trebicki (2000). This subject is beyond the aim of this pape

If wind is assumed to blow unidirectionally, and perpendicularly to the area A, on which wind
velocity is approximately assumed to be constant, and neglecting the structural velocity, Qd (t) is
given by

(2)

In Eq. (2) ρ denotes the air density (=~1.225 kg/m3), CD the drag coefficient, M the structural
mass, U the mean wind speed on the area A, and u(t) the turbulence, which, as previously stated,
assumed as a zero mean stationary Gaussian process.

The response variables X( t), are not a Gaussian random process for the two fold reason
the l.h.s. of Eq. (1) is nonlinear, and the Gaussian process u(t) is squared in the r.h.s. A statistica
characterization through the response moments is pursued herein. Alternative approaches 
stochastic averaging method (Roberts and Spanos 1986), which was used by Lin and Holmes
for wind excitation, and the Volterra series expansion (Tognarelli et al. 1997). Both these methods
are very onerous from a computational point of view.

To root the problem in the theory of Markov processes (Bharucha-Reid 1960), and apply Itô’s
stochastic differential calculus (Itô 1951a & b, Di Paola 1993, Lin and Cai 1995), the pri
excitation must be a Gaussian white noise. In this paper, the colored process u(t) is approximately
represented by the output of a second order linear filter excited by a Gaussian stationary whit
of unit strength W(t), that is

(3a)

(3b)

X·· t( ) β0X· t( )
i

1

m

∑ aiX
i t( )+ + Qd t( )=

Qd t( ) 1
2
---

ρCDA
M

------------------ U u t( )+[ ]2=

X· t( )

u t( ) Y t( )≅

Y·· t( ) 2ζ f ωfY
· t( ) ωf

2Y t( )+ + πw0W t( )=
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The constant w0 is related to the intensity of the excitation, while ζ f and ω f determine the shape
of the PSD (see Chap. 3, sec. 3.1 and the Appendix).

The augmented system of Eqs. (2) and (3b) is rewritten in Itô’s form as

dz1 = z2dt (4a)

(4b)

dy1 = y2dt (4c)

(4d)

where the state variables are ; furthermore, γ = 1/2ρ CD A/M,
b0= γU 2, b1 = 2γU, b2= γ and dB is the increment of a unit Wiener process, which is related to 
white noise by the formal relation dB(t)/dt = W(t).

Expressing the differential of the non-anticipating function φ = z1
p z2

q  by means of Itô’s differential
rule, applying the averaging operator E [ � ], and dividing by dt, the differential equations ruling the
response moments  are obtained as 

(5)

where the dependence on time is omitted for brevity’s sake. In the steady state the l.h.s. va
and Eq. (5) becomes an algebraic equation as is done here. In order to write the equations
moments of a given order r, the exponents p, q assume all the values for which p + q = r, with

. By inspection of Eq. (5), other moments are noted beyond those of order r. In particular,
the summation in the r.h.s. has moments of order larger than r, say those with . These
moments are called hierarchical. In other words, to compute the moments of order r, moments till
the r + m − 1 order are required, which constitutes an infinite hierarchy. A suitable closure sc
is required. Viceversa, the cross-moments between z1 and y1 are not hierarchical, as will be shown in
next section.

The simplest method of closure is obtained by linearizing the l.h.s. of Eq. (1) (Roberts and S
1990). The response of a linear system to a Gaussian process is Gaussian too. In the pres
the excitation [see Eq. (2)] is not Gaussian, and the response of the linearized system is not 
well. For some values of the parameters this method yields acceptable results. Otherwise, a
order closure is needed.

2.2. Equivalent linear system

Using the method of the equivalent stochastic linearization, Eq. (1) is replaced by 

(6)

dz2 β0z2
i
aiz1

i

1

m

∑+
 
 
 

dt– b0 b1y1 b2y1
2+ +( )dt+=

dy2 2ζf ωf y2 ωf
2y1+( )dt– πw0dB+=

z1 X= z2 X·= y1 Y= y2 Y·=, , ,

µpq E z1
pz2

q[ ] E XpX·
q[ ]= =

µ· pq pµp 1– q 1+, qβ0µpq– q
i

1

m

∑ aiµp i+ q 1–,( ) qb0µp q 1–,+–=

qb1E z1
pz2

q 1– y1[ ] qb2E z1
pz2

q 1– y1
2[ ]+ +

p q, 0≥
1 i m≤<

X·· t( ) β0X
· t( ) ωe

2X t( )+ Qd t( )=+
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where the linearization parameter ωe
2  is determined by minimizing the error that is made by usi

Eq. (6) instead of Eq. (1) in some statistical sense.
Herein, two methods have been used to determine ω 2

e : (a) minimization of the mean square erro
(Roberts and Spanos 1990); (b) minimization of the mean square difference between the p
function U(X ) = 1/2X2 of Eq. (6) and that of Eq. (1) (Falsone and Elishakoff 1994). However, preference
has been given to (a) since the latter criterion is more onerous computationally. In the case of a n
damping mechanism  in Eq. (1), another linearization parameter βe would be present in Eq.
(6), and this would be computed simultaneously to ω 2

e minimizing a total error measure.
The response moments of X are computed resorting to the stochastic differential calculus. Th

Eqs. (4b), (5) are replaced by, respectively

(7)

(8)

Now, we have a linear system excited by a polynomial form of a filtered Gaussian process. Som
authors have shown that the response statistical moments of this type of dynamic syste
computed exactly (Grigoriu and Ariaratnam 1988, Krenk and Gluver 1988, Muscolino 1995
Paola 1997). The different proofs of this statement lead to different methods of computation
methods by Muscolino (1995) and Di Paola (1997) have been adapted to the present case.

By inspection of Eq. (8), it is noted that it contains cross-moments among the variables Xi and Yi,
that is  and . To exemplify, the equations for the second moments are:

(9a)

(9b)

(9c)

where the cross-moments are E [zi yk](i, k = 1, 2), and E [zi y1
r y2

s ](i = 1, 2; r + s= 2). By applying
Itô’s differential rule to the functions zi yk and zi y1

r y2
s, two sets of equations for these moments a

obtained. It can be shown that these sets of equations do not recall other moments apart from th
moments of third and fourth order of the vector y = {y1 y2}’, but these moments are computabl
separately as the moments of a Gaussian vector. In this way, the computation of the response
order moments requires the solution of three sets of linear equations, and the knowledge
moments of y. This finding is general, and can be demonstrated true for every order of mo
(Muscolino 1995).

The availability of a symbolic manipulator (MAPLE V 1991) allows to perform all the operat
from the generation of the equations to their solution automatically. It is recalled that in the s
state the l.h.s. of Eqs. (8), (9) vanishes and the problem becomes algebraic.

According to Di Paola (1997), the following coordinate transformation is adopted: v1 = X, v2 = Y2,
v3 = 2Y, v4= , v5 = , v6 = v3 . v5, v7 = . These positions and Eqs. (3b), (6) yield the differentials
the seven state variables as

g X·( )

dz2 β0z2 ωe
2z1+( )dt– b0 b1y1 b2y1

2+ +( )dt+=

µ· pq pµp 1– q 1+, qβ0µpq– qωe
2µp 1+ q 1–, qb0µp q 1–, qb1E z1

pz2
q 1– y1[ ] qb2E+ z1

pz2
q 1– y1

2[ ]+ +–=

E z1
pz2

q 1– y1[ ] E z1
pz2

q 1– y1
2[ ]

µ· 20 2µ11=

µ· 11 µ02 β0µ11 ωe
2µ20– b0µ10 b1E z1y1[ ] b2E z1y1

2[ ]+ + +–=

µ· 02 2β0– µ02 2ωe
2µ11– 2b0µ01 2b1E z2y1[ ] 2b2E z2y1

2[ ]+ + +=

X· Y· Y·
2
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(10d)

(10e)

(10f)

(10g)

Now, the equations for the response moments are obtained by applying Itô’s differential rule
function . Another computer program based on symbolic manipulati
(MAPLE V 1991) has been set up for this second method. From a computational point of view
last method can be programmed in a more straightforward way, but gives raise to a more importan
computational effort inasmuch as the entire set of the equations for the moments of a given
must be solved in a block. The results of the two methods are coincident, numerical imprecisions a

2.3. Actual nonlinear system

Now, let us examine the problem of computing the response moments of the actual no
system. The equations ruling these moments are obtained by specializing Eq. (5). As in the 
the linearized system, the equations for the cross-moments among the system variables zi and the
filter variables yi must be added. In all sets of equations there are hierarchical terms, sa
equations for the r-order moments recall higher order moments. A suitable closure scheme is n
to close the infinite hierarchy.

The most popular closure method is the cumulant neglect closure method (Wu and Lin 
Ibrahim et al. 1985), by which the higher order moments are expressed in terms of the lower order
moments by setting the corresponding cumulants equal to zero. To writers’ knowledge this c
scheme has never been applied for closing the moment equations of a nonlinear system exci
polynomial form of a filtered process, which would result cumbersome. In fact, to get the clos
a given order, cumulants of different order should be set to zero. 

Therefore, another closure scheme has been adopted. This is due to Di Paola, Floris, and Sand
is yet unpublished. The method is based on an iterative procedure that takes advantage
computations already performed on the linearized system. The procedure is organized throu
following steps:

(1) the first order moments (statistical averages) are computed by giving the higher 
(hierarchical) moments the values previously obtained on the linearized system. The s
order moments are computed by using the first order moments so obtained and the 
order moments of the linearized system. The moments of the orders 2, 3, .. till the closure
order n are computed in the same way.

(2) In the second iteration, the first order moments are calculated again, while giving the 
order moments the values obtained in step (1). Then the moments of order 2, 3, ....n are
successively computed. It is outlined that the nth order moments of the nonlinear syste
depend on the lower order moments and on higher order moments that are always
obtained on the linearized system.

dv1 v4= dt, dv2 v6= dt, dv3 2v5= dt

dv4 β0v4– ωe
2v1 b0 1 2b1v3 b2v2+⁄+ +–( )dt=

dv5 βfv5– 1 2ωf
2v3⁄–( )dt πw0dB+=

dv6 2v7 βfv6 2ω f
2v2––( )dt πw0v3dB+=

dv7 2βfv7– ωf
2v6 πw0+–( )dt 2 πw0v5dB+=

φ v1
p1v2

p2v3
p3v4

p4v5
p5v6

p6v7
p7=
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(3) Repeat step (2) till the convergence is achieved.
This method requires less computer time than the cumulant neglect closure method. In fa

latter method introduces nonlinear relationships among the moments, while in the pro
approach all the equations are linear. 

3. Applications

3.1. Structural and wind models

In the numerical applications a Duffing oscillator has been analyzed. In this case, it is set m = 3 in
Eq. (1), which is recast as

(11)

The Duffing equation governs the motion of many lumped SDOF structural systems. In part
the restoring force of cable-stayed structures can be reduced to a cubic polynomial; even acc
for second order effects for a Bernoulli-Navier beam vibrating in its first mode leads to a 
restoring force. The structural model is in Fig. 1.

In the analyses the nonlinearity parameter ε is kept constant and equal to 0.5, which means
moderately strong nonlinearity. The constant of viscous damping is given as β0 =2ζ0ω0 . The ratio of
critical damping ζ0 assumes the values 0.02 and 0.05, while the nominal pulsation ω0 varies from π
to 4π rad/ s, say the nominal period T0= 2π / ω0 varies between 0.5 and 2.0 s. The other structural
parameters in Eq. (2) (see also Fig. 1) are: M = 2161 kg , A = 20 m2, H = 20 m, CD = 1, ρ = 1.25 kg/ m2.

The mean wind speed obeys a logarithmic profile (Simiu 1973)

(12)

Two cases are considered: in the former the shear velocity u*  is 1.77 m/ s, while in the latter is
3.80 m/ s ; the roughness length z0 is 0.018 m in both. The mean speed in the centroid of the areA
(Fig. 1) is worth 31.04 and 40 m / s in the two cases, respectively. 

X·· t( ) β0X
· t( ) ω0

2 X t( ) εX3 t( )+[ ]+ + b0 b1Y t( ) b2Y2 t( )+ +=

U z( ) 2.5u*
z
z0

----ln=

Fig. 1 Point-like structure (left), and its mechanical model (right)
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Being the turbulence u( t) a zero mean stationary Gaussian process, it is fully characterized i
frequency domain by its PSD Suu(ω). From a theoretical point of view, not every spectral functi
might be assumed as turbulence PSD since there are some requirements that it must ob
Simiu and Scanlan 1996, Chap. 2). Nevertheless, many usual relationships do not satisfy part of all
these requirements: as an example, Davenport’s PSD (1967) is zero in the origin, is not monoto
decreasing, and goes to zero as ω -4/3, while the turbulence PSD must be different from zero in ω = 0,
monotonically decreasing, and infinitesimal of order 5/3 for large frequencies.

On the other hand, in order to apply the stochastic calculus, and in general the Markov methods
of stochastic dynamics, the primary excitation must be a Gaussian white noise. A co
excitation such as u( t) can be obtained by means of a cascade of linear filters, which can b
in the form

= AY + DW (13)

where Y is the vector of filter variables, W is a vector of unit strength white noise processes, wh
can reduce to a scalar, while A and D are deterministic matrices of constants that are to 
determined in such a way to fit the theoretical or experimental colored PSD in the best way.

The simplest solution is the scalar counterpart of (13), that is

(14)

which is known as Langevin’s equation. The PSD of Y( t) is

 (c = ad / π ) (15)

which in turbulence theory has been proposed by Dryden (1961). Eqs. (14) and (15) hav
discarded since there are two parameters only for fitting a non rational curve, even if Floris et al.
(2001) have shown that they yield quite acceptable results for linear structures. The other eq
proposed in literature (Solari 1987, Simiu and Scanlan 1996, Mann 1998) are not rational function
require a second order filter at least to get a good or acceptable fitting, that is the vector Y in Eq.
(13) must have dimensions (2,1). Davenport’s PSD admits a very good rational approxim
(Benfratello et al. 1996, 1999), but it has not been chosen because of the above mentioned
theoretical drawbacks.

In this study the proposal by Kaimal et al. (1972) is adopted, which is given as

(16)

Eq. (16) yields a turbulence variance σ u
2 which agrees with the relation 6u*

2 . In applying the
numerical simulation, wind histories are generated by using Eq. (16).

According to Eqs. (3), the rational approximation of Eq. (16) and the variance are, respective

(17)

Y
·

Y
·

t( ) aY t( )+ dW t( )=

SYY ω( ) c
a2 ω2+
-----------------=

Suu ω( )
200u*

2z

2πU z( ) 1
25zω
πU z( )
---------------+

5 3⁄
-------------------------------------------------------- ω 0≥( )=

SYY ω( )
w0

ωf
2 ω2–( )

2
4ζ f

2ωf
2ω2+

------------------------------------------------------=



Stochastic along-wind response of nonlinear structures to quadratic wind pressure 431

 only

tudy, it
curves
uctural

llowing
f the
11) by
; (4) as

g the
e
ent

hes are

e
e
 exact,
ions.
ar one,

t be

o
se
t of the

red as
puted as

ly
her
(18)

First, the filter parameters must hold the target variance . Unfortunately, this is the
condition that one can impose to find the fitting PSD. To solve the problem, a nonlinear least square
fitting has been applied, based on Levenberg-Marquardt algorithm (Marquardt 1963). In general and
particularly in this case, the least square method has several admissible solutions: in this s
has been renounced to find a general approximation of Eq. (16) determining some rational 
expressed by Eq. (17) that were reasonably close to Eq. (16) in an interval containing the str
frequency. More information is in the Appendix.

3.2. Results

The results for the first four response moments have been obtained by means of the fo
methods: (1) Monte Carlo simulation for the sake of comparison; (2) stochastic calculus o
equivalent linear system [Eqs. (6,8)]; (3) stochastic calculus for the actual nonlinear system (Eq. 
applying the proposed closure method with the two approaches that cannot be distinguished
moments of an approximate response PDF of X given as

(19)

where C is a normalization constant.
This PDF satisfies the Fokker-Planck-Kolmogorov equation associated with Eq. (11) havin

approximate excitation , where W(t) is a unit strength Gaussian whit
noise, µ = γ (U 2 + σ u

2 ), and wd = Suu(ωe), that is the actual excitation is replaced by an equival
white noise.

The values of the first four response moments obtained by means of the different approac
listed in Tables 1, 2 for U = 31.04 m/s, ζ0 = 0.02, and for U = 40 m/s, ζ0 = 0.05, respectively. The
moments of second and higher order are plotted against the nominal period of vibration T0 = 2π / ω0

in Figs. 2-4 for the lowest U, and in Figs. 5-7 for the highest U. In the tables there are also th
moments of the corresponding linear system, say with ε = 0 in Eq. (11). These moments ar
computed by using the actual turbulence PSD of Eq. (16): the first and second moments are
while the third and fourth ones are obtained by simulation to avoid lengthy multifold integrat
The moments of the corresponding linear system are always higher than those of the nonline
and particularly for T0 = 2.0 s. Therefore, the nonlinear behavior of a dynamical system mus
properly considered.

A general examination of the results reveals that for T0 = 0.5 s the structure is stiff with respect t
wind excitation that has very little power in this range of frequency (see Fig. 9). Thus, the respon
is quasi-static, and the results of the various approaches are close together, being the effec
nonlinearity of limited importance. As T0 increases, and for the highest value of U, the results of the
different methods scatter, and will be examined in detail. The simulation results are conside
exact, and are assumed as a basis of comparison: the percent error in the tables is com
100[(mtheor / msimul)−1], being m a generic moment.

As regards the case U = 31.04 m/s, ζ0 = 0.02, the approximate PDF (Eq. 19) is not complete
adequate, but in some instances the errors are acceptable. The equivalent linearization and the hig

σY
2 πw0

4ζf ωf
3

----------------=

σu
2 6u*

2≅

p̃ x x·,( ) C
2β0

πwd

--------- µx– ω0
2 x2

2
---- ε x4

4
----+ 

  x·2

2
----++ 

 –exp=

Q̃d t( ) µ πwdW t( )+=
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order closure are substantially close together for the two lowest nominal periods, while for the
two the higher order closure matches the simulation better. Anyhow, the errors are quite acceptable
It is worth noting that Falsone-Elishakoff’s linearization procedure estimates the moments s
better, but, when used as a basis for the higher order closure, the moments of this are not im
or worsen .

When the average wind speed is increased to 40 m/s, even the turbulence is increased a
to the relation 6u*

2 . In this way, system nonlinearity is more excited. The approximate PD
generally quite in error. In this case, the equivalent linearization shows a good performance 
the statistical averages, yielding quite acceptable errors for the other moments of the fir
periods, and more important errors for the two larger periods. The errors of the equivalent linearization
are on the unsafe side in some cases, while in others are overestimations. Even Falso
Elishakoff’s linearization procedure has been applied to T0 = 1.0 and 2.0 s. For T0 = 1.0 s, the moment
estimates are better, but, if used as a basis for the higher order closure, this does not becom
For T0 = 2.0 s, it improves the mean square value and the third moment considerably at the ex
of a worsening in the estimates of the average and the fourth moment, being the latter 

Table 1 Response moments for U = 31.04 m/s, ζ0 = 0.02

Mom. Simulation SEL Er. HOC Er. PDF Er. LS 

T0 = 0.50 s

m[1] 0.358533E-1 0.359399E-1 0.2 0.359470E-1 0.3 0.367060E-1 2.4 0.35981E-
m[2] 0.153056E-2 0.148050E-2 -3.3 0.148049E-2 -3.3 0.151222E-2 -1.2 0.15426E-
m[3] 0.734065E-4 0.675694E-4 -8.0 0.675325E-4 -8.0 0.676084E-4 -7.9 0.74174E-
m[4] 0.386204E-5 0.335809E-5 -13.1 0.335447E-5 -13.1 0.322925E-5 -16.4 0.39253E

T0 = 1.0 s

m[1] 0.141207 0.140900
0.141813*

-0.2
0.4

0.141605
0.141605*

0.3
0.3

0.143372 1.5 0.143923

m[2] 0.248575E-1 0.241376E-1
0.244511E-1*

-2.9
-1.6

0.241918E-1
0.241965E-1*

-2.7
-2.7

0.244200E-1 -1.8 0.25989E-1

m[3] 0.494924E-2 0.466359E-2
0.475469E-2*

-5.8
-3.9

0.463534E-2
0.463616E-2*

-6.3
-6.3

0.460344E-2 -7.0 0.53715E-2

m[4] 0.108382E-2 0.992696E-3
0.101863E-2*

-8.4
-6.0

0.976498E-3
0.978767E-3*

-9.9
-9.7

0.940477E-3 -13.2 0.12208E-2

T0 = 1.50 s

m[1] 0.298956 0.288129 -3.6 0.300518 0.5 0.294398 -1.5 0.323826
m[2] 0.113511 0.106614 -6.1 0.111883 -1.4 0.107336 -5.4 0.136738
m[3] 0.484286E-1 0.448157E-1 -7.5 0.464664E-1 -4.1 0.434620E-1 -10.3 0.663023E
m[4] 0.226076E-1 0.209357E-1 -7.4 0.211635E-1 -6.4 0.191710E-1 -15.2 0.353995E

T0 = 2.0 s

m[1] 0.475767 0.471526 -0.9 0.493931 3.8 0.439875 -7.5 0.575690
m[2] 0.289940 0.269236 -7.1 0.279660 -3.6 0.248482 -14.3 0.445756
m[3] 0.196594 0.173238 -11.9 0.174652 -11.2 0.155059 -21.1 0.396466
m[4] 0.145125 0.122726 -15.4 0.152718 5.2 0.105743 -27.1 0.389948

KEYS : m[ i ] = E[Xi ] (i = 1, ..4); SEL = stochastic equivalent linearization; HOC = higher order closure; 
= approximate PDF of Eq. (19); LS = linear system (same T0 and ε = 0); Er. = percent error with respect to
simulation. Values in (meter)i. * Falsone-Elishakoff’s linearization procedure.
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overestimated. On the average, the higher order closure proposed in this paper matches
simulation results quite acceptably, even if the errors are over a 10% for some moments.

The principal statistical functions of the response, such as joint and marginal PDF, 
upcrossing rate functions, and so on, can be constructed starting from the response m
Herein, two PDF pX (x) of the displacement X are shown in Fig. 8 to demonstrate the marked n
Gaussianity of the response. They are obtained by inversion of the characteristic function (Robe
Spanos 1990, Chap. 3):

Ψ (ω) = exp [ (i j / j! ) κXjω j ] (i = ), (20)

where κXj is the cumulant of order j of X (it is recalled that the cumulants are directly expressed
terms of moments). The series expansion in previous expression is truncated at the fourth o
cumulant.

j
1

+ ∞

∑ 1–

Table 2 Response moments for U = 40.0 m/s, ζ0 = 0.05

Mom. Simulation SEL Er. HOC Er. PDF Er. LS 

T0 = 0.50 s

m[1] 0.612208E-1 0.615073E-1 0.5 0.615837E-1 0.6 0.627357E-1 2.5 0.61798E-
m[2] 0.500585E-2 0.474120-E-2 -5.3 0.474188E-2 -5.3 0.454882E-2 -9.1 0.50959E-
m[3] 0.484345E-3 0.429638E-3 -11.3 0.428116E-3 -11.6 0.362046E-3 -25.3 0.49444E
m[4] 0.534634E-4 0.443628E-4 -17.0 0.441432E-4 -17.4 0.310412E-4 -41.9 0.55157E

T0 = 1.0 s

m[1] 0.232414 0.228129
0.231915*

-1.8
-0.2

0.235223
0.235198*

1.2
1.2

0.230563 -0.8 0.247191

m[2] 0.739292E-1 0.678985E-1
0.698942E-1*

-8.2
-5.5

0.703989E-1
0.707238E-1*

-4.8
-4.3

0.656201E-1 -11.2 0.85882E-1

m[3] 0.272435E-1 0.239422E-1
0.249257E-1*

-12.1
-8.5

0.239355E-1
0.236350E-1*

-12.1
-13.3

0.207817E-1 -23.7 0.35145E-1

m[4] 0.113018E-1 0.966845E-2
0.101704E-1*

-14.5
-10.0

0.939342E-2
0.920607E-2*

-16.9
-18.5

0.717660E-2 -36.5 0.16563E-1

T0 = 1.50 s

m[1] 0.456072 0.455963 -0.02 0.483006 5.9 0.412227 -9.6 0.556180
m[2] 0.281003 0.250264 -10.9 0.286460 1.9 0.220149 -21.7 0.451424
m[3] 0.195018 0.158735 -18.6 0.194911 -0.1 0.130037 -33.3 0.427590
m[4] 0.149796 0.113516 -24.2 0.155059 3.5 0.0841323 -43.8 0.468460

T0 = 2.0 s

m[1] 0.678216 0.667447
0.706763*

-1.6
4.2

0.679483
0.693878*

0.2
2.3

0.544487 -19.7 0.988765

m[2] 0.614914 0.535106
0.600004*

-13.0
-2.4

0.664775
0.705542*

8.1
14.7

0.318648 -48.2 1.469127

m[3] 0.616024 0.495154
0.587911*

-19.6
-4.6

0.618868
0.559083*

0.5
-9.2

0.322786 -47.6 2.534465

m[4] 0.375928 0.516171
0.648968*

37.3
72.6

0.331109
0.325256*

-11.9
-13.5

0.286323 -23.8 5.041769

KEYS: as in Table 1. *Falsone-Elishakoff’s linearization procedure
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Fig. 2 Plot of response mean square value E[X2]
against T0= 2π / ω0 for U = 31.04 m/s, ζ0=
0.02: (a) stochastic equivalent linearization;
(b) higher order closure; (c) approximate PDF
[Eq. (19)]; (d) simulation

Fig. 3 Plot of response third moment E[X3] against
T0 = 2π / ω0 for U = 31.04 m/s, ζ0= 0.02: keys
as in Fig. 2

Fig. 4 Plot of response fourth moment E[X4] against
T0 = 2π / ω0 for U = 31.04 m/s, ζ0= 0.06: keys
as in Fig. 2

Fig. 5 Plot of response mean square value E[X2]
against T0= 2π / ω0 for U = 40.0 m/s, ζ0 = 0.05:
(a) stochastic equivalent linearization; (b)
higher order closure; (c) approximate PDF [Eq.
(19)]; (d) simulation
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Fig. 6 Plot of response third moment E[X3] against
T0 = 2π / ω0 for U = 40.0 m/s, ζ0 = 0.05: keys
as in Fig. 5

Fig. 7 Plot of response fourth moment E[X4] against
T0= 2π / ω0 for U = 40.0 m/s, ζ0= 0.05: keys
as in Fig. 5

Fig. 8 Plot of the response PDF pX(x) for T0 = 1.5 s, ζ0= 0.02, U = 31.04 m/s (top); and for T0 = 1.0 s, ζ0= 0.05,
U = 40.0 m/s (bottom). −− stochastic equivalent linearization; higher order closure; little d
simulation

The agreement of the PDF of both the linearization and the higher order closure wit
simulation is acceptable. The important feature of these plots is the marked non-Gaussianity
response, which is testified by the asymmetric aspect with a long tail towards the large value
is important in reliability estimates.
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4. Conclusions

The problem of the response of nonlinear systems to quadratic random wind pressure is ad
herein. Attention is focused on single-degree-of-freedom oscillators with linear damping and non
restoring force with polynomial form so that the problem is doubly nonlinear, which cause
response to be markedly non Gaussian.

The statistical characterization of a nonlinear dynamic system excited by a non-Gaussian 
is obtainable at the expense of a notable computational effort. In fact the only method
presently are applicable are the Monte Carlo simulation and the Volterra series expansio
simulation requires the generation of several thousands of motion histories, in each of whi
equations governing the problem are numerically evaluated. The Volterra series approach operate
under some restrictions: the damping must be linear, and the restoring force a polynomial. In p
this cannot have a degre larger than three in order to truncate the series at the second ter
two terms in the series, a moment of n-th order is obtained by evaluating an integral with n dimensions.

The principal motivation of the present paper is presenting a method of analysis more app
from a computational point of view. Analogously to the determination of the non-Gaussian res
of a linear system subjected to wind pressure, the problem is framed in the field of Markov me
of stochastic dynamics. These are applicable only if the excitation is a Gaussian white noise,
is not the case of wind turbulence. The simplest approximation replaces the turbulence with a
noise. In this way, the Fokker-Planck equation in the JPDF of the problem variables h
analytical solution, but the computed response moments are not quite in accord with those o
by simulation for all vibration periods and mean wind speeds.

Thus, resort is made to the moment equation approach of Itô’s stochastic differential ca
This requires that the turbulence PSD is idealized as the output of one or more linear filters e
by a Gaussian white noise. Including the filter variables in the analysis, Itô’s differential rule a
writing the differential equations ruling the response moments. In the steady state, these eq
become algebraic.

As a first approximation, the system is linearized retaining the nonlinear excitation with the s
of the turbulence. In this way, we have a linear system excited by a quadratic polynomia

Fig. 9 Comparison among Kaimal’s turbulence PSD (continuous line) and approximating PSD. TopU =
31.04 m/s, dotted line = filter LUNO-96, dashed-dotted line = filter LUDI-96. Bottom: U = 40.0 m/s,
dotted line = filter QU1-97, dashed-dotted line = filter QU2-97, in the detail filter QU1-98
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filtered Gaussian process. The response moments are computed exactly, and the non Gaussianfeatures
are preserved. This approach yields estimates of the response moments that are acceptably close to
those obtained by simulation in most cases, but in few others they are affected by more significanterrors.

Thus, the nonlinearities of both the oscillator and the excitation are hold, and a higher 
closure is considered. In this way, the moment equations form an infinite hierarchy. In order to
this, an iterative procedure is proposed, which takes advantage of the moment estimates obta
the linearized system. 

The numerical applications, which regard a hardening Duffing oscillator, prove the validity o
proposed approach notwithstanding the rational representation of the turbulence PSD has n
optimized. The results compare well with those of the numerical simulation.

Finally, it is recalled that the present approach can be easily adapted to other problems in
the dynamic system has polynomial nonlinearities in both damping and restoring force, whi
excitation is a polynomial of a filtered Gaussian process. Nonlinear systems analyzed by perturba
pseudo-force method can be reduced to this case, while wave forces can be expressed by me
polynomial.
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Appendix : Approximation of wind turbulence spectrum with a rational function

In order to approximate Eqs. (16) by means of Eq. (17), the filter parameters w0 , ζf and ω f must be properly
selected. Lacking a theoretical basis to do that, one must resort to a least square fit. The problem
stated as

[Suu
(T) (ωi) − Suu

(A) (ωi) ] 2= minimum (A.1)

where Suu
(T) (ωi) is the target PSD, that is Eq. (16), while Suu

(A) (ωi) is the approximating one, and N denotes the
number of points that are chosen for the fit. The minimization of (A.1) is constrained by the condition

(A.2)

Levenberg-Marquardt’s algorithm (Marquardt 1963) is used in this study. 
The parameters of the filters that have been used in the analyses are listed in Table 3. The com

among Kaimal’s and approximating PSD are shown in Fig. 9 for both wind speeds. As regards U = 31.04 m / s,
the agreement is good except for ω < 1 rad / s. For U = 40.0 m / s, the filters QU1-97 and QU2-97 show th

i
1

N

∑

Suu
A( ) ω( )dω

0

+ ∞

∫
w0

ωf
2 ω2–( )2

4ζf
2ωf

2ω2+
----------------------------------------------------dω

0

+ ∞

∫ 6u*
2= =

Table 3 Parameters of the fitting PSD

Spectrum U (m/s) w0 (m
2
� s-5) ωf (rad / s) ζf

LUNO-96 31.04 0.204688E+06 9.4355 10.181
LUDI-96 31.04 0.209036E+05 4.4428 9.9596
QU1-97 40.0 0.1982174E+08 18.4150 28.6264
QU2-97 40.0 1.93 0.307936 0.596094
QU1-98 40.0 0.935956E-03 0.292115E-01 0.338634
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same trend as for U = 31.04, while the filter QU1-98 appears to have a notable mismatch. However,
disappears for ω > π . In fact, it has been used only for T0 = 2.0 s (ω0 = π rad / s), giving the best results. It is
emphasized that the fitting has been searched in the vicinity of nominal structural frequency ω0 only. This is
why more fitting PSD have been used.

From a theoretical point of view, the turbulence could be approximated by means of a cascade o
filters, that is with m> 2 in Eq. (13). This way has been tested with m = 4, that is two second order filters, bu
the results have been disappointing. This is probably due to the fact that the approximating PSD is infin
of order 2 m as ω�+� , while Eq. (16) tends to zero as ω-5/3. Presently, the method of the analytical continuati
as proposed by Roy and Spanos (1993) is under study. 

GS
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