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Numerical investigations on the along-wind response
of a vibrating fence under wind action
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Abstract. The along-wind response of a surface-mounted elastic fence under the action of wind was
investigated numerically. In the computations, two sets of equations, one for the simulation of the
unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, were solved
alternatively. The resulting time-series tip response of the fence as well as the flow fields were analyzed
to examine the dynamic behaviors of the two. Results show that the flow is unsteady and is dominated by
two frequencies: one relates to the shear layer vortices and the other one is subject to vortex shedding
The resulting unsteady wind load causes the fence to vibrate. The tip deflection of the fence is periodic
and is symmetric to an equilibrium position, corresponding to the average load. Although the along-wind
aerodynamic effect is not significant, the fluctuating quantities of the tip deflection, velocity and acceleration
are enhanced as the fundamental frequency of the fence is near the vortex or shedding frequency of thi
flow due to the occurrence of resonance. In addition, when the fence is relatively soft, higher mode
response can be excited, leading to significant increases of the variations of the tip velocity and acceleration.
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1. Introduction

The interaction between an elastic structure and its surrounding flow has been an interesting subject ir
building research. In many studies, the aeroelastic behaviour of a vibrating body in a wind field was
investigated experimentally to obtain additional insight into the dynamics of flow-induced vibration.
Physically, when a flow passes a blunt body, separation usually occurs at the sharp edges. Due to shee
flow instability, vortices may be generated downstream and lead to an unsteady flow pattern. For a
surface-mounted slender structure, the resulting unsteady load can cause structural vibration. If the motio
is significant, the relative motion of the structure with respect to the flow can induce a change of the load
distribution and further &ct the structure response. This secondary effect, so-called “aerodynamic
damping”, is considered important in the analysis of the wind effect on structures.
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2. Problem description

A numerical method is developed to explore the mechanisms of interaction between a vibrating
structure and its surrounding flow in time domain. In particular, a problem of flow past a surface-
mounted elastic fence is selected. By varying the fundamental frequency of the fence, the flow
fields as well as the along-wind response of the fence are examined.

The numerical computations are carried out under a flow condition depicted in Fig. 1. The fence
height {) is 40 m. The approaching flow velocity profile, which is set at the section with a
distance of B upstream the fence, is of the type of one-to-seven powerdgvibdtion with an
edge velocity olJ, (40 m/s) and a boundary layer thickned¥ ¢f 7H. The corresponding Reynolds
number Re=UH/Vv; v being the kinematic viscosity of air) is equal to %.10°. The elastic
fence is made of steel, with a Young's modulus of>200° N/m?and two selected values of modal
damping ratios {1 .= 2% and 5% respectively) for the first two modes. The thickness of the fence
varies from 0.05 to 0.47 m, corresponding to reduced velocitigs (,/ (f;H), f1 being the
fundamental frequency of the fence) varying from 38 to 4.

3. Numerical method

The simulations contain two parts of dynamic computations, whiehperformed alternatively
during the calculation process. To predict the unsteady turbulent flow around the fence, a weakly-
compressible-flow method (Song and Yuan 1988), together with the Smagorinsky subgrid-scale
turbulence model (Smagorinsky 1963) is adopted. In the second part of the calculations, the fence
structure is treated as a linear, multi-degree-of-freedom system with proportional damping. For each
fence element, the axial force is neglected, and the net wind force is converted to an equivalent
lateral force and bending moment (see Fig. 2) based on a consistent approach. The history of the
fence response is calculated based on the mode superposition method.
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Fig. 1 Sketch of the problem Fig. 2 Sketch of the MDOF fence system
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After an instantaneous flow field is simulated, the pressure distribution along the fence is taken as
an input to calculate the structural response. The resulting deflection and the vibration speed of the
fence are then fed back to the boundary specifications of the fence for the flow calculation in the
following time step. The alternative solutions of the instantaneous flow field and the along-wind
fence response are considered the results of the interactive dynamic behaviors of the two.

4. Results
4.1. Flow field without interaction

An initial calculation is performed to simulate the flow as the fence is ridig Q). Figs. 3
illustrate the history of the normalized vorticity field {defined @s=H /Uy(dv/ dx—du/ dy)},
around the fence within a typical period. A process of vortex formation and detachment is clearly
detected. The history of the drag coefficie@ €2Fy/ pU2H, Fp being the drag force per unit
width of the fence) in Fig. 4 also indicates the unsteady feature of the flow. Two peak values are
detected in the spectrum of the drag coefficient (Fig. 5). The corresponding Strouhal numbers
{St=(fH/U,), f being the dominant frequency of the flow} are respectively 0.0323 and 0.0606.

4.2. Tip response of the fence

By varying the reduced velocity, it is found in all cases that the tip deflects periodically. Figs. 6
illustrate a typical example of the tip history of the respondd,and{; , are equal to 12 and 2%,
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Fig. 3 Normalized vorticity fields at three instants
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Fig. 6 Tip response histories (= 12, {; ;= 2%)

whereA, V anda represent respectively the tip deflection, velocity and acceleration of the vibrating
fence. As the tip deflection is at a maximum or minimum value, the instantaneous tip speed is zero.
Meanwhile, the corresponding tip acceleration reaches a maximum level but is in an opeasite di

Figs. 7 depict the average values of the tip defiec(Ay), velocity V) and accelerationsg)
with the two modal damping ratios at various reduced velocitiesUAmcreases, the mean tip
deflection of the fence also increases (Fig. 7a). Since the tip vibrates symmetrically, the mean tip
velocities ¥,) and accelerationg{) in all cases are nearly zero (Figs. 7b and 7c). Additionally, the
variation of modal damping ratio does not appear to affect all the meatitiggan

As the variations of the tip response are concerned, calculated results (Figs. 8) show that the mode
damping ratio play an important role in affecting the root-mean-square values of the tip deffggtion (
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Fig. 7 Mean quantities of tip response at variokg. 8 Root-mean-square quantities of tip response at
reduced velocities various reduced velocities

velocity (V;) and accelerationa(), especially when resonance occurs or when the fence becomes
relatively soft U, > 35). In the case that the fundamental frequency of the féf)ds équal to the most
dominant vortex frequency (or whéh=16.5, being the reciprocal of the Strouhal number corresponding
to 0.0606), peak values &f, V; anda, are obtained. As the reduced velocity increases, the fluctuating
guantities start to decrease uniil reaches a value of about 20. After that, more significant peak
values of the fluctuating quantities are obtained wheis near the shedding frequency (or when
U, =31, being the reciprocal of the Strouhal number equal to 0.0323). Afexceeds about 33y
remains a trend of decrease; so does the trend @f the case with a greater value of modal
damping {;,=5%). Within the same range &f,, however, tendencies of dramatic increases are
obtained fora,, and forV, in the case with a smaller value of modal dampifig= 2%).
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5. Discussion

Though the problem case may be somewhat impractical, the outcome from the numerical results
is considered fruitful. By combiningwo sets of solvers, the merical model is applicable to
predict the dynamic behaviors of the flow and the vibrating fence in time series, and allows for
detailed examinations on the vibration mechanisms.

As wind passes the fence, vortices are generated and then produce flow unsteadiness. Twi
dominant frequencies are found: one related to the shear layer vortices and the other one subject t
vortex shedding. As the spectrum@f (Fig. 5) is examined, the peak correspondinGte 0.0606
appears more significant. The unsteady flow pattern has been monitored bgtRAN{997) in a
water tunnel, and the correctness of the numerical results, such as the mean velocity profiles ai
various cross-sections of the flow field, has been confirmed by comparing with the experimental
data from Guptaet al (1987). For a uniform flow past a normal solid fence in an open flow field at
a Reynolds number of 10the Strouhal number is about 0.14 (Pearce, Qasim, Maxwell and
Parameaswaran 1992), while in the present case the corresponding value is about one-half. Th
reason, as explained by Faagal (1997), is due to the fact that the formevolmes merging of
vortices from both sides of the fence tips and there is no vortex merging in the latter case.
Additional results (Fang, Hsieh, Jong and She 1997) also show that the normalized flow field
becomes independent of the Reynolds numbeReasxceeds about Y0Further investigations on
the effect of the fence geometry, in terms &@fH, have also been included (Faegal 1997).
Therefore, detailed discussions on the flow features are not intended in the present study.

In the problem of a steady flow past a two-dimensional, spring-supported, damped structure with a
rectangular shape, as described by Blevins (1971), the amplitude of the lateral vibrations isféaety af
by the reduced velocity and the damping ratio. When the fundamental frequency of the structure equals t
the shedding frequency of the flow, the motion of the vibration becomes significant due to the occurrence
of resonance. The resulting vibration amplitude decreases with an increase of the structure damping. O
the other hand, as the flow speed increases so that the corresponding reduced velocity becomes larg
flutter may occur if the structure damping cannot overcome the effect of the aerodynamic damping. In
contrast, the present study illustrates an additional evidence of the effect of flow-induced vibration.

As the resulting wind load (drag) varies with time, it causes the elastic fence to vibrate. Within the
range of the selected reduced velocities, the tip deflection is periodic and is symmetric to an equilibrium
deflected position corresponding to that produced by the average wind load, as can be seen from the resu
in Figs. 6 and 7. The results in Figs. 7 also indicate that the modal damping ratio has no effect on
the mean quantities of the tip response, whicleegywith general concepts of structure dynamics.

The extent of the modal damping effect on the fluctuating quantities of the tip response, on the
other hand, is different. Fig. 8a shows that there exist two peak valugsasfU, equals to 16.5
and 31, corresponding to the cases that the fundamental frequency of the fence is equal to either @
the dominant frequencies of the flow. At these two resonance stages, the modal damping effect become
significant. Similarly, large values dd. are found as the fence becomes relatively ddft=(38).

In the present case, the effect of the interaction (aerodynamic damping) is mainly induced by a change
of surface load due to the structural motion relative to the wind speed. To investigate the extent of this
effect, Fig. 9 illustrates the calculated spectr&€fn several selected cases (no interactiolde 16.5,

31, 38;{1,=2%). The comparison shows that the resulting wind loads appear insensitive to the fence
motions. Further examination on the tip motion histories in theldas88 and{; ;= 2% (Figs. 10) show
that higher-mode response becomes excited, compared to tlovse ia Figs. 6. Additional evidence
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can also be found by comparing the spectra of the tip acceleration (see Fig. 11). In the case tha
U, =38, besides the first two peaks associated with the occurrence of resonance, a third peak is detecte
at a Strouhal number corresponding to the second-mode frequency of the fence. Moreover, this peal
becomes more significant in the case with a smaller value of modal damping. In contrast, excitation
of second-mode response also occurs at resonance but the peak values are relatively small.

6. Conclusions

The unsteady turbulent flow around a surface-mounted elastic fence as well as the along-wind fence
response was investigated numerically. By solving alternatively two sets of equations, one for the simulation
of the unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, the
mechanisms of the fence vibration under wind action were examined. The proposed numerical method i
considered to be a useful tool for the analysis of problems involving flow-induced vibration. To be more
practical,however, future developments of thamarical method should concentrate on the investigation
of the effect of approaching flow characstigs (such as the unsteadiness and turbe)en

Based on the computational results, several conclusions are drawn as follows:

1. At a high Reynolds number, the flow around the fence is essentially unsteady and is dominated by
two frequencies: one related to the shear layer vortices and the other one subject to dolitay. she
The resulting unsteady wind load causes the elastic fence to vibrate in the alongreatidrdi

2. The tip deflection is periodic and is symmetric to an equilibrium deflected position, corresponding
to the average wind load.

3. Modal damping has no effect on the mean tip response. However, it becomes important to the
fluctuating response quantities, especially when resonance occurs or when the fence become
relatively soft.

4. The root-mean-square values of the tip response can be enhanced under two situations: one
that when resonance occurs; the other one is that when the fence is relatively soft, which leads
to excitation of higher-mode vibration.
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