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A comparative study of numerical methods for fluid
structure interaction analysis in long-span
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Abstract. Both a Finite Volume and a Discrete Vortex technique to solve the unsteady Navier-Stokes
equations have been employed to study the air flow around long-span bridge decks. The implementation
and calibration of both methods is described alongside a quasi-3D extension added to the DVM solver.
Applications to the wind engineering of bridge decks include flow simulations at different angles of
attack, calculation of aerodynamic derivatives and fluid-structure interaction analyses. These are being
presented and their specific features described. If a numerical method shall be employed in a practical
design environment, it is judged not only by its accuracy but also by factors like versatility, computational
cost and ease of use. Conclusions are drawn from the analyses to address the question of whethe
computer simulations can be practical design tools for the wind engineering of bridge decks.

Key words: computational bridge aerodynamics; Discrete Vortex Method; Finite Volume Method; vortex
shedding.

1. Introduction

Various fluid-structure interaction phenomena have to be considered in long-span bridge design,
e.g., vortex induced oscillations and flutter. Earlier work on the topic of numerical simulations has
been conducted by one of the authors investigating the feasibility of a fully-coupled Famteritl
approach (Frandsen and McRobie 1999), which yielded promising results in predictingséieroela
response phenomena.

Herein, work on two further numerical methods, the Discrete Vortex Method (DVM) and the
Finite Volume Method (FVM), is described. The merits and problems of both shall be discussed in detail
and conclusions regarding their applicability to the wind engineering of bridge decks will be drawn.

2. The Discrete Vortex Method
The authors have developed a computer code for numerical solution of the unsteady incompressible

Navier-Stokes equations by a Lagrangian vortex formulation. The Discrete Vortex Methoddusedatt
great interest in recent years, mainly concerned with applications in bluff body aerodynamics, e.g., in
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bridge engineering by Larsen and Walther (1998).

The Discrete Vortex Method is derived from the knowledge that in a high-Reynolds number flow
there are three distinct regions: the viscous, rotational boundary layer, the wake and an inviscid
outer region, which is usually irrotational. The idea is to introduce the vorticity at a certain region or
point and then to trace it through the flow by using the vorticity equation derived from the Navier-
Stokes equation, as outlined in Leonard (1980). Herein we assume that the fluid is incompressible,
two-dimensional, single-phase, homogeneous and that temperature variation has a negligible impac
on the flow field. The main dérence to other methods is that the DVM is grid-free and thus data
input is much facilitated. The computational effort can, however, be large since all mutual vortex
interactions have to be considered at each time step, thus (for the simplest schemes) making the co
proportional to the square of the number of vortices in the domain.

The code described here makes use of an inviscid formulatiorioyengpa simple Euler scheme
for the convection process. At each time step all surface vorticity is released as discrete Rankine
vortices introduced at fixed points approximately half a panel length away from the surface. A cell-
to-cell algorithm as proposed by Leonard (1980) was implemented, resulting in considerable reductions
in computation time.

It is important to note that the numerical solution procedwelvas a number of parameters that
strongly influence the quality of the solutioramely the level of noise in the signals obtained for
the pressures and the body forces. These are mainly

- the non-dimensional time stép=tU /| (wherel is any reference length, here the panel length),
- distance of release points from surface,
- vortex core radius.

Even though time averaging improves the force signals, care needs to be exercised in order for the
physical processes still to be represented in the solution. Experience is necessary to find a set o
parameters that yield abust solution and good results. While a wake is usuafipdd without
problems, the formation region, i.e., the boundary layer, is of great importance and its structure can
indicate whether a stable solution is achieved. The calibration procedure found to be most favourable
was to perform a Fast Fourier Transform on the signals and to adjust the numerical parameters unti
a clear solution is obtained. Pre-calibration of the DVM for ready-use in a design office is difficult
to achieve and experience from the user will always be required. The analyses presezited h
were performed with core da of the order of half a panel length. Non-dimensional time steps were
between 0.5 and 1.

2.1. Analyses on static bodies

A number of validation tests were carried out using the DVM code developed. Vortex shedding
analyses on static circular cylinders are reported in Morgenthal (2000). Another standard case for
aerodynamic simulations, more closely related to bridge deck analysis, are rectaplgudirsc
Their vortex shedding response is different from that of circular cylinders in that the separation
points are fixed at the sharp corners. However, reattachment may occur on long faces and it is
crucial for numerical models to be capable of capturing this. Deniz and Staubli (1998) compiled
results from a number of vortex shedding simulations from rectangular cylinders of various aspect
ratios and this was used to validate the DVM code. Fig. 1 shows non-dimensional sfredgiagcy
plotted against the aspect ratio.
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Fig. 1 Vortex shedding from rectangular cylinders, Strouhal nurgifer) dependence on aspect ratio, after
Deniz and Staubli (1998) with added results from DVM simulations

The deck of the Storebcelt suspension bridge was chosen for calibration analyses because it
aerodynamic properties have been extensively studied and are well documented in the literature,
DVM calculations of the static deck were performed at first. Fig. 2 shows an averaged pressure
distribution obtained from wind tunnel tests at the Damritime Institute (DMI) 1993 and the
pressure distribution predicted by the DVM. Even though the bridge deck aerodynamics are much
more complex than the cylinder test cases due to flow reattachment and a complex wake formation
region, the pressure distribution is remarkably well captured. A sample picture of the vorticity
distribution is shown in Fig. 3.

A Fourier spectrum of the lift force signal is given in Fig. 4 for a free stream velocity of 8 m/s.
The Strouhal numbeB{D) was evaluated to 0.19.

The results for the main aerodynamic properties are given in Table 1 alongside values from other
investigations. Both force coefficients and the shedéieguency compare well.

The DVM was also applied to this cross section to perform calculations at different angles of
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Fig. 2 Storeboelt Bridge, normalised pressure distribution obtained from wind tunnel tests (DMI and SINTEF
1993) and with DVM (Morgenthal)
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Fig. 4 Fourier spectrum of lift coefficient response from DVMJat 8 m/s

attack. This was deemed to be interesting for validation purposes as the influence of the angle of
attack on the aerodynamic forces is important in aeroelastic simulations involving rotation of bodies
like the coupled two-degrees of freedom flutter phenomenon. The results for the mean lift coefficient
in comparison to other investigatioase shown in Fig. 5.

When a body moves in a fluid flow, it will be subjected to motion-dependent forces. These forces
cause the so-called aerodynamic damping but they can also lead to instabilities of elastically mountec
structures. A popular set of expressions for these forces is the one proposed for bridge deck analysi
by Scanlanet al (1971). It is based on the assumption that the self-excited lift and moment on a
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Table 1 Results for Storeboelt Bridge aerodynamic simulations at zero angle of incidence

F F fD
C = D C = L St - =
Source ©T1 Sl U
2pU D 2pU B
Morgenthal, McRobie, (DVM) 0.42 0.08 0.19
Jenssen and Kvelmsdal (1999), (FV) 0.45 0.04 0.16
Enevoldseret al (1999), (FV) 0.51 0.08 0.17
Larsen and Walther (1998), (DVM) 0.56 0.07 0.17
DMI and SINTEF (1993), (section model) 0.54 0.01 0.11-0.15
Larose (1992), (Taut strip model) 0.72 -0.08 0.11
Morgenthal (2000), (smoke tunnel) 0.19
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Fig. 5 Mean lift coefficient at various angles of incidence, DVM results for Storeboelt Bridge

bluff body may be treated as linear in the structural displacement and rotation and their first
derivatives which reads in the complete formulation:

Fo(t) = 5PU%B[KHIK)G + KH(K) ] + KCH3 (k) a + KH; ()]
Fat) = 30U°B7 KAL) + KA (K) ST + KA (K)a + KA ()] | (1)

where h(t) and a(t) are the vertical and rotational section motion aké Bw/U is the
nondimensional (‘reduced’) frequency of motion of the bridge wBere the deck width. The
nondimensional coefficientd; andA; are referred to as aerodynamic or flutter derivatives. As the
derivatives are a function of the reduced frequency they can only be measured if the bridge is in a
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sinusoidal oscillatory state. Thus forced vibration tests are performed, the harmonic in the force
signals is filtered out using a best-fit technique and the derivatives are calculated.

For the forced motion amplitudes of OB)4nd 3 were used for vertical and rotational direction
respectively. The aerodynamic derivativels and H> are shown for comparison in Fig. 6.
Generally the agreement is reasonable as the shape of the graphs is captured.

2.2. Fluid-structure interaction analyses

A fluid-structure interaction routine in 2-D was implemented in the DVM code. For the 2D
section analyses a structural system as shown in Fig. 7 was used. The coupling of the two degree
of freedom of the structural dynamics solution with the lift and moment forces of the fluid
dynamics solution is done at every time step.

The Newmark-beta method in its unconditionally stable schende=d@.5 andB = 0.25 was used
to integrate the structural equations of motion forward in time. Structural damping was modelled as
Rayleigh damping.

The FSl-routine implemented in the DVM was used to simulate vortex-induced vibrations. The
Storebcelt Bridge used for calibration tests earlier also experienced those. Particularly the mode with
five half-sine waves in the main span, having a natural frequency of 0.2 Hz, was prone to these
oscillations. Therefore, the analyses focussed on simulating this structural mode. Interaction analyses
were carried out at a range of wind speeds which cause vortex shedding frequencies close to the
natural frequency of the vertical mode, to study the lock-in behaviour. Here the shedding process

Fig. 7 Structural system considered
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Fig. 8 Dominant shedding frequency with respect to the frequency of structural response around resonance
point f/ St(D) = 1 at various levels of structural damping
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Fig. 9 Maximum amplitude observed around resonance pb#itfD) = 1 at various levels of structural damping

becomes controlled by the oscillatory motion of the bridge, and the shedding frequency remains
locked in to this vibration. This leads to a widened range of resonance wind speeds, which is
depicted in Fig. 8 where the results of a Fast Fourier Transformation of the time-histories of lift
force and structural displacement are shown. At lock-in, these have a peak at the same frequenc
while off lock-in they drift away. In the diagram the lock-in region can be clearly seen. Analyses
were performed for 3 levels of equivalent damping, namely 0%, 0.5% and 1.0%cal and the
diagrams clearly show a dependence of the width of the lock-in region on the damping. Structures
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with high levels of damping have a significantly smaller lock-in region. As natural wind speeds
fluctuate with time, these can thus be expected to show lower amplitudes. Maximum displacements
observed in the simulations are plotted in Fig. 9. It has to be mentioned that for the undamped
system unlimited amplitudes were observed at lock-in. This is contrary to common knowledge of
vortex induced vibrations and may be due to the fact that the present numerical model does not take
account of the randomness inherent in turbulent flow, which underlines the need émampla
diffusion model. However, further analyses will have to ascertain the reasons for this discrepancy.

2.3. Quasi-3D model

The DVM code has been extended such as to enable simulations of beam-type structures in &
guasi three-dimensional manner. This is done by performing two-dimensional simulatirsecions
parallel to one another. Initially these have the two-degree of freedom structural configuration
introduced earlier. If the two-dimensional domaare now considered adices of a beam, these
can be coupled by forming a global stiffness matrix with d&grees of freedom thus considering
the individual contributions froneachslice to the three-dimensional response of the beam. This
principle is depicted in Fig. 10.

It is important to note that for now coupling is only established by the structineeinteraction
of the fluid-dynamic solutions has not been considered so far. This is a great sitigplifttace the
flow along the bridge is correlated and this interaction of lilnd olutions of the individual slices
is neglected. However, for slices far enough apart this may not be very significant.

If a beam formulation witN slices is used,;, M; andh;, a; are the corresponding nodal forces
and displacements, respectively. These can be arranged in a stiffness matrix defiledsas fo

hl Ll

k| M) = | b )
a, M,
Oy My

the bending part of which was assembled using the standard 2-noded Hermitian beam element witt

N Ma

Fig. 10 Multi-section beam formulation
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Fig. 11 Envelope of vibration at the different sections analysed using the quasi 3-D scheme

cubic polynomials as shape functions. The sub-matrices for bending and torsion remain decoupled.
If the mass, damping (using Rayleigh damping) and stiffness matrices are assembled, the global
system response can again be integrated forward in time.

Analyses on vortex induced vibrations of Storebecelt Bridge were repeated applying this method.
The first vertical mode was studied, discretising the beam by 12 elements along its length and thus
solving 11 DVM simulations simultaneously. Vortex induced oscillations coutdtessfully be
modelled. After an initial stage of uncorrelated fluid solutions all slices locked on to the oscillation
of the bridge in the first mode and maximum amplitudes at mid-sga|a predicted as 5¢cm. A
diagram showing the growth in amplitude at the various sections is shown in Fig. 11. This
simulation was done at zero damping and it is isterg to note, that the quasi 3-D method was
able to predict the limited amplitude of the vortex-induced vibration.

3. The Finite Volume Method
3.1. Static bridge deck analyses

The Finite Volume code NEWT, developed by Dawes, Cambridge, is a fully 3-D compressible
flow solver on tetrahedral unstructured meshes. It features moving meshes and solution-adaptive
mesh refinement and has been used extensively in turbomachinery, e.g., Dawes 1993. The prograr
was adopted for studies on vortex shedding and fluid-structure interaction problems in bridge
aerodynamics, as will be described below.

The mesh used consists of approximately 50,000 cells, most of wieieh added to obtain a
reasonable representation of the boundary layer at Reynolds numbers of the orderCelld®n
the body surface were as small as 3 cm. The mesh is shown in Fig. 12. One layer of cells in deptt
was used, i.e., practically two-dimensional analysis performed. No turbulence model was employed
at first, even though NEWT features both a stan#tegdnodel and Large Eddy Simulations.
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Fig. 12 Mesh used for FV calculations

E

Fig. 13 Velocity contours) =40 m/s

Velocity contours of simulations at a flow velocity of 40 rafe shown in Fig. 13.
3.2. Fluid-structure interaction analyses

The FV code NEWT was extended by a fluid-structure interaction routine, which basieathtesp
in 2-D, as introduced for the DVM earlier.

It is obvious, that in order to simulate the oscillation of a solid embedded in a fluid flow the
Finite Volume mesh has to be displaced according to tbomof the body suaice boundaries.
The position of the nodes on the swud is determined at each time step from the structural
displacements, which were calculated by the structural dynamics solver. The surrounding mesh ther
needs to be adapted to the new surfacgtipo and thereare various options for this. Here, the
simplest method was applied, which is to linearly interpolate the displacements between the body
surface and the fixed walls surrounding the domain. To this end, a meta-mesh of triangular elements
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Fig. 14 Mesh adaption to body rotation, original (left) and modified mesh

was created covering the main mesh and having nodes on the body surface corners and walls. |
these elements linear shape functions werel@rag to interpolate disatements. Each fluid mesh

node is thus simply slaved to the bridge and the domain boundaries. An example showing the
adaptation of the mesh to a rotation of the bridge deck is shown in Fig. 14.

The motion of the finite volumes through the mesh needs to be taken into account in the flux
terms of the Finite Volume conservation equations. A procedure as outlined in Batina (1991) was
adopted here. Coupling between the fluid and the structural dynamics is done by integrating the
pressure distribution on the body at each time step and integrating the structural response forward ir
time, again using the Newmark-beta scheme.

Since the NEWT calculations are much more demanding than the DVM simulations in terms of
computing power, only calculations as proof-of-concept could be performed so far. The Storeboelt
cross-section was again used. The natural period was, however, altered such as to enable simulatic
of a reasonable number of cycles.

The simulation was started with an initial vertical diggilment of the bodly corresponding to a
static displacement under the average lift force. This was to study whether thdoflwigvduld
cause the amplitudes to grow or to decay. This is a mifictent approach to flutter analysis than
to start from rest and wait for the oscillations to build up. Fluid-structure interaction analyses were
started from a swung-in fluid dynamics system as shown in Fig. 13. The at-rest position of the body
then had to be associated with a displacemen, @s depicted in Fig. 15. Hence, the coordinate
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Fig. 15 Starting point of fluid-structure interaction analysis
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Structural response, Storeboelt Bridge at U=40m/s
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Fig. 16 Displacement response and aerodynamic forces, FSI-simulation on Storeboelt bridge deck

system for structural displacements was shiftedidby

The displacement response of the system and the fluid dynamic forces acting on the deck are
shown in Fig. 16. The interaction between the motion of the deck and the forces is clearly visible.
The amplitudes decay with time, which indicates that the system is stable under the given conditions.
However, it would clearly be necessary to run the simulation for more cycles of structural response
to draw conclusions from it. As a proof-of-concept the simulations were, however, successful and
the implementation of the fluid structure interaction module into the new parallel computing version
of NEWT will enable more thorough calculations in the future.

4. Conclusions

Discrete Vortex and Finite Volume formulations have been investigated to shed light on the
guestion as to which numerical method is best suited for the various aerodynamic applications in
long-span bridge design. Generally both methods are applicable as they are capable of modelling the
complex phenomena involved in the process of vortex shedding from bluff bodies.

The DVM is particularly well suited to bluff body aerodynamics as discretisation of vorticity with



A comparative study of numerical methods for fluid structure interaction analysis 113

a grid-free scheme is done only in regions where circulation is actually present. This reduces the
computational cost whilst still modelling the small-scale vortical structuresanhin the flow. The
grid-free nature also eases the analysis of bodies with complicated geometries. In particular, the
DVM is well suited to the analysis of problems with moving body surfaces. It has, however, to be
highlighted that the calibration process of the DVM is more difficult and subtle than for other
methods. The numerical procedure involving factors like surface vorticity release, convection and
diffusion, vortex merging and their interaction makes it more difficult to obtain clear signals.

Analyses using the FV method clearly show that more effort has to be put into pre- and post-
processing. Capturing the small-scale structures and modelling such complex phenomena like
separation and reattachment requires a mesh suitably refined at important regions. Here, solutior
adaptive mesh refinement can prove favourable both in terms of arriving at an appropriate mesh
density throughout the domain and in terms of computational cost.

Application in a design environment could see the Discrete Vortex Method in favour. It is easy to
apply as no grid is used and thus results can be achieved fairly quickly. Changes in body shape
however, require re-calibration of numerical parameters. Here, the FVM is more versatile and thus
more readily usable.

Calculations of three-dimensional fluid-structure interaction still seem not to be feasible with the
computing power available. In long-span bridge design this is not a major drawback as higher mode
contributions are generally low and thus a 2-Dtieacmodel can well represent the structural
behaviour. Furthermore, analytical modal decomposition methods exist and the input parameters in
the form of aerodynamic derivatives can be obtained from 2-D methods. Furthermore, pseudo-3D
methods as discussed herein present a scope for further work.
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