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Numerical study of turbulent wake flow
behind a three-dimensional steep hill
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Abstract. A numerical investigation on the turbulent flows over a three-dimensional steep hill is
presented. The numerical model developed for the present work is based on the finite volume method anc
the SIMPLE algorithm with a non-staggered grid system. Starldamhodel and Shih’s non-linear model

are tested for the validation of the prediction accuracy in the 3D separated flow. Comparisons of the mean
velocity and turbulence profiles between the numerical predictions and the measurements show good
agreement. The Shih’s non-linear model is found to predict mean flow and turbulence better than the
Standardk-¢£. Flow patterns have also been examined to explain the difference in the cavity zone between
2D and 3D hills.
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1. Introduction

Prediction of the tuoulent flows over steep terrain plays a dominant role in many engineering
applications such as the safety of structures, extraction of wind energy, pollutant dispersion, wind
damage on agriculture and forestry, and aviation safety. However, comparatively fewer investigations
have been made of turbulent wake flows behind steep terrain; see, for example, (Coéleocaad
1992, Kobayashiet al 1994, Ferreiraet al 1995, Kimet al 1997, Utnes and Eidsvik 1996).
Prediction accuracy of numerical solutions for mean velocity as well as turbulence in the separated
region has not been made fully clear.

This paper aims to provide a detailed numerical study of therategd flows behind a circulailh
having a cosine-squared cross section and a maximum slope of aBpuan82to evaluate the
numerical solutions of the equations of motion and the associated turbulence models. In the
following section, the rmerical model and the discretization procedure are described. Detailed
comparisons with experimental data and discussion of the results are presented in Section 3. The
final section provides concluding remarks regarding turbulence model for the prediction of the
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turbulent wake flow behind steep terrain.
2. Numerical model
2.1. Governing equations and turbulence model

The Reynolds averaged Navier-Stokes equations abhdlémce models Eqgs. (1)-(4re used in
the present study, providing information on the mean velocity compone(tii® overbar is dropped
for simplicity) along the directions;, the static pressurp, turbulence kinetic energik and its

dissipatione .
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In these equationg is the fluid density angi is the laminar viscosity. The constan@y( C, 0Ok,
O¢) in Egs. (3) and (4) are assigned to standard values (1.44, 1.92, 1.0, 1.3) (Jones and Launde
1972). The turbulent viscosity; is defined as a function of turbulence kinetic energy and
dissipation :
k2
He = pCuE (5)

The fluctuating velocity components are identified by the turbulent Reynolds stress tensor. The
expression of the Reynolds stress is an important factor for successful simulations of the turbulent
wake flows. In this study, a nonlinear expression proposed by &hial (1995) is used to
approximate the Reynolds stress.

— 2 K? K®
up Uy = ékdij _ZCy;Sj + 2C2;2(_ SkQyi + QuSy) (6)

This expression has several advantages compared to the stigdaddy viscosity model which
corresponds to the first two terms on the right-hand side of Eq. (6) with a co@igtaft09. First,
this model is fully realizable (Schumann 1977, Lumley 1978). It will not produce negative energy
components and will not violate the Saw/s inequality between turbulent velocities. Second, the
effective eddy viscsity is anisotropic as it should be. The coefficie@sand C, in the Shih’s
model are determined from the following relations :
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2.2. Numerical scheme

In the Cartesian coordinate systen(j = 1, 2, 3), the governing Egs.){{4) can be written in the
form of general transport equation as

opu¢ _(ED
> C X L0200, s, ()
where I, stands for diffusion coefficients arf), denotes source terms of tgeverning equations.
Table 1 lists the contributions &%, andS, for eachg- equation.
To suit the computation of complex flow, the non-staggered grid system is used. The governing
equations are rewritten in the cilinear coordinate system :

opY,9 _ 990
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where the contravariant velocities,(V, W) are given by
U Ex Ey Ez u
V| = J|Nx Ny N4 |V
W[4y 4w

Table 1 ¢, Iy, S, for the governing equations

Equation ) r, S,
Mass 1 - 0
17 d —
Momentum U u _ i + _(_pu_l u’' )
ox; 0 t
Turbulence Energy k u+ = - pW% — pe
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Dissipation £ u+
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the coefficientoy is
94194
T ox, ox
and the Jacobiad, is defined by

oXx,y, Z Xe Ye %
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In this study, finite volume method is used to discretize the governing equations over a non-
orthogonal mesh :

aph = Zanb%b+bq, nb=WESNBT 9
nb
whereW, E, S, N, B, T indicate west, east, south, north, bottom and top sides of the finite volume,
andP denotes the center of the finite volume (see Fig. &jeb, is the source term.

The SIMPLE algorithm (Patankar 1980) is used. The QUICK (Leonard 1979) scheme is employed
for the convection terms in the Navier-Stokes equations, the first order upwind difference for the
convection terms in the equationslofind €, and the second-order central difference for the other
terms. The Rhie and Chow's PWIM (pressure weightedrpolation method) (Rhie and Chow
1983) is used to avoid pressure-velocity decoupling.

2.3. Boundary conditions

The inlet boundary is located BQupstream of the center of the hill. At this section the influence
of the hill may be neglected. The inlet boundary conditions for the velocity components and the
turbulence kinetic energgire prescribed according to the experimental data for undisturbed flow
(Ishihara and Hibi 1998). The dissipation rate|s calculated by

3/44%/2
8=C‘ K

T | = min(kz, K9J) (20)

Fig. 1 Typical control volume
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Here z, is the normal distance away from the wall, anhdnd k denote the boundary layer depth
and von Karman's constant, respectively.

The boundary conditions used for the velocity are :logrithmic law (Launder and Spalding 1974)
on the lower boundary and hill; rigid stress-free on upper and lateral side boundaries and a simple
outflow condition of zero gradient on the outlet locatedH 3dwnstream of the center of thdl.h
The zero gradient is assumed for the pressure at all boundaries.

The shear stress parallel to the wall is calculated by

- PKCY 2ky/2U,,
Y In(ze/ 20)

Here,z is the normal distance away from the whlh represents the velocity component parallel to
the wall, andkp is the turbulence kinetic energy. The subscRptlenotes the center of the wall-
adjacent cellz, is roughness length and is set to be 0.3 mm according to the experiment (Ishihara
and Hibi 1998). This approach is similar to that proposed by Launder and Spalding (1974) for
smooth wall, assuming in the wall-adjacent cell a logarithmic velocity profile, a constant-stress layer
and local equilibrium of the turbulence. Theeah stressr, is considered as a drag term to be
included in the momentum equations for the wall-adjacent cells.

The cell-averaged production kfP,, and the dissipation rate, are used as the source terms of
the transport equation of the turbulence kinetic energy for the wall-adjacent cells. They can be
computed from the volume average R and € of the wall-adjacent cells, and are approximated
with a depth average :
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The convective and diffusive wall fluxes for turbulence kinetic energy are set to zero.
The dissipation rate is not solved at the wall-adjacent cells, but is prescramstrding to local
equilibrium:
C3/ kg2

& = K (14)

3. Results and discussion
3.1. Flow configuration

To evaluate the performance of thebilence model, data obtained from a wind tunnel study
(Ishihara and Hibi 1998) are used. The experiment was conducted in a return wind tunnel with a
working section of 1.1 m wide, 0.9 m high and 7 m long. The wind speed outside the boundary
layer, Uf, was maintained at 5.9 m/s. The simulated turbulent boundary layer was about 0.36 m
thick at the point where the hill was mounted and had a surface Reynolds nwaper, of 6.4.

This implies that the flow waserodynamically rough and hence independent of the Reynolds
number. Measurements were made using split-fiber probes. Calibration procedures have beer
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I 2L=200mm
Fig. 2 Coordinate system and notations

described by the authors (Ishihara, Hibi and Oikawa 1999). The velocity profiles on the flat floor at
4.6 m downstream of the contraction exit are adequately represented by the logarithmic law,

U/u=k" In((z-d)/ z), with u-=0.32 m/s,z=0.3mm andd=3 mm. Considering that simulated
boundary layer has a scale of 1/1000, the equivalent full zcade0.3 m, which is characteristic of a
forest covered hill.

The model hill has a cosine-squared cross-section and can be expressed as :

O
0 2 2
0 20 AX +Y O /2+ 2 .
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O
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Here, the hill heightH is 40 mm and the base radiusis equal to 100 mm. Fig. 2 shows the
coordinate system wherg, y and z are the streamwise, spanwise and vertical directions,
respectively. In the«-direction, zero is the center of hill. A second vertical coordiaater -z is
also used to denote height above the local surface.

The integration domain has 6Dlength, 20H width and 22.51 high. Calculation was performed
with 70>< 35 32 grid nodes in th&-, y- andzdirection, respectively. A uniform grid was used in
the cross-wind direction, and a non-uniform grid was adopted in the longitudinal and vertical
direction. Typical mesh used in the simulation is presented in Fig. 3.

3.2. Mean flow fields

Predicted profiles of streamwise and vertical velocity at different stations in the central plane of
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Fig. 3 Typical mesh used in the simulation
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Fig. 4 Comparison of predicted and measured mean velocity profiles in the central plane of the 3D hill: (a)
streamwise velocity; (b) vertical velocity
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Fig. 5 Comparison of predicted and measured mean velocity profiles x/tHe= 0 plane: (a) streamwise
velocity; (b) spanwise velocity; (c) vertical velocity

the hill are given in Fig. 4. The velocity components are normalized by the free stream velocity
Uws. Standardk-& model and Shih's nonlinear model vyield virtually identical results on the
upstream side of the hill. Relatively large differences were obtained inside the separated region,
where the predicted streamwise velocity by standasdwas higher than the experimental value.
The main reason is presumed to be due to the overestimate of the turbulence kinetic energy in the
separated region. The recovery region appears to be represented well by this model, but this is
fortuitous and simply due to the premature reattachment. Moreover, the stkrglanddel fails to
reproduce the updraft formed behind the hill. In contrast, the predicted velocity by Shih's nonlinear
model is in good agreement with the measurements, except in the region behind the reattaching
point where the predictions display a slow recovery.

Fig. 5 shows the vertical profiles of mean velocities inxhél = 0 plane. Since the flow doesn't
separate at these locations, the stan#tasdmodel is also able to give a good agreement with the
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Fig. 6 Traces over the 3D hill

measurements.

To understand how the fluid particles go in and out of the separated region, three-dimensional
particle traces were made. Fig. 6 shows that eleven particles start from the upstream fooilof the h
The particles near the central plane pass around behind the hill and enter the separated regior
These particles are lifted toward thiditbp by the upward flow on the lee slope of the hill and then
escape downstream. This flow pattern is considerably different from that behind the two-dimensional
ridge. In order to examine the flow structure behind the three-dimensidhah fletail, mean
velocity vectors and flow patterns in some representative cross-sections are depicted in Figs. 7-8.

Fig. 7a shows mean velocity vectors and streamlines in the central plane dl. tiideh most
striking behavior is that opened streamlines are shown in the three-dimensional wake, while closed
sheamlines are revealed in the two-dimensional case (Fig. 7b) (Ishihara and Hibi 2000). The reason wh
the flow pattern changes can be interpreted using the continuity eg(2tiéox + ow/ 0z = —dv/ dy)

In the case of two-dimensional separation, the circulating flow must be formedidfy $he
continuity equation. While in the case of three-dimensional separation it is possible to satisfy the
continuity equation without the circulating flow, since the spanwise flow existsiely, when flow

field in the central plane is considered asva-dimensional field, theetm of —dv/dy becomes a
source or a sink in the fictitious two-dimensional field. It becomes a source whédy is
negative and a sink adv/dy is positive. In fadt/ dy is negative in the lee of the hill. The
movement of the flow can be easily observed from the velocity vectors in the parallel surface of the hill.

Fig. 8 illustrates mean velocity vectors ataif pattern in the grallel surface of the hill a'/H
=0.025. Two vortices with the normal (to the hill surface) component of vorticity are observed on
the lee slope of the hill. These vortices are sustained by the flows from at least three opposing
directions. Clearly a three-way-encounter pattern can only occur in three-dimensional separated
regions. With these two vortices, the flow toward the symmetry-planerrisefbin the lee of the
hill. This flow contributes to the sourceri in the fictitious two-dimensional field.

Fig. 9 demonstrates mean velocity vectors and flow patterns in the sevesakbtsg planes. As
expected the spanwise velocity component at the position/ bf= -2.5 (Fig. 9a) is everywhere
upward and outward as the flow is diverted. These flows generate clockwise vorticity component in
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Fig. 7 Comparison of flow patterns behind (a) 3D and (b) 2D hill. The streamlines (solidlines) are
superimposed on the mean velocity vectors
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Fig. 8 Mean velocity vectors and flow pattern in the parallel surface of the 3D hill

the near-wall region on the right-hand side of the hill and counterclockwise component on the left-
hand side. The velocity field changes rapidly over the hill as the floarses. The downstream
section in a spanwise plane through the rear edge of thech#l £ 2.5) is shown in Fig. 9b. The
transverse flow is broadly inward and downward, but with a rather more complex structure than that
in the upstream section. Although there is relatively strdognwash in the upper wake.ete is

weak upwash. This pattern may be better explained by the distribution of longitudinal vorticity in
the section behind the hill, where there is a trailing-vortex pair with central upwash. At the section
of x/H =10, the trailing-vortex pair is lifted and weakened, and a lower vortex pair appears
outside, but of opposite sense to the trailing-vortex (Fig. 9c).
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Fig. 9 Mean velocity vectors and flow patterns at{aH =-2.5, (b)x/H = 2.5 and (cx/ H = 10 section

3.3. Turbulence fields

Besides the mean velocity, it is of interest to krfmw turbulence might be modified as the flow
goes over the hill. Turbulenceatures behind three-dimensional stedfs lhave not often been
investigated using turbulence modelling.

Fig. 10 shows vertical profiles of turbulent kinetic energy in the central plane of the hill.
Prediction by Shih’'s nonlinear model gives better agreement with the experimental value than the
standardk-& model. Especially, in the separated region, the overestimate of the turbulent energy
from the standard-& model is evidently improved by Shih’s nonlinear model. The results on the
upstream side of the hill andltop are also slightly improved by Shih's model.
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Fig. 10 Comparison of predicted and measured vertical profiles of the turbulent kinetic energy in the central
plane of the 3D hill
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Fig. 11 Comparison of predicted and measured normal stress profiles in the central plane of the 3D hill: (a)
streamwise component; (b) spanwise component; (c) vertical component
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Fig. 12 Comparison of predicted and measured normal stress profiles ¥ ithe O plane: (a) streamwise
component; (b) spanwise component; (c) vertical component

The vertical profiles of the three normal stress components in the central plane of the hill are
plotted in Fig. 11. As anticipated, the standi&rél model underestimates;, and overestimateg,, .
In contrast, the predictions from the Shih’s model reproduce the anisotropy of the normal stress due
to the nonlinear terms in Eq. (6), which increageand decrease,,. However, improvement on the
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upstream slope of the hill is small. This disagreement seems to leitetirto an inadequate
modelling of the turbulence transpoerms in Eqg. (6), which is a major approximation made in the
Reynolds stress algebraic equation models. In this region, the advection of upstream turbulence may
have a dominant effect on the turbulence charisttes.

Fig. 12 shows the vertical profiles of the three normal stress components xit Hhe O plane.
Shih’s model shows better agreement with the measurements than the dtaadaodel.

4. Conclusions

A numerical investigation on the turbulent wake flow behind a three-dimensional steep hill has been
conducted by using standarg model and Shih's nonlinear model. The Shih's nonlinear model is found
to predict mean flow and turbulence better than the stakdamiodel and shows good agreement with
measurements. Flow patterns behind the circular hill have been carefully examined to explain the feature:
of three-dimensional turbulent wake flows. It is noted that opened streamline pattern is formed in the
three-dimensional separated region, while a closed one is revealed in the two-dimensional case. Tw
vortices, having a three-way-encounter pattern, are also observed on the lee slopé. fttesehvortices
cause the flow toward the symmetry-plane and sustain the separation with an opened streamline pattern.
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