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Abstract. A numerical investigation on the turbulent flows over a three-dimensional steep h
presented. The numerical model developed for the present work is based on the finite volume meth
the SIMPLE algorithm with a non-staggered grid system. Standard k-ε model and Shih’s non-linear mode
are tested for the validation of the prediction accuracy in the 3D separated flow. Comparisons of the
velocity and turbulence profiles between the numerical predictions and the measurements show
agreement. The Shih’s non-linear model is found to predict mean flow and turbulence better th
Standard k-ε . Flow patterns have also been examined to explain the difference in the cavity zone be
2D and 3D hills.

Key words: finite volume method; three-dimensional steep hill; turbulent recirculating flow; turbulent mod

1. Introduction

Prediction of the turbulent flows over steep terrain plays a dominant role in many enginee
applications such as the safety of structures, extraction of wind energy, pollutant dispersion
damage on agriculture and forestry, and aviation safety. However, comparatively fewer investig
have been made of turbulent wake flows behind steep terrain; see, for example, (Coelho andPereira
1992, Kobayashi et al. 1994, Ferreira et al. 1995, Kim et al. 1997, Utnes and Eidsvik 1996)
Prediction accuracy of numerical solutions for mean velocity as well as turbulence in the sep
region has not been made fully clear.

This paper aims to provide a detailed numerical study of the separated flows behind a circular hill,
having a cosine-squared cross section and a maximum slope of about 32o, and to evaluate the
numerical solutions of the equations of motion and the associated turbulence models. 
following section, the numerical model and the discretization procedure are described. Det
comparisons with experimental data and discussion of the results are presented in Section
final section provides concluding remarks regarding turbulence model for the prediction o
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turbulent wake flow behind steep terrain. 

2. Numerical model

2.1. Governing equations and turbulence model

The Reynolds averaged Navier-Stokes equations and turbulence models Eqs. (1)-(4) are used in
the present study, providing information on the mean velocity components uj (the overbar is dropped
for simplicity) along the directions xj, the static pressure p, turbulence kinetic energy k and its
dissipation ε .

(1)

(2)

(3)

(4)

In these equations, ρ is the fluid density and µ is the laminar viscosity. The constants (Cε1, Cε2, σk ,
σε ) in Eqs. (3) and (4) are assigned to standard values (1.44, 1.92, 1.0, 1.3) (Jones and L
1972). The turbulent viscosity µt is defined as a function of turbulence kinetic energy a
dissipation : 

(5)

The fluctuating velocity components are identified by the turbulent Reynolds stress tenso
expression of the Reynolds stress is an important factor for successful simulations of the tu
wake flows. In this study, a nonlinear expression proposed by Shih et al. (1995) is used to
approximate the Reynolds stress.

(6)

This expression has several advantages compared to the standard k-ε eddy viscosity model which
corresponds to the first two terms on the right-hand side of Eq. (6) with a constant Cµ = 0.09. First,
this model is fully realizable (Schumann 1977, Lumley 1978). It will not produce negative en
components and will not violate the Schwarz’s inequality between turbulent velocities. Second, t
effective eddy viscosity is anisotropic as it should be. The coefficients Cµ and C2 in the Shih’s
model are determined from the following relations :
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erning
where

2.2. Numerical scheme

In the Cartesian coordinate system xj ( j = 1, 2, 3), the governing Eqs. (1)-(4) can be written in the
form of general transport equation as 

(7)

where Γφ stands for diffusion coefficients and Sφ denotes source terms of the governing equations.
Table 1 lists the contributions of Γφ and Sφ for each φ - equation.

To suit the computation of complex flow, the non-staggered grid system is used. The gov
equations are rewritten in the curvilinear coordinate system : 

(8)

where the contravariant velocities (U, V, W ) are given by
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Table 1 φ , Γφ , Sφ  for the governing equations

Equation φ Γφ Sφ

Mass 1 − 0

Momentum ui µ

Turbulence Energy k

Dissipation ε
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the coefficient qjk is

and the Jacobian, J, is defined by

In this study, finite volume method is used to discretize the governing equations over a
orthogonal mesh : 

(9)

where W, E, S, N, B, T indicate west, east, south, north, bottom and top sides of the finite volu
and P denotes the center of the finite volume (see Fig. 1). Here bφ is the source term.

The SIMPLE algorithm (Patankar 1980) is used. The QUICK (Leonard 1979) scheme is emp
for the convection terms in the Navier-Stokes equations, the first order upwind difference fo
convection terms in the equations of k and ε , and the second-order central difference for the ot
terms. The Rhie and Chow’s PWIM (pressure weighted interpolation method) (Rhie and Chow
1983) is used to avoid pressure-velocity decoupling.

2.3. Boundary conditions

The inlet boundary is located 30H upstream of the center of the hill. At this section the influen
of the hill may be neglected. The inlet boundary conditions for the velocity components an
turbulence kinetic energy are prescribed according to the experimental data for undisturbed 
(Ishihara and Hibi 1998). The dissipation rate, ε , is calculated by

(10)
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Fig. 1 Typical control volume
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Here zn is the normal distance away from the wall, and δ and κ denote the boundary layer dept
and von Karman’s constant, respectively.

The boundary conditions used for the velocity are :logrithmic law (Launder and Spalding 1
on the lower boundary and hill; rigid stress-free on upper and lateral side boundaries and a 
outflow condition of zero gradient on the outlet located 30H downstream of the center of the hill.
The zero gradient is assumed for the pressure at all boundaries. 

The shear stress parallel to the wall is calculated by

Here, zP is the normal distance away from the wall, UP represents the velocity component parallel 
the wall, and kP is the turbulence kinetic energy. The subscript P denotes the center of the wall
adjacent cell. z0 is roughness length and is set to be 0.3 mm according to the experiment (Is
and Hibi 1998). This approach is similar to that proposed by Launder and Spalding (197
smooth wall, assuming in the wall-adjacent cell a logarithmic velocity profile, a constant-stress
and local equilibrium of the turbulence. The shear stress τw is considered as a drag term to b
included in the momentum equations for the wall-adjacent cells.

The cell-averaged production of k, Pk , and the dissipation rate, ε , are used as the source terms 
the transport equation of the turbulence kinetic energy for the wall-adjacent cells. They c
computed from the volume average of Pk and ε of the wall-adjacent cells, and are approximat
with a depth average :

(12)

(13)

The convective and diffusive wall fluxes for turbulence kinetic energy are set to zero.
The dissipation rate ε is not solved at the wall-adjacent cells, but is prescribed according to local

equilibrium:

(14)

3. Results and discussion

3.1. Flow configuration

To evaluate the performance of the turbulence model, data obtained from a wind tunnel stu
(Ishihara and Hibi 1998) are used. The experiment was conducted in a return wind tunnel 
working section of 1.1 m wide, 0.9 m high and 7 m long. The wind speed outside the bou
layer, Uref , was maintained at 5.9 m/s . The simulated turbulent boundary layer was about 0
thick at the point where the hill was mounted and had a surface Reynolds number, u*z0 / ν, of 6.4.
This implies that the flow was aerodynamically rough and hence independent of the Reyn
number. Measurements were made using split-fiber probes. Calibration procedures have
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described by the authors (Ishihara, Hibi and Oikawa 1999). The velocity profiles on the flat flo
4.6 m downstream of the contraction exit are adequately represented by the logarithmic law,

U / u* = κ-1 ln((z- d) / z0), with u* = 0.32 m/s, z0= 0.3 mm and d = 3 mm. Considering that simulated
boundary layer has a scale of 1/1000, the equivalent full scale z0 is 0.3 m, which is characteristic of a
forest covered hill.

The model hill has a cosine-squared cross-section and can be expressed as :

(15)

Here, the hill height H is 40 mm and the base radius L is equal to 100 mm. Fig. 2 shows th
coordinate system where x, y and z are the streamwise, spanwise and vertical directio
respectively. In the x-direction, zero is the center of hill. A second vertical coordinate z' = z − zs is
also used to denote height above the local surface.

The integration domain has 60H length, 20H width and 22.5H high. Calculation was performed
with 70� 35� 32 grid nodes in the x-, y- and z-direction, respectively. A uniform grid was used i
the cross-wind direction, and a non-uniform grid was adopted in the longitudinal and ve
direction. Typical mesh used in the simulation is presented in Fig. 3.

3.2. Mean flow fields

Predicted profiles of streamwise and vertical velocity at different stations in the central pla

zs
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Fig. 2 Coordinate system and notations

Fig. 3 Typical mesh used in the simulation



Numerical study of turbulent wake flow behind a three-dimensional steep hill 323

locity
the
region,
e.
y in the
 this is

linear
taching

t
the

ill: (a)
the hill are given in Fig. 4. The velocity components are normalized by the free stream ve
Uref . Standard k-ε model and Shih’s nonlinear model yield virtually identical results on 
upstream side of the hill. Relatively large differences were obtained inside the separated 
where the predicted streamwise velocity by standard k-ε was higher than the experimental valu
The main reason is presumed to be due to the overestimate of the turbulence kinetic energ
separated region. The recovery region appears to be represented well by this model, but
fortuitous and simply due to the premature reattachment. Moreover, the standard k-ε model fails to
reproduce the updraft formed behind the hill. In contrast, the predicted velocity by Shih's non
model is in good agreement with the measurements, except in the region behind the reat
point where the predictions display a slow recovery.

Fig. 5 shows the vertical profiles of mean velocities in the x / H = 0 plane. Since the flow doesn’
separate at these locations, the standard k-ε model is also able to give a good agreement with 

Fig. 4 Comparison of predicted and measured mean velocity profiles in the central plane of the 3D h
streamwise velocity; (b) vertical velocity

Fig. 5 Comparison of predicted and measured mean velocity profiles in the x / H = 0 plane: (a) streamwise
velocity; (b) spanwise velocity; (c) vertical velocity
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To understand how the fluid particles go in and out of the separated region, three-dimen

particle traces were made. Fig. 6 shows that eleven particles start from the upstream foot of till.
The particles near the central plane pass around behind the hill and enter the separated
These particles are lifted toward the hilltop by the upward flow on the lee slope of the hill and the
escape downstream. This flow pattern is considerably different from that behind the two-dimen
ridge. In order to examine the flow structure behind the three-dimensional hill in detail, mean
velocity vectors and flow patterns in some representative cross-sections are depicted in Figs. 

Fig. 7a shows mean velocity vectors and streamlines in the central plane of the hill. The most
striking behavior is that opened streamlines are shown in the three-dimensional wake, while 
sheamlines are revealed in the two-dimensional case (Fig. 7b) (Ishihara and Hibi 2000). The reas
the flow pattern changes can be interpreted using the continuity equation 
In the case of two-dimensional separation, the circulating flow must be formed to satisfy the
continuity equation. While in the case of three-dimensional separation it is possible to satis
continuity equation without the circulating flow, since the spanwise flow exists. Namely, when flow
field in the central plane is considered as a two-dimensional field, the term of  becomes a
source or a sink in the fictitious two-dimensional field. It becomes a source when 
negative and a sink as  is positive. In fact,  is negative in the lee of the hill. 
movement of the flow can be easily observed from the velocity vectors in the parallel surface of th

Fig. 8 illustrates mean velocity vectors and flow pattern in the parallel surface of the hill at z' /H
= 0.025. Two vortices with the normal (to the hill surface) component of vorticity are observe
the lee slope of the hill. These vortices are sustained by the flows from at least three op
directions. Clearly a three-way-encounter pattern can only occur in three-dimensional sep
regions. With these two vortices, the flow toward the symmetry-plane is formed in the lee of the
hill. This flow contributes to the source term in the fictitious two-dimensional field. 

Fig. 9 demonstrates mean velocity vectors and flow patterns in the several transverse planes. As
expected the spanwise velocity component at the position of x / H = −2.5 (Fig. 9a) is everywhere
upward and outward as the flow is diverted. These flows generate clockwise vorticity compon

∂u ∂x⁄ ∂w ∂z⁄+ ∂v– ∂y⁄=( )

∂v– ∂y⁄
∂v ∂y⁄

∂v ∂y⁄ ∂v ∂y⁄

Fig. 6 Traces over the 3D hill
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the near-wall region on the right-hand side of the hill and counterclockwise component on th
hand side. The velocity field changes rapidly over the hill as the flow separates. The downstream
section in a spanwise plane through the rear edge of the hill (x / H = 2.5) is shown in Fig. 9b. The
transverse flow is broadly inward and downward, but with a rather more complex structure tha
in the upstream section. Although there is relatively strong downwash in the upper wake, there is
weak upwash. This pattern may be better explained by the distribution of longitudinal vortic
the section behind the hill, where there is a trailing-vortex pair with central upwash. At the se
of x / H = 10, the trailing-vortex pair is lifted and weakened, and a lower vortex pair app
outside, but of opposite sense to the trailing-vortex (Fig. 9c).

Fig. 7 Comparison of flow patterns behind (a) 3D and (b) 2D hill. The streamlines (solidlines
superimposed on the mean velocity vectors

Fig. 8 Mean velocity vectors and flow pattern in the parallel surface of the 3D hill
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3.3. Turbulence fields

Besides the mean velocity, it is of interest to know how turbulence might be modified as the flow
goes over the hill. Turbulence features behind three-dimensional steep hills have not often been
investigated using turbulence modelling.

Fig. 10 shows vertical profiles of turbulent kinetic energy in the central plane of the 
Prediction by Shih’s nonlinear model gives better agreement with the experimental value th
standard k-ε model. Especially, in the separated region, the overestimate of the turbulent e
from the standard k-ε model is evidently improved by Shih’s nonlinear model. The results on
upstream side of the hill and hilltop are also slightly improved by Shih's model. 

Fig. 9 Mean velocity vectors and flow patterns at (a) x / H = −2.5, (b) x / H = 2.5 and (c) x / H = 10 section

Fig. 10 Comparison of predicted and measured vertical profiles of the turbulent kinetic energy in the 
plane of the 3D hill
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The vertical profiles of the three normal stress components in the central plane of the h
plotted in Fig. 11. As anticipated, the standard k-ε model underestimates σu and overestimates σw .
In contrast, the predictions from the Shih’s model reproduce the anisotropy of the normal stre
to the nonlinear terms in Eq. (6), which increase σu and decrease σw . However, improvement on the

Fig. 11 Comparison of predicted and measured normal stress profiles in the central plane of the 3D 
streamwise component; (b) spanwise component; (c) vertical component

Fig. 12 Comparison of predicted and measured normal stress profiles in the x / H = 0 plane: (a) streamwise
component; (b) spanwise component; (c) vertical component
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upstream slope of the hill is small. This disagreement seems to be attributed to an inadequate
modelling of the turbulence transport terms in Eq. (6), which is a major approximation made in t
Reynolds stress algebraic equation models. In this region, the advection of upstream turbulen
have a dominant effect on the turbulence characteristics.

Fig. 12 shows the vertical profiles of the three normal stress components in the x / H = 0 plane.
Shih’s model shows better agreement with the measurements than the standard k-ε model.

4. Conclusions

A numerical investigation on the turbulent wake flow behind a three-dimensional steep hill has
conducted by using standard k-ε model and Shih's nonlinear model. The Shih's nonlinear model is fo
to predict mean flow and turbulence better than the standard k-ε model and shows good agreement wi
measurements. Flow patterns behind the circular hill have been carefully examined to explain the 
of three-dimensional turbulent wake flows. It is noted that opened streamline pattern is formed
three-dimensional separated region, while a closed one is revealed in the two-dimensional ca
vortices, having a three-way-encounter pattern, are also observed on the lee slope of the hill. These vortices
cause the flow toward the symmetry-plane and sustain the separation with an opened streamline p

References

Coelho, P.J. and Pereira, J.C.F. (1992), “Finite volume computation of the turbulent flow over a hill emp
2D or 3D non-orthogonal collocated grid systems”, Int. J Num. Methods Fluids, 14, 423-441.

Ferreira, A.D., Lopes, A.M.G., Viegas, D.X., and Sousa, A.C.M. (1995), “Experimental and numerical simu
of flow around two-dimensional hills”,  J. Wind Eng. Ind. Aerod., 54/55, 173-181.

Ishihara, T. and Hibi, K. (1998), “An experimental study of turbulent boundary layer over a steep hill”, Proc. of
15th National Sym. on Wind Eng., 61-66 [In Japanese].

Ishihara, T., Hibi, K. and Oikawa, S. (1999), “A wind tunnel study of turbulent flow over a three-dimens
steep hill”, J. Wind Eng. Ind. Aerod., 83, 95-107.

Ishihara, T. and Hibi, K. (2000), “Numerical simulation of turbulent flow over a steep hill”, J. Wind Eng., 83,
175-188 [In Japanese].

Jones, W.P. and Launder, B.E. (1972), “The prediction of laminarization with a two-equation mod
turbulence”, Int. J. Heat Mass Transfer, 15, 301-314.

Kobayashi, M.H., Pereira J.C.F. and Siqueira, M.B.B. (1994), “Numerical study of turbulent flow over and
model forest on a 2D hill”, J. Wind Eng. Ind. Aerod., 53, 357-374.

Kim, H.J., Lee, C.M., Lim, H.C. and Kyong, N.H. (1997), “An experimental and numerical study on the 
over two-dimensional hills”, J. Wind Eng. Ind. Aerod., 66, 17-33.

Lumley, J. L. (1978), “Computational modeling of turbulent flows”, Adv. Appl. Mech., 18, 124-176.
Leonard, B.P. (1979), “A stable and accurate convective modelling procedure based on quadratic u

interpolation”, Comput. Methods Appl. Mech. Eng., 19, 59-98.
Launder, B.E. and Spalding, D.B. (1974), “The numerical computation of turbulent flows”, Comput. Methods

Appl. Mech. Eng., 3, 269-289.
Patankar, S.V. (1980), Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
Rhie, C.M. and Chow, W.L. (1983), “Numerical study of the turbulent flow past an airfoil with trailing e

separation”, AIAA J., 21, 1525-1532.
Shih, T.H., Zhu, J. and Lumley, J.L. (1995), “A new Reynolds stress algebraic equation model”, Comput.

Methods Appl. Mech. Eng., 125, 287-302.
Schumann, U. (1977), “Realizability of Reynolds-stress turbulence models”, Phys. Fluids, 20, 721-725.
Utnes, T. and Eidsvik, K.J. (1996), “Turbulent flows over mountainous terrain modelled by the Rey

equations”, Boundary-Layer Meteorol., 79, 393-416.


	Numerical study of turbulent wake flow behind a three-dimensional steep hill
	Takeshi Ishihara†
	Department of Civil Engineering, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

	Kazuki Hibi‡
	Wind Engineering Group, Institute of Technology, Shimizu Corp., 3-4-17, Etchujima, Koto-ku, Tokyo...
	Equation
	f
	Gf
	Sf
	Mass
	1
	-
	0
	Momentum
	ui
	m
	Turbulence Energy
	k
	Dissipation
	e
	Fig.�1�Typical control volume
	Fig.�2�Coordinate system and notations
	Fig.�3�Typical mesh used in the simulation
	Fig.�4�Comparison of predicted and measured mean velocity profiles in the central plane of the 3D...
	Fig.�5�Comparison of predicted and measured mean velocity profiles in the x�/�H�=�0 plane: (a) st...
	Fig.�6�Traces over the 3D hill
	Fig.�7�Comparison of flow patterns behind (a) 3D and (b) 2D hill. The streamlines (solidlines) ar...
	Fig.�8�Mean velocity vectors and flow pattern in the parallel surface of the 3D hill
	Fig.�9�Mean velocity vectors and flow patterns at (a) x�/�H�=�-2.5, (b) x�/�H�=�2.5 and (c) x�/�H...
	Fig.�10�Comparison of predicted and measured vertical profiles of the turbulent kinetic energy in...
	Fig.�11�Comparison of predicted and measured normal stress profiles in the central plane of the 3...
	Fig.�12�Comparison of predicted and measured normal stress profiles in the x�/�H�=�0 plane: (a) s...






