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Aeroelastic stability analysis of a bridge deck with added
vanes using a discrete vortex method

l. Taylor?

Department of Mechanical Engineering, University of Strathclyde, Glasgow, G11XJ, Scotland, UK

M. Vezza*

Department of Aerospace Engineering, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK

Abstract. A two dimensional discrete vortex method (DIVEX) has been developed at the Department
of Aerospace Engineering, University of Glasgow, to predict unsteady and incompressible flow fields
around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the
velocity field, into a series of vortex particles that are free to move in the flow field that the particles
collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and
presents the results of calculations on a recent suspension bridge deck section. The results from both th
static and flutter analysis of the main deck in isolation are in good agreement with experimental data. A
brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented
and the results confirm previous analytical and experimental studies. The aeroelastic study is carried out
firstly using aerodynamic derivatives extracted from the DIVEX simulations. These results are then
assessed further by presenting results from full time-dependent aeroelastic solutions for the original deck
and one of the vane cases. In general, the results show good qualitative and quantitative agreement with resul
from experimental data and demonstrate that DIVEX is a useful design tool in the field of wind engineering.

Key words: computational wind engineering; discrete vortex method; bridge aerodynamics flow control;
flutter; aerodynamic derivatives.

1. Introduction

As modern suspension bridge designs span ever longer distances, the necessity for more
lightweight materials and the increased fleiipiof the structure place challenging demands on the
engineer. Aeroelastic phenomena such as vortex induced vibration, galloping and flutter, arising
from the response of the structure to the unsteady aerodynamic loading have a much greater impac
on the design. The catastrophic failure of the original Tacoma Narrows bridge in 1940 is a famous
example of the importance of the fluid-structure interaction as a result of the loading induced by the
unsteady aerodynamics (Billah and Scanlan 1991). Since the Tacoma incident, the analysis of
unsteady aerodynamics and its effect on the aestael@esponse of suspension bridges has become
a major topic of research. As a result, the understanding and analysis of the aerodynamic loading
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has advanced rapidly and techniques for predicting the onset of flutter instabilities have been
established for manyears (Scanlaet al 1971, 1992 and 1997). Much of this analysis, however, is
based on experimental investigations of the unsteadgdynamics from wind tunnel tests of either
sectional or full aeroelastic models of the structure.

For the structural analysis of bridges, the development of computational finite element models
have enabled designers to experiment with a range of structural configurations and systems withou
the need to resort to expensive and time consuming physical testing. However, despite the rapid
advances in computational hardware and the development of many numerical models in recent
years, the development and application of aerodynamic models for the analysis of bridges has
lagged far behind that of structural models. For this reason, much of the analysis of the
aerodynamic loading and aeroelastic response of bridges is still obtained from experiragmgal te
However, accurate prediction of the flow field for such problems using computational methods is
becoming increasingly important, to help improve the understanding of fluid-structure interactions in
bluff body flows, due to the financial cost and time involved erfgrming wind tunnel tests.
Although this presents a challenge to computational methods, recent developments in both software
and hardware have been providing valuable insights.

The use of vanes to modify the aeroelastic behaviour of bridge decks has received some attentiot
in recent times. On bluff cross-sections, the use of fairings has been shown to improvetmeroela
stability (Hustonet al 1988, Nagaaet al 1993). For streamlined sections, such as the Great Belt
East main span, it has been suggested that the critical flutter velocity may be increased by the
addition of guide vanes (Cobo Del Aretb al. 1997, Kobayashi and Nagaoka 1992). More recent
control studies on decks with different flap configurations have also been made (Kwon and Chang
1999, Omenzetteet al 1999). To date these studies have mainly employed simplified aerodynamic
models in the simulations, for example methods based on Theodorsen’s theory. This approach
imposes limitations on the flow regime which can be modelled, that is bodies exhibiting trailing
edge separation under low amplitude oscillatory conditions. Hence non-linear, amplitude dependent
aerodynamic effects are died.

The discrete vortex method is a numerical technique that has undergone significant development
in recent years and has besmown to be well suited to analysing unsteady and highlsratgu
flow fields. Comprehensive reviews of the discrete vortex method are given in Sarpkaya (1989), Leonard
(1980) and Puckett (1993). Vortex methods are based on the discretisation of the vorticity field
rather than the velocity field, into a series of vortex particles. These particles are of finite core size,
each carrying a certain amount of cirdigda, andare tracked throughout the flow field that they
collectively induce. As a result of this approach, the model does not require a calculation mesh and
provides a very different method of analysis to more traditional grid based computational fluid dynamics
methods. One of the main advantages that vortex methods have, is that the Lagrangian nature of th
method significantly reduces some of the problems that are associated with grid based methods
These primarily include numerical diffusion and difficulties in achieving resolution of small scale vortical
structures in the flow. Vortex particles are naturally concentrated into areas of non-zero vorticity and
enable vortex methods to capture these small scale flow structures in more detail. Dispensing with a
calculation mesh also eases the task of modeling a more arbitrary range of geometries and in
particular, vortex methods are well suited to the analysis of moving body problems.

This paper presents a two dimensional discrete vortex method (DIVEX) that has been developed
at the Department of Aerospace Engineering, University of Glasgow. The model was originally
developed to analyse the dynamic stall phenomena on #enmehaergoing a pitching motion (Lin
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et al. 1996 and 1997a,b). DIVEX has recently been further developed and validated for the analysis
of a range of bluff body flow fields (Taylat al 1998 and 1999).

The results presented herein are from an analysis of the Great Belt East suspension bridge (Larse
et al. 1992 and 1993). This bridge, opened in June 1998, has a main span of 1624 m and has bee
one of the major recent projects in the fields of suspension bridge aerodynamics and wind
engineering. As a result, it has been the subject of numerous studies, both experimental anc
numerical, giving a significant database which can be used to assess the predictions from DIVEX.

DIVEX can be used purely as an aerodynamic tool or in full aeroelastic mode. In the former case
both static and moving body problems can be modelled. The application of flow control devices,
both passive and active, are briefly studied. The results successfully demonstrate the expectec
variation in the critical flutter velocity for varying configurations of flow control devices and are in
good agreement with previous experimental and analytical studies.

2. Discrete vortex method
2.1. Mathematical formulation
Two dimensional incompressible viscous flow is governed by the vorticity-stream function form of

the continuity and Navier-Stokes Egs. (1) and (2) :
Continuity equation :

Y = - (1)
Vorticity transport equation :
9
%’+(G.D)Z) = V7% @)
where the vorticity,Z) , Is defined as the curl of the velocity, Eq. (3) @nd is a vector potential
defined by Eq. (4)
N = . 502
w=[10xU with @w=kw 3
- - - = >
U=0OxY¥, O0.¥=0, and Y=ky (4)

The vorticity transport Eq. (2) defines the motion of vorticity in the flow due to convection and
diffusion. As the pressure field is not explicitly defined in Eq. (2), the variation of vorticity at a
point in the flow is therefore influenced by the surrounding velocity and vorticity of the flow.

The calculations are subject to the far field boundary conditions, Eg. (5), and the no-slip and no-
penetration conditions at the surface of the body Eq. (6).

==
U=U., or [OW=0O¥, on S, (5)
==
u=U; o [OW=0W on § (6)
The boundary conditions normal and tangential to the body surface cannot both be applied

explicitly as only one component can be specified. Only the normal component (no-penetration) is
satisfied explicitly although the tangential component (no-slip) is implicitly satisfied due to the
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representation of the internal kinematics of each solid body. The velocity at a point  on the surface
or within bodyi can be described by

= = 2 >3

Ui = Uic+ Q x (fp—Tric) (7)
wherefic is a fixed reference point on the body. This may also be represented in stream function form

Y. = —2Q, in B (8)

The relationship between the velocity and the vorticity is obtained through the application of
Green’s theorem to Eq. (1) for the flow regibrand Eq. (8) for the body regid$, and combining
them through the boundary conditions, Egs. (5) and (6) (Lin 1997b). From this, the velocity field is
calculated using the Biot-Savart law, which expresses the velocity in terms of the vorticity field. For
a pointp outside the solid region, the velocity is given by :

>
Gp = Gm+2i J’ MdF+J’2Q J_P_)dB (9)
F

[P S

The pressure distribution on the body surface can be evaluated by integrating the pressure gradier
along the body contour. The pressure gradient at hodethe body surface is:

ﬁ
10P _ : DUc 5 3 D.Q > 3 3 2 Jw
5as = ~Sop —R.(f - fo) 5y + S(F=fo Q"+ v=r (10)

The first three terms on the RHS are due to the body motion and represent the surface tangentis
components of the body reference point acceleration, the rotational acceleration and the centripeta
acceleration. The final term is the negative rate of \tyrticreation at the body surface and is
calculated from the vorticity distributiooreated in the control zone between titnét andt (Lin
1997b and Spalart 1988). The resulting pressure distribution is integrated around the laogytsurf
calculate the aerodynamic forces on the body and the moment about the body reference point.

2.2. Numerical implementation

The numerical implementation of the governing equations is presented in more detaiktralin
(1996 and 1997a, b) and Taylor (1999) with only a brief summary presented here. The governing
equations defined in the previous section are for most practical cases impossible to solve
analytically. For this reason, an approximate solution may be obtained numerically through the
discretisation of the vorticity field into a series of vortex particles. As the vorticity in the flow
originates on the body surface, the discretisation of the vorticity near to the body is important so
that its subsequent evolution is well captured. The idea that the vorticity is createdinnlayer
around the body surface indicates that the flow can be divided into two zones. The first is the
control zone near the body surface in which vorticity is created, and the second is the wake zone
which contains the remaining vorticity that is shed from the body surface through convection and
diffusion. These two sub-regions of the flow utilise different discretisation procedures.

For a two dimensional body, a polygonal representation of the bodgcsur$ created by
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connecting a series ™ nodes with straight lines forming a series of panels. Each panel is further
subdivided intoK equal length sub-panels. The implementation of the no-penetration boundary
condition on each panel enables the surface circulation depsitg be calculated at each body
node. They distribution is further broken down into vortex blobs, one for each sub-panel, with the
centre of the blob positioned a distant@bove the middle of the sub-panel. The spacing of the
blobs is designed to ensure overlapping cores, a condition required for accurate computations with
vortices (see for example Perlman 1985), and the height is of the order of the core radius.

These vortices are released from the body into the wake, where tk#iorm are determined
from convection and diffusion at each time step. The simulation of vortex convection and diffusion
employs an operator splitting technique, where the vorticity transport Eq. (2) is split into a separate
convection part Eq. (11) and diffusion part Eq. (12), both of which are solved selipesia
proposed by Chorin (1973).

%’ﬂﬁ.ﬂ)wz 0 (11)
99 _ P (12)
ot

As vorticity forms one of the conserved properties of the particles in inviscid flows, the velocity at
the centre of each vortex particle is equal to the uglo¢ the vorticity transport which is evaluated
from (9). The diffusion process is modelled using a random walk procedure (Chorin 1973) which
satisfies the Gaussian distribution of zero mean and standard devwﬁ' RnAt) or in non-
dimensional form./(24t/Re) , wherdt is the timestep anBeis the Reynolds number of the flow.

The calculation of the velocity of a single vortex particle requires the influence of all regions of
vorticity in the flow field to be taken into account Eq. (9). For a flow field contaihngarticles
this leads to an operation count@{N?), which becomes prohibitive aincreases. A fast algorithm
for the velocity calculation has been included in DIVEX. The procedure uses a zonal decomposition
algorithm for the velocity sumation and lows the effect of groups of particles on the velocity to
be calculated using a single series expansion, thus significantly reducing the operation count of the
calculation. The algorithm utilises a hierarchical technique similar in nature to the adaptive Fast
Multipole Method (Carrieret al. 1988), so that the largest possible group of particles is used for
each series expansion. The resulting operation cour@@(d+NlogN), and therefore offers a
significant improvement to the calculation efficiency.

3. Bridge deck example

To investigate the capability of DIVEX for the analysis of the flow field around a representative
geometry, a study of the Great Belt East Suspension bridge has been undertaken. The Great Be
East bridge with a main span of 1624 m, opened in June 1998, and forms one of the longest single
spans in the world. The bridge forms part of the link between the islands of Funen and Zealand in
Denmark (Larseret al 1992 and 1993). The basic profile and structural properties of the main span
section are given in Fig. 1. All of the analyses presented herein are performed on the main
suspended span in a smooth flow field at a Reynolds number°ofFa0 the static and flutter
computations the time steftU/B = 0.005 is employed along with a first order Euleresok for
vortex particle convection. The main deck is discretised using 144 panels, with 7 vortices per panel.
Vortex core radius and creation distance are B02id 0.000B respectively.
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Property
Deck width: B (m) 31.0
I A Deck Height: D (m) 4.4
3
DI < a\! . > Mass: m (Kg/mz) 22.74x1?
< > Inertia: / (Kgm /m) 2.47x10
B Vertical freq. : fj, (Hz) 0.099
Torsional freq. : f¢, (Hz) 0272
Along wind freq: fp, (Hz) 0.052
Damping ratio : § 0.002

Fig. 1 Basic dimensions and properties of the Great Belt East Bridge

3.1. Summary of static results

A series of calculations on the static sectioaravperformed at a range of angles of incidence
from -10° to +10. Most modern long span suspension bridge designs, as in this case, utilise a
streamlined box section to ensure that the increase in the force coefficients with incidence is not so
dramatic to produce a fundamentally unstable design.

In the O case, the flow over the bridge deck is virtually fully attached along the top and bottom
surfaces, with the main separation zone stemming from the rear top and bottom corners, as
illustrated in Fig. 2. The prime reason for this is the streamlined profile in conjunction with the
simplified geometric model employed, which omits more compéatures such as crash barriers
and cable supports that would disturb the flow.

The static force coefficients for the section are presented in Figs. 3 and 4, compared with
experimental results from a section model test (Reinboldl 1992) and also with results from a
finite difference grid based merical method (Kuroda 1997). The wind tunnel tests were performed
with a free stream turbulendgetensity of 6.5-7%C, and Cy are non-dimensionalised with respect
to the along wind body dimensiong and B?, whereasC, is non-dimensionalised using the
crosswind dimensior).

The results presented by Kuroda (1997) also use a simplified deck section with the barriers
omitted. Results at’dncidence are also presented in Table 1 along with other vortex method results
on the Great Belt section (Walther 1994 and Larseral 1997a and 1997b), where again a
simplified model geometry was employed. In general the resultsarenwell with the experiment,
in particularC_. andCy , and show favourable comparison with the alternative numerical methods.

The model predictions fdCp at @ are low when compared to experiment, a feature which reflects

Fig. 2 Predicted flow field around Great Belt East main suspended sectidimaid@nce
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Great Belt East Bridge, Main Span : Mean Drag and Lift Cosfficients Great Belt East Bridge, Main Span : Mean Moment Coefficient
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Fig. 3 Variation of mean lift and drag coefficient&ig. 4 Variation of mean moment coefficient with
with angle of incidence angle of incidence

Table 1 Comparison of experimental and calculated static force coefficients for Great Belt East main
suspended span

Co C. dC/da Cy dGy/da St
Results (@=0°) (a=0°) (a=0) (a=0) (a=0°) (a=0°
- - radt - rad?
Experiment (Reinholet al. 1992) 0.57 0.067 4.37 0.028 1.17 0.12-0.14
DIVEX 0.3544 0.127 6.58 0.0519 1.34 0.13-0.16
Finite difference (Kuroda 1997) 0.4811 -0.1792 7.567 0.0345 1.135 0.163

Vortex Method (Larsert al 1997a and 1997b)  0.430 0.000 4.13 0.027 1.15 0.168

the lack of modelling of the crash barriers and parapets in the calculations (earakeri997b),
elements that were included in the wind tunnel model. The Strouhal number obtained from the
DIVEX results AtU /B =0.02) are very close to the experiment. A range is given because the
power spectrum of the lift data exhibits a broad band response, as indicated in Fig. 5. Although the
spectrum in smooth flow might be expected to be narrow band, the slenderness of the deck reduce
the coherence of the vortex wake and hence increases the bandwidth.

3.2. Aerodynamic derivatives with/without added vanes

On flexible long span bridges coupled degree of freedatteflis often encountered and careful
design of the section is essential to ensure that the critical flutter velocity is within the relevant
design criteria. For small amplitude oscillations, the unsteatgdynamic load coefficients may be
treated as linear in the structural displacements and their first derivatives. In the first phase of this
work, DIVEX has been employed purely in aerodynamic mode to produce a set of force time
histories obtained from a series of tests with the deck undergoing prescribed harmonic motions for
the individual degrees of freedom. In theory, it is possible to extract eighteen derivatives from such
tests Hi', P andA;, i = 1-6) as defined below (Jaet al 1996)
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Great Belt East, Main Span : Power Spectrum of Lift Coefficient
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Fig. 5 Power Spectrum of lift coefficient at zero degrees incidence
L, = %pUZ(ZB)[KHI(K)E . KH;(K)EL—G +K2H(K)a + KZH;;(K)ED3 +KH3 (0B + KZHg(K)}Eﬂ

D

1 . . e Ba . . N N
) = EpUZ(ZB)[KPl(K)‘B +KP3(K) + KP3(K)a +K2P4(K)E +KP(K)] +K2P6(K)§J

M, = %pUZ(ZBZ)[KAi(K)E + KA;(K)EL—G + KA (K)a + KZA;;(K)E3 + KA;(K)E +K2Ag(K)}Eﬂ

which can be used to estimate flutter onset speeds given the structural data. Traditionally, the mos
important influence on flutter characteristics have beenAfh@ndH;" derivatives, associated with
coupled transverse and torsional motion. In the present work the derivatives associated with the lift
and moment only are presented, although future studies will investigate the influence of along wind
derivatives. The derivatives for the deck in isolation are illustrated in Figs. 6 and 7, compared with
the experimentally obtained counterparts (Reinletlél 1992). The wind tunnel tests were carried

out in smooth flow (0.5% turbulence intensity).

The resulting flutter speeds obtained from selected derivative sets are indicated in Table 2, in
which the experimentally derived data of Reinheid al. (1992) are also included. The value
associated with the inclusion &f derivatives provides an assessment based on the quasi steady
expressions foP;-P; (Singhet al 1996).

An interesting point to note with the Great Belt flutter derivatives is Ahatloes not exhibit the
change in sign that is characteristic for 1DOF torsional flutter. The derivtiveepresents the
aerodynamic damping in the torsional direction and the “negative damping” criteria necessary for
torsional flutter only occurs at positiv . Hence, a®\; remains negative over the whole range of
reduced velocity, the flutter oscillation for this section is a 2DOF coupled flutter in both the vertical
and torsional directions. From Table 2 it can be seen that the along wind component is not involved
in this aeroelastic instability.

For streamlined sections such as that of the Great Belt East bridge, the critical flutter velocity may
be increased by the addition of guide vanes that adowscbntrol devices. Such devices have been
studied by Cobo Del Arcet al (1997), Kobayashiet al (1992) and Ostenfelét al (1992)
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Great Belt East, Main Span: Hi Flutter Derivatives Great Belt East, Main Span: Hi Flutter Derivatives
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Fig. 6 H" derivatives for Great Belt East main spanFig. 7 A" derivatives for Great Belt East main span

Table 2 Flutter velocities for Great Belt East Main Span

Derivatives Critical Velocity U. (m/s)
H, A (i=1-3) 74.9
H, A (i=1-4) 71.9
H;, A (i = 1-4), P;-P5 (gs) 71.9
Experiment 70-75

indicating the effects of both passive and actively controlled devices. It is essential that the guide vanes b
located far enough from the bridge deck as is practical to ensure operation outside of the bridge shee
layers. Typically the vanes have a chord length that is around 10% of the deck section width.

A brief study into the effect of passive and active control vanes on the flutter stability has been
carried out using the DIVEX code. As part of the study, various configurations of passive and active
control vanes have been applied to the Great Belt East main suspended span to investigate the|
effect on the flutter criteria (Fig. 8). As this is only a study of the effect of the vanes, a basic
elliptical cross section is used. Each of the vanes has chord length 10% of the bridge section width.
The effect on the flutter velocity of passive vanes at different angles, and of active vanes at different
phase angles, were studied. In the calculations, the bridge was given a forced sinusoidal oscillatior
in either the transverse or torsional DOF and for the passive calculations, the vanes were oscillatec
in phase with the bridge and with the same amplitude and frequency. To demonstrate the active
vanes, the control surfaces were given a forced motion that simulates the displacements that woulc
be activated by the controller when the bridge is oscillating in the torsional DOF. The prescribed
displacements of the vanes dhestrated in Fig. 9 for a phase angpe 6C.

Varying performance of the flow control vanes can be achieved by using different values for the
amplitude factor,M, and the phase relative to the bridge sectipn,In each calculation, the
downstream vane is in opposite phase to the upstream vane. Five different configurations of guide
vanes were used, two of which were passive, where the vanes are effectively rigidly fixed to the
bridge section, and three using active vanes, each with different phase angles as summarised below
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=TT —

Fig. 8 Great Belt East main suspended section with flow control vanes - DIVEX model

Relative motion of Bridge Deck with active vanes : Amp, Factor=-2, Phase=60deg

— dspiacement i torsion DOF
-—= Upln-m vane - angule tﬁs;i iavarment
————— wrstream vane — Inguh v dsplacemer

aosin@D

Bridge torsional motion o(t) =

Angle (degrees)

Vane motion :a,(t) = Maosmgzu— (LE

Fig. 9 Prescribed motion of active vanes

(1) Passive vanes a
(2) Passive vanes a
(3) Active vanes M=2,9=0C
(4) Active vanes M= 2, p=60
(5) Active vanes M =2, ¢9=9C
The flutter derivatives are relatively unaffected by the vanes, with the exceptien ahd A; for
the active vanes witlp= 60" and ¢= 9, as illustrated in Figs. 10 and 11. The flutter velocity for
each configuration is calculated using the structural properties given in Fig. 1 using the assumption
that the addition of the vanes have no effect on the mass and stiffness of the structure. This
assumption may be a little unrealistic but allows an investigation of how the aerodynamic properties
of the bridge are affected by the flow control devices. The results are given in Table 3.

As expected, the passive guide vanes do not have a large effect on the critical flutter velocity and
in fact very slightly reduce the stability of the bridge. This result agrees with the findings of the
studies in Ostenfel@ét al (1992) and Kobayastdt al (1992). For the active vanes tipes 0° case
gives a slightly lower flutter speed than the bridge deck without vanes. The flow control vanes can
improve the aeroelastic stability by effectively increasing the aerodynamic dampingA;The
derivative is the damping coefficient and tHg¢ derivative is the coupling damping coefficient for
torsional motion. It is clear that the changes in magnitude of these two derivatives in particular
affects the aerodynamic damping of the structure and hence the critical flutter velocity.

The reduction in flutter velocity for thep=0° case is to be expected from the results of
Kobayashiet al (1992). The two cases wherg> 0" show a significant change in the flutter
velocity, and in thep= 9 calculation, no flutter velocity was found even when the aerodynamic

I
*“C%



Aeroelastic stability analysis of a bridge deck with added vanes using a discrete vortex nmzgffod

Great Belt East Bridge, Main Span : Fiutter derivative H2 Great Belt East Bridge, Main Span : Flutter derivative A2
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Fig. 10 H; derivatives for the Great Belt East mairFig. 11 A; derivatives for Great Belt East main span
span with flow control vanes

Table 3 Effect of passive control vanes on critical flutter velocity

Configuration Critical VelocityU. (m/s)
No vanes 71.6
Passive vanesr = 0° 68.2
Passive vanesr = 4° 70.9
Active vanesp=0° 65.5
Active vanes:p=60° 108.1
Active vanes:p=90° Not found in range

derivatives were extrapolated beyond the range of reduced velocities used in the calculations. Again,
this agrees with the other studies from which it was found tha¥] ascreases, the flutter velocity

tends to infinity for a phase of 90or even less at the higher amplitude factors. ¢or60°, the

flutter velocity has been ineased by approximately 51% in agreement with the previous studies.

3.3. Full aeroelastic solution

A dynamic solver has been implemented in the DIVEX code for the calculation of the time-
dependent aeroelastic response of 2-D bluff bodies, including bridge decks. The equations governing
the fluid-structure interaction are cast, for convenience, in first order form using non-dimensional
variables. For coupled vertical and torsional motion these are:

I

n 0 1 0 0 n

n' -Kg -2K,¢, O 0 n'l 4 C./m,
a 0 0 0 1 a 0
a’ 0 0 Kz -2K,¢,||a' Cu/l,

wheren=h/B, ()" =B/U) (d/dt), K is reduced frequencyp. andl, are reduced mass and inertia
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Fig. 14 FSI simulation of flow over Great Belt East (Enevoldseal 1999)

parameters.
The equations are integrated forward in time using the following fourth order Runge-Kutta scheme:

For systeny' = Ay + B

k, = Aty'(y)
! 1 i
ki = Aty %/t+ Eki—lg for =23
ky = Aty (y' +k)
t+At _ y'(_'_k_1.|_k_2+k—3+&1 +O(At5)

6 3 3 6

This scheme was employed to provide confirmation of the previotterflonset predictions for
the Great Belt East bridge. In particular, calculations have been performed for the deck in isolation
at U =70 m/s andJ =80 m/s, and for the case with passive vanes séettatthe main deck dt =
70 m/s. The results are illustrated in Figs. 12 and 13, which illustrate the vertical and torsional
response for each configuration. As expected the isolated deck is stable at 70 m/s, but unstable a
80 m/s, and the pattern of the developing instability is very similar to that predicted by Enevoldsen
et al. (1999), shown in Fig. 14.
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Fig. 15 Stills of the developing flutter instability of the Great Belt East main span with vafies) at T m/s

Note that torsion is dominant in this case with the oscillating frequency in between the vertical and
torsional natural frequencies, but driven very close to the latter, more so as the instability develops.
Snapshots from the growing instability of the deck with vanes arrangement are illustrated in Fig. 15.

4. Conclusions

A Discrete Vortex Method (DIVEX) has been developed at the Department of Aerospace
Engineering, University of Glasgow. A variety of test cases in the fields of aeronautics and wind
engineering have been studied. DIVEX has been applied to static and oscillating bridge deck
sections. The calculated flutter derivatives from oscillatory calculations are in good agreement with
experiment and also compare favourably with other computational methods. These derivatives have
been used to give an accurate prediction of the critical flutter velocity of the bridge section
examined. The effect of active and passive flow control devices on the structural stability of the
bridge deck have also been investigated and the dependency of flutter velocity on the phase of the
vane motion are in agreement with previous experimental and analytical studies. The results
illustrate the potential of the DIVEX code as a design tool for single and multiple body
configurations, where aeroelastic assessment can be based on the extraction of derivatives and/or tt
prediction of full aeroelastic response. Among future intended projects is a more detailed investigation
into the influence of along wind derivatives on the critical flutter speed of bridge decks.
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