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Aeroelastic stability analysis of a bridge deck with added
vanes using a discrete vortex method
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Abstract. A two dimensional discrete vortex method (DIVEX) has been developed at the Depar
of Aerospace Engineering, University of Glasgow, to predict unsteady and incompressible flow 
around closed bodies. The basis of the method is the discretisation of the vorticity field, rather th
velocity field, into a series of vortex particles that are free to move in the flow field that the par
collectively induce. This paper gives a brief description of the numerical implementation of DIVEX
presents the results of calculations on a recent suspension bridge deck section. The results from 
static and flutter analysis of the main deck in isolation are in good agreement with experimental d
brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also pres
and the results confirm previous analytical and experimental studies. The aeroelastic study is carr
firstly using aerodynamic derivatives extracted from the DIVEX simulations. These results are
assessed further by presenting results from full time-dependent aeroelastic solutions for the origin
and one of the vane cases. In general, the results show good qualitative and quantitative agreement w
from experimental data and demonstrate that DIVEX is a useful design tool in the field of wind engineeri

Key words: computational wind engineering; discrete vortex method; bridge aerodynamics flow co
flutter; aerodynamic derivatives.

1. Introduction

As modern suspension bridge designs span ever longer distances, the necessity fo
lightweight materials and the increased flexibility of the structure place challenging demands on t
engineer. Aeroelastic phenomena such as vortex induced vibration, galloping and flutter, a
from the response of the structure to the unsteady aerodynamic loading have a much greate
on the design. The catastrophic failure of the original Tacoma Narrows bridge in 1940 is a fa
example of the importance of the fluid-structure interaction as a result of the loading induced 
unsteady aerodynamics (Billah and Scanlan 1991). Since the Tacoma incident, the anal
unsteady aerodynamics and its effect on the aeroelastic response of suspension bridges has beco
a major topic of research. As a result, the understanding and analysis of the aerodynamic 
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has advanced rapidly and techniques for predicting the onset of flutter instabilities have
established for many years (Scanlan et al. 1971, 1992 and 1997). Much of this analysis, however
based on experimental investigations of the unsteady aerodynamics from wind tunnel tests of eithe
sectional or full aeroelastic models of the structure. 

For the structural analysis of bridges, the development of computational finite element m
have enabled designers to experiment with a range of structural configurations and systems 
the need to resort to expensive and time consuming physical testing. However, despite th
advances in computational hardware and the development of many numerical models in 
years, the development and application of aerodynamic models for the analysis of bridge
lagged far behind that of structural models. For this reason, much of the analysis o
aerodynamic loading and aeroelastic response of bridges is still obtained from experimental sting.
However, accurate prediction of the flow field for such problems using computational metho
becoming increasingly important, to help improve the understanding of fluid-structure interactio
bluff body flows, due to the financial cost and time involved in performing wind tunnel tests.
Although this presents a challenge to computational methods, recent developments in both s
and hardware have been providing valuable insights. 

The use of vanes to modify the aeroelastic behaviour of bridge decks has received some a
in recent times. On bluff cross-sections, the use of fairings has been shown to improve aerostic
stability (Huston et al. 1988, Nagao et al. 1993). For streamlined sections, such as the Great 
East main span, it has been suggested that the critical flutter velocity may be increased 
addition of guide vanes (Cobo Del Arco et al. 1997, Kobayashi and Nagaoka 1992). More rec
control studies on decks with different flap configurations have also been made (Kwon and 
1999, Omenzetter et al. 1999). To date these studies have mainly employed simplified aerodyn
models in the simulations, for example methods based on Theodorsen’s theory. This ap
imposes limitations on the flow regime which can be modelled, that is bodies exhibiting tra
edge separation under low amplitude oscillatory conditions. Hence non-linear, amplitude dep
aerodynamic effects are omitted.

The discrete vortex method is a numerical technique that has undergone significant develo
in recent years and has been shown to be well suited to analysing unsteady and highly separated
flow fields. Comprehensive reviews of the discrete vortex method are given in Sarpkaya (1989), L
(1980) and Puckett (1993). Vortex methods are based on the discretisation of the vorticity
rather than the velocity field, into a series of vortex particles. These particles are of finite core
each carrying a certain amount of circulation, and are tracked throughout the flow field that the
collectively induce. As a result of this approach, the model does not require a calculation me
provides a very different method of analysis to more traditional grid based computational fluid dyn
methods. One of the main advantages that vortex methods have, is that the Lagrangian natur
method significantly reduces some of the problems that are associated with grid based m
These primarily include numerical diffusion and difficulties in achieving resolution of small scale vo
structures in the flow. Vortex particles are naturally concentrated into areas of non-zero vortici
enable vortex methods to capture these small scale flow structures in more detail. Dispensing
calculation mesh also eases the task of modelling a more arbitrary range of geometries 
particular, vortex methods are well suited to the analysis of moving body problems. 

This paper presents a two dimensional discrete vortex method (DIVEX) that has been dev
at the Department of Aerospace Engineering, University of Glasgow. The model was orig
developed to analyse the dynamic stall phenomena on aerofoils undergoing a pitching motion (Lin
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et al. 1996 and 1997a,b). DIVEX has recently been further developed and validated for the an
of a range of bluff body flow fields (Taylor et al. 1998 and 1999).

The results presented herein are from an analysis of the Great Belt East suspension bridge
et al. 1992 and 1993). This bridge, opened in June 1998, has a main span of 1624 m and h
one of the major recent projects in the fields of suspension bridge aerodynamics and
engineering. As a result, it has been the subject of numerous studies, both experimen
numerical, giving a significant database which can be used to assess the predictions from DIV

DIVEX can be used purely as an aerodynamic tool or in full aeroelastic mode. In the forme
both static and moving body problems can be modelled. The application of flow control de
both passive and active, are briefly studied. The results successfully demonstrate the ex
variation in the critical flutter velocity for varying configurations of flow control devices and ar
good agreement with previous experimental and analytical studies.

2. Discrete vortex method

2.1. Mathematical formulation

Two dimensional incompressible viscous flow is governed by the vorticity-stream function for
the continuity and Navier-Stokes Eqs. (1) and (2) : 

Continuity equation :

(1)

Vorticity transport equation :

(2)

where the vorticity, , is defined as the curl of the velocity, Eq. (3) and  is a vector pote
defined by Eq. (4)

(3)

(4)

The vorticity transport Eq. (2) defines the motion of vorticity in the flow due to convection 
diffusion. As the pressure field is not explicitly defined in Eq. (2), the variation of vorticity a
point in the flow is therefore influenced by the surrounding velocity and vorticity of the flow. 

The calculations are subject to the far field boundary conditions, Eq. (5), and the no-slip an
penetration conditions at the surface of the body Eq. (6).

(5)

 (6)

The boundary conditions normal and tangential to the body surface cannot both be a
explicitly as only one component can be specified. Only the normal component (no-penetrat
satisfied explicitly although the tangential component (no-slip) is implicitly satisfied due to

∇2Ψ ω–=

∂ωωωω
∂t
------- U.∇( )ωωωω+ ν∇2ωωωω=

ωωωω ΨΨΨΨ

ωωωω ∇ U× with ωωωω kω==

U ∇ Ψ×= , ∇ .Ψ 0= , and Ψ kΨ=

U U∞= or ∇Ψ ∇Ψ∞= on S∞

U U i= or ∇Ψ ∇Ψ i= on Si
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representation of the internal kinematics of each solid body. The velocity at a point  on the s
or within body i can be described by 

(7)

where  is a fixed reference point on the body. This may also be represented in stream function 

(8)

The relationship between the velocity and the vorticity is obtained through the applicatio
Green’s theorem to Eq. (1) for the flow region F and Eq. (8) for the body region Bi , and combining
them through the boundary conditions, Eqs. (5) and (6) (Lin 1997b). From this, the velocity fi
calculated using the Biot-Savart law, which expresses the velocity in terms of the vorticity field
a point p outside the solid region, the velocity is given by : 

(9)

The pressure distribution on the body surface can be evaluated by integrating the pressure 
along the body contour. The pressure gradient at node j on the body surface is:

(10)

The first three terms on the RHS are due to the body motion and represent the surface ta
components of the body reference point acceleration, the rotational acceleration and the cen
acceleration. The final term is the negative rate of vorticity creation at the body surface and i
calculated from the vorticity distribution created in the control zone between time t-∆t and t (Lin
1997b and Spalart 1988). The resulting pressure distribution is integrated around the body suace to
calculate the aerodynamic forces on the body and the moment about the body reference poin

2.2. Numerical implementation

The numerical implementation of the governing equations is presented in more detail in Linet al.
(1996 and 1997a, b) and Taylor (1999) with only a brief summary presented here. The gov
equations defined in the previous section are for most practical cases impossible to 
analytically. For this reason, an approximate solution may be obtained numerically throug
discretisation of the vorticity field into a series of vortex particles. As the vorticity in the f
originates on the body surface, the discretisation of the vorticity near to the body is importa
that its subsequent evolution is well captured. The idea that the vorticity is created in a thin layer
around the body surface indicates that the flow can be divided into two zones. The first 
control zone near the body surface in which vorticity is created, and the second is the wak
which contains the remaining vorticity that is shed from the body surface through convectio
diffusion. These two sub-regions of the flow utilise different discretisation procedures.

For a two dimensional body, a polygonal representation of the body surface is created by

r

U i U ic ΩΩΩΩ i r p r ic–( )×+=

r ic

∇2Ψ i 2– Ω i in Bi=

Up U∞
1

2π
------ ω

F
∫ k r p r–( )×

rp r–
2

--------------------------dF 2Ω i
Bi

∫ k rp r–( )×
rp r–

2
--------------------------dBi+ +=

1
ρ
---∂P

∂s
------ s.

DUc

Dt
----------– n. r r c–( )DΩ

Dt
--------- s. r r c–( )Ω2 ν∂ω

∂n
-------+ +–=
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connecting a series of N nodes with straight lines forming a series of panels. Each panel is fu
subdivided into K equal length sub-panels. The implementation of the no-penetration boun
condition on each panel enables the surface circulation density, γ , to be calculated at each bod
node. The γ distribution is further broken down into vortex blobs, one for each sub-panel, with
centre of the blob positioned a distance δ above the middle of the sub-panel. The spacing of 
blobs is designed to ensure overlapping cores, a condition required for accurate computatio
vortices (see for example Perlman 1985), and the height is of the order of the core radius.

These vortices are released from the body into the wake, where their positions are determined
from convection and diffusion at each time step. The simulation of vortex convection and diff
employs an operator splitting technique, where the vorticity transport Eq. (2) is split into a se
convection part Eq. (11) and diffusion part Eq. (12), both of which are solved sequentially as
proposed by Chorin (1973).

(11)

(12)

As vorticity forms one of the conserved properties of the particles in inviscid flows, the veloc
the centre of each vortex particle is equal to the velocity of the vorticity transport which is evaluated
from (9). The diffusion process is modelled using a random walk procedure (Chorin 1973) 
satisfies the Gaussian distribution of zero mean and standard deviation  or in 
dimensional form , where ∆t is the timestep and Re is the Reynolds number of the flow. 

The calculation of the velocity of a single vortex particle requires the influence of all region
vorticity in the flow field to be taken into account Eq. (9). For a flow field containing N particles
this leads to an operation count of O(N2), which becomes prohibitive as N increases. A fast algorithm
for the velocity calculation has been included in DIVEX. The procedure uses a zonal decomp
algorithm for the velocity summation and allows the effect of groups of particles on the velocity 
be calculated using a single series expansion, thus significantly reducing the operation coun
calculation. The algorithm utilises a hierarchical technique similar in nature to the adaptive
Multipole Method (Carrier et al. 1988), so that the largest possible group of particles is used
each series expansion. The resulting operation count is O(N+NlogN), and therefore offers a
significant improvement to the calculation efficiency. 

3. Bridge deck example

To investigate the capability of DIVEX for the analysis of the flow field around a represent
geometry, a study of the Great Belt East Suspension bridge has been undertaken. The Gr
East bridge with a main span of 1624 m, opened in June 1998, and forms one of the longes
spans in the world. The bridge forms part of the link between the islands of Funen and Zea
Denmark (Larsen et al. 1992 and 1993). The basic profile and structural properties of the main 
section are given in Fig. 1. All of the analyses presented herein are performed on the
suspended span in a smooth flow field at a Reynolds number of 105. For the static and flutter
computations the time step ∆tU/B = 0.005 is employed along with a first order Euler scheme for
vortex particle convection. The main deck is discretised using 144 panels, with 7 vortices per
Vortex core radius and creation distance are 0.001B and 0.0005B respectively.

∂ω
∂t
------- U.∇( )ω+ 0=

∂ω
∂t
------- ν∇2ω=

2ν∆t( )
2∆t Re⁄( )
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3.1. Summary of static results

A series of calculations on the static section were performed at a range of angles of inciden
from -10o to +10o. Most modern long span suspension bridge designs, as in this case, uti
streamlined box section to ensure that the increase in the force coefficients with incidence is
dramatic to produce a fundamentally unstable design. 

In the 0o case, the flow over the bridge deck is virtually fully attached along the top and bo
surfaces, with the main separation zone stemming from the rear top and bottom corne
illustrated in Fig. 2. The prime reason for this is the streamlined profile in conjunction with
simplified geometric model employed, which omits more complex features such as crash barrie
and cable supports that would disturb the flow.

The static force coefficients for the section are presented in Figs. 3 and 4, compared
experimental results from a section model test (Reinhold et al. 1992) and also with results from a
finite difference grid based numerical method (Kuroda 1997). The wind tunnel tests were perform
with a free stream turbulence intensity of 6.5-7%. CL and CM are non-dimensionalised with respec
to the along wind body dimensions, B and B2, whereas CD is non-dimensionalised using the
crosswind dimension, D. 

The results presented by Kuroda (1997) also use a simplified deck section with the b
omitted. Results at 0o incidence are also presented in Table 1 along with other vortex method re
on the Great Belt section (Walther 1994 and Larsen et al. 1997a and 1997b), where again 
simplified model geometry was employed. In general the results compare well with the experiment,
in particular CL and CM , and show favourable comparison with the alternative numerical method

The model predictions for CD at 0o are low when compared to experiment, a feature which refle

Fig. 1 Basic dimensions and properties of the Great Belt East Bridge

Fig. 2 Predicted flow field around Great Belt East main suspended section at 0o incidence
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the lack of modelling of the crash barriers and parapets in the calculations (Larsen et al. 1997b),
elements that were included in the wind tunnel model. The Strouhal number obtained fro
DIVEX results (∆tU / B = 0.02) are very close to the experiment. A range is given because
power spectrum of the lift data exhibits a broad band response, as indicated in Fig. 5. Althou
spectrum in smooth flow might be expected to be narrow band, the slenderness of the deck 
the coherence of the vortex wake and hence increases the bandwidth. 

3.2. Aerodynamic derivatives with/without added vanes

On flexible long span bridges coupled degree of freedom flutter is often encountered and caref
design of the section is essential to ensure that the critical flutter velocity is within the re
design criteria. For small amplitude oscillations, the unsteady aerodynamic load coefficients may b
treated as linear in the structural displacements and their first derivatives. In the first phase 
work, DIVEX has been employed purely in aerodynamic mode to produce a set of force
histories obtained from a series of tests with the deck undergoing prescribed harmonic motio
the individual degrees of freedom. In theory, it is possible to extract eighteen derivatives from
tests (Hi

* , Pi
*  and Ai

* , i = 1-6) as defined below (Jain et al. 1996)

Fig. 3 Variation of mean lift and drag coefficients
with angle of incidence

Fig. 4 Variation of mean moment coefficient with
angle of incidence

Table 1 Comparison of experimental and calculated static force coefficients for Great Belt East
suspended span

Results
CD

(α = 0°)
CL

(α = 0°)
dCL/dα
(α = 0°)

CM

(α = 0°)
dCM / dα
(α = 0°)

St
(α = 0°)

- - rad-1 - rad-1

Experiment (Reinhold et al. 1992) 0.57 0.067 4.37 0.028 1.17 0.12-0.1
DIVEX 0.3544 0.127 6.58 0.0519 1.34 0.13-0.1
Finite difference (Kuroda 1997) 0.4811 -0.1792 7.567 0.0345 1.135 0.16
Vortex Method (Larsen et al. 1997a and 1997b) 0.430 0.000 4.13 0.027 1.15 0.16
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which can be used to estimate flutter onset speeds given the structural data. Traditionally, th
important influence on flutter characteristics have been the Ai

*  and Hi
*  derivatives, associated with

coupled transverse and torsional motion. In the present work the derivatives associated with 
and moment only are presented, although future studies will investigate the influence of along
derivatives. The derivatives for the deck in isolation are illustrated in Figs. 6 and 7, compare
the experimentally obtained counterparts (Reinhold et al. 1992). The wind tunnel tests were carrie
out in smooth flow (0.5% turbulence intensity).

The resulting flutter speeds obtained from selected derivative sets are indicated in Table
which the experimentally derived data of Reinhold et al. (1992) are also included. The valu
associated with the inclusion of P derivatives provides an assessment based on the quasi s
expressions for P1-P3 (Singh et al. 1996).

An interesting point to note with the Great Belt flutter derivatives is that A2
*  does not exhibit the

change in sign that is characteristic for 1DOF torsional flutter. The derivative A2
*  represents the

aerodynamic damping in the torsional direction and the “negative damping” criteria necessa
torsional flutter only occurs at positive A2

* . Hence, as A2
*  remains negative over the whole range 

reduced velocity, the flutter oscillation for this section is a 2DOF coupled flutter in both the ve
and torsional directions. From Table 2 it can be seen that the along wind component is not in
in this aeroelastic instability.

For streamlined sections such as that of the Great Belt East bridge, the critical flutter velocit
be increased by the addition of guide vanes that act as flow control devices. Such devices have be
studied by Cobo Del Arco et al. (1997), Kobayashi et al. (1992) and Ostenfeld et al. (1992)

Lh
1
2
---ρU2 2B( ) KH1

* K( ) h·

U
---- KH2

* K( )Bα·

U
------- K2H3

* K( )α K2H4
* K( ) h

B
--- KH5

* K( ) p·

U
---- K2H6

* K( ) p
B
---+ + + + +=

Dp
1
2
---ρU2 2B( ) KP1

* K( ) p·

U
---- KP2

* K( )Bα·

U
------- K2P3

* K( )α K2P4
* K( ) p

B
--- KP5

* K( ) h·

U
---- K2P6

* K( ) h
B
---+ + + + +=

Mα
1
2
---ρU2 2B2( ) KA1

* K( ) h·

U
---- KA2

* K( )Bα·

U
------- K2A3

* K( )α K2A4
* K( ) h

B
--- KA5

* K( ) p·

U
---- K2A6

* K( ) p
B
---+ + + + +=

Fig. 5 Power Spectrum of lift coefficient at zero degrees incidence
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indicating the effects of both passive and actively controlled devices. It is essential that the guide v
located far enough from the bridge deck as is practical to ensure operation outside of the bridg
layers. Typically the vanes have a chord length that is around 10% of the deck section width.

A brief study into the effect of passive and active control vanes on the flutter stability has
carried out using the DIVEX code. As part of the study, various configurations of passive and 
control vanes have been applied to the Great Belt East main suspended span to investiga
effect on the flutter criteria (Fig. 8). As this is only a study of the effect of the vanes, a 
elliptical cross section is used. Each of the vanes has chord length 10% of the bridge section
The effect on the flutter velocity of passive vanes at different angles, and of active vanes at d
phase angles, were studied. In the calculations, the bridge was given a forced sinusoidal os
in either the transverse or torsional DOF and for the passive calculations, the vanes were os
in phase with the bridge and with the same amplitude and frequency. To demonstrate the
vanes, the control surfaces were given a forced motion that simulates the displacements tha
be activated by the controller when the bridge is oscillating in the torsional DOF. The presc
displacements of the vanes are illustrated in Fig. 9 for a phase angle φ = 60o.

Varying performance of the flow control vanes can be achieved by using different values f
amplitude factor, M, and the phase relative to the bridge section, φ . In each calculation, the
downstream vane is in opposite phase to the upstream vane. Five different configurations o
vanes were used, two of which were passive, where the vanes are effectively rigidly fixed 
bridge section, and three using active vanes, each with different phase angles as summarised

Fig. 6 Hi
*  derivatives for Great Belt East main spanFig. 7 Ai

*  derivatives for Great Belt East main span

Table 2 Flutter velocities for Great Belt East Main Span

Derivatives Critical Velocity , Uc (m/s)

Hi , Ai (i = 1-3) 74.9
Hi , Ai (i = 1-4) 71.9
Hi , Ai (i = 1-4), P1-P3 (qs) 71.9
Experiment 70-75
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(1) Passive vanes :α = 0o

(2) Passive vanes :α = 4o

(3) Active vanes :M = 2, φ = 0o

(4) Active vanes :M = 2, φ = 60o

(5) Active vanes :M = 2, φ = 90o

The flutter derivatives are relatively unaffected by the vanes, with the exception of H2
*  and A2

* for
the active vanes with φ = 60o and φ = 90o, as illustrated in Figs. 10 and 11. The flutter velocity f
each configuration is calculated using the structural properties given in Fig. 1 using the assu
that the addition of the vanes have no effect on the mass and stiffness of the structure
assumption may be a little unrealistic but allows an investigation of how the aerodynamic prop
of the bridge are affected by the flow control devices. The results are given in Table 3.

As expected, the passive guide vanes do not have a large effect on the critical flutter veloc
in fact very slightly reduce the stability of the bridge. This result agrees with the findings o
studies in Ostenfeld et al. (1992) and Kobayashi et al. (1992). For the active vanes the φ = 0o case
gives a slightly lower flutter speed than the bridge deck without vanes. The flow control vane
improve the aeroelastic stability by effectively increasing the aerodynamic damping. TheA2

*

derivative is the damping coefficient and the H2
*  derivative is the coupling damping coefficient fo

torsional motion. It is clear that the changes in magnitude of these two derivatives in par
affects the aerodynamic damping of the structure and hence the critical flutter velocity. 

The reduction in flutter velocity for the φ = 0o case is to be expected from the results 
Kobayashi et al. (1992). The two cases where φ > 0o show a significant change in the flutte
velocity, and in the φ = 90o calculation, no flutter velocity was found even when the aerodyna

Fig. 8 Great Belt East main suspended section with flow control vanes - DIVEX model

Bridge torsional motion : 

Vane motion : 

α t( ) α0
2πt
Ur

-------- 
 sin=

αv t( ) Mα0
2πt
Ur

-------- φ+ 
 sin=

Fig. 9 Prescribed motion of active vanes
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derivatives were extrapolated beyond the range of reduced velocities used in the calculations.
this agrees with the other studies from which it was found that, as M increases, the flutter velocity
tends to infinity for a phase of 90o, or even less at the higher amplitude factors. For φ = 60°, the
flutter velocity has been increased by approximately 51% in agreement with the previous studies

3.3. Full aeroelastic solution

A dynamic solver has been implemented in the DIVEX code for the calculation of the 
dependent aeroelastic response of 2-D bluff bodies, including bridge decks. The equations go
the fluid-structure interaction are cast, for convenience, in first order form using non-dimens
variables. For coupled vertical and torsional motion these are:

where η = h / B, ( ) =(B / U) (d / dt), K is reduced frequency, mr and Ir are reduced mass and inerti

η
η′
α
α′

′ 0 1 0 0

Kh
2– 2Khζh– 0 0

0 0 0 1

0 0 Kα
2– 2Kαζα–

η
η′
α
α′

0

CL mr⁄
0

CM Ir⁄

+=

′

Fig. 10 H2
* derivatives for the Great Belt East main

span with flow control vanes
Fig. 11 A2

*  derivatives for Great Belt East main spa

Table 3 Effect of passive control vanes on critical flutter velocity

Configuration Critical Velocity, Uc (m/s)

No vanes 71.6
Passive vanes: α = 0ο 68.2
Passive vanes: α = 4ο 70.9
Active vanes: φ = 0ο 65.5
Active vanes: φ = 60ο 108.1
Active vanes: φ = 90ο Not found in range



288 I. Taylor and M. Vezza

e:

olation

sional
table at
ldsen

st
parameters.
The equations are integrated forward in time using the following fourth order Runge-Kutta schem

For system y = Ay + B

This scheme was employed to provide confirmation of the previous flutter onset predictions for
the Great Belt East bridge. In particular, calculations have been performed for the deck in is
at U = 70 m/s and U = 80 m/s, and for the case with passive vanes set at 0o to the main deck at U =
70 m/s. The results are illustrated in Figs. 12 and 13, which illustrate the vertical and tor
response for each configuration. As expected the isolated deck is stable at 70 m/s, but uns
80 m/s, and the pattern of the developing instability is very similar to that predicted by Enevo
et al. (1999), shown in Fig. 14. 
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Fig. 12 Vertical response of the Great Belt East
main span with and without vanes

Fig. 13 Torsional response of the Great Belt Ea
main span with and without vanes

Fig. 14 FSI simulation of flow over Great Belt East (Enevoldsen et al. 1999)
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Note that torsion is dominant in this case with the oscillating frequency in between the vertic
torsional natural frequencies, but driven very close to the latter, more so as the instability de
Snapshots from the growing instability of the deck with vanes arrangement are illustrated in Fig. 15

4. Conclusions

A Discrete Vortex Method (DIVEX) has been developed at the Department of Aeros
Engineering, University of Glasgow. A variety of test cases in the fields of aeronautics and
engineering have been studied. DIVEX has been applied to static and oscillating bridge
sections. The calculated flutter derivatives from oscillatory calculations are in good agreemen
experiment and also compare favourably with other computational methods. These derivative
been used to give an accurate prediction of the critical flutter velocity of the bridge se
examined. The effect of active and passive flow control devices on the structural stability o
bridge deck have also been investigated and the dependency of flutter velocity on the phase
vane motion are in agreement with previous experimental and analytical studies. The 
illustrate the potential of the DIVEX code as a design tool for single and multiple b
configurations, where aeroelastic assessment can be based on the extraction of derivatives an
prediction of full aeroelastic response. Among future intended projects is a more detailed invest
into the influence of along wind derivatives on the critical flutter speed of bridge decks.
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