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Abstract. The mechanism of wind-induced ovalling vibrations of cylindrical shells is numerically
investigated by using a vortex method. The subject of this paper is limited to a two-dimensional structure
in the subcritical regime. The aerodynamic stability of the ovalling vibrations in the second to fourth
circumferential modes is discussed, based on the results of a forced-vibration test. In the analysis, two moda
configurations are considered; one is symmetric and the other is anti-symmetric with respect to a diameter
parallel to the flow direction. The unsteady pressures acting on a vibrating cylinder are simulated and the
work done by them for one cycle of a harmonic motion is computed. The effects of a splitter plate on the
flow around the cylinder as well as on the aerodynamic stability of the ovalling vibrations are also discussed.
The consideration on the mechanism of ovalling vibrations is verified by the results of a free-vibration test.

Key words: circular cylinder; ovalling vibration; cross flow; numerical simulation; vortex method; unsteady
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1. Introduction

Ovalling vibration of cylindrical structures such as chimney stacks refers to the shell-mode

vibration, involving defomation of the cross section in a circumferential magdiigher than unity.

This phenomenon has arisen with the construction of thin metal chimney stacks, which are thin
enough to easily deform as shells and have low internal damping. Historically, such vibrations were
first observed by Dickey and Woodruff (1956) and Dockstadeal (1956). Johns and Allwood
(1968) described a case of large amplitude vibration, which eventually led to a collapse of the
chimney during a typhoon. Even if the amplitude is not large enough to collapse the structure, the
vibration may cause the structura¢mlents to fail due to figue.

1 Associate Professor
1 Engineer
1t Professor



86 Yasushi Uematsu, Noboru Tsujiguchi and Motohiko Yamada

The ovalling vibrations were originally thought to be excited subharmonically by vortex shedding,
such that the ratio of one of the shell's natural frequencies to the vortex shedding frequency is an
integer at the onset of ovalling vibration (see Johns and Sharma 1974 and Panesar and Johns 198t
On the other hand, Paidousst al (1979, 1982a) experimentally revealed that the existence of
regular, periodic vortex shedding is not essential for the onset of ovalling vibrations. They
subsequently developed an analytical model for predicting the onset velocity, in which the vibration
was regarded as a flutter, drawing energy from the flow in synchronism with its natural motions
(1982b, 1988, 1991). In their model, the flow field is considered to be quasi-irrotational and steady,
the only unsteadiness being associated with shell motion. Katsura (1985) experimentally studied the
ovalling vibrations of silo-like, thin cylindrical shells. Some of his results confirmed the findings of
Paidoussiset al He also examined the effect of free-stream turbulence on the characteristics of
ovalling vibrations and showed that the ovalling amplitude grew suddenly at a certain flow velocity
in a smooth flow, while it increased nearly proportional to the square of the free-stream velocity in a
turbulent flow, or to the velocity pressure of the flow. Mazaetzal (1991) improved the Paidoussis
et al's analytical model, considering the Reynolds number effects on the flow around circular
cylinders. Recently, Laneville and Mazouzi (1995, 1996) have proposed a new criterion for the onset
of ovalling vibrations, which is based on a balance between the negatv@ynamic damping and
the shell's structural damping. Uematsual (1988) experimentally studied the ovalling vibrations
of finite cylinders with relatively small aspect ratios and proposed an excitation mechanism, based
on a cross-spectral density analysis of the pressure fluctuations on the cylinder surface.

As mentioned above, the mechanism of wind-induced ovalling vibrations of cylindrical shells is
controversial even for the two-dimensional problem. It may be important for discussing the
mechanism to inaigate the aerodynamic stability of the vibrations, or tharattteistics of the
unsteady aerodynamic forces acting on a vibrating cylinder.

In this study, we choose a two-dimensional structure in the subcritical regime as the most fundamental
subject. The unsteady pressures acting on a vibrating cylinder are computed by using a vortex methoc
ovalling vibrations in the second to fourth modes=@-4) are considered. The aerodynamic
stability of these vibrations is discussed, based on the work done by the unsteady pressures for on
cycle of a harmonic motion. The effects of éitsgy plate on the flow around the cylinder as well as
on the aerodynamic stability of the ovalling vibrations are also investigated. Furthermore, in order to
verify the consideration on the mechanism of ovalling vibratiorisgeavibration test is made for a
cylindrical shell model with or without a splitter plate.

It should be mentioned that the present paper is an extended version of our previous papers
(Uematsuet al 1999a, b). The results and discussaom presented in more detail in this paper.

2. Method of numerical simulation

A vortex method developed by Inamuro and Adachi (1986) is applied to the present problem with
some revisions. Cylinder surface is divided into a numbkrof segments of equal length and
replaced by a continuous vortex sheet. The circulagi¢g) per unit length of the vortex sheet
changes linearly along the segment, watbeing the coordinate along the cylinder surf@cethe
value at a nodg is represented by; (j=1-M). The free shear layers are replaced by discrete
vortices shed into the flow field from the separation points at a timeZstephe circulation/” of
each discrete vortex is given by (M2 At, with U being the velocity of the outer flow at the
separation pointd,. It is assumed that the boundary layer is laminar and the thickness is thin
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enough to be neglected. The separation points are determined by solving the boundary layer
momentum equation with Pohlhausen’s quasi-steady approximation. In the numerical integration of
this equation, the cylinder surface is divided into a numbdy, & segments. The splitter plate of
lengthL, when placed behind the cylinder, is replaced by a nuridhef sources arranged at equal
distances. The strengi@ of each source is determined so as to cancel out the flow across the
source (see Kawai 1990).

The complex velocity potentid(2) at a pointz is given by superimposing the components due to
the uniform streaml,, ), the vortex shegt(§)), the discrete vorticed §) and the source€)() as
follows:

f = Uuz-5-f Us)log{z- 2 s)}ds—zi—nz riog(z- zu) + %Tz QUog(z-2z) (1)

where N is the number of the discrete vorticegi and z represent the locations of the discrete
vortex [, and the sourcé€), respectively; and= J-1. The conjugate complex velocityat a point
zis given by the following equations:
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wherez represents the location of the ngdands the length of the segment
The boundary condition at the midpoint, regarded as the reference panfiteach segmeritis
given by the following equation:

Re[(Url_v_\/rl) ' I’]rl] =0 (5)

where uy; and wy represent the complex velocities of the flow and the shell motiom,,at
respectively; andh, is the unit normal vector, positive outward, zat An additional equation is
given by Kelvin's theorem as follows :

zJ(y+y+1)z Fi+0 (6)

j=1

From the boundary conditions at (I = 1-M) together with Eqg. (6), we obtain simultaneous linear
equations with respect 1 ( j = 1-M). The equations can be solved by using the least squares method.
The position of the discrete vortices is advanced in a way of simple Eulerian scheme with a time
step ofAt/2. In the region of point vortices, the velocity tends to infinity because of the singular
nature of ideal point vortices. This phenomenon is not encountered in a real fluid. Therefore, some
type of artificial viscosity is required to compensate such an irregularity. Fig. 1 shows a viscous
vortex model (solid lines) used in this study. Outside a viscous core radilme circumferential
velocity Vy is the potential solution; within the core radilfg,is proportional to the distancefrom
the center. The value @ is given by a function of the coefficient of kinematic viscositpf the
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Fig. 2 Circulation reduction model

fluid and the lifetimet of the vortex. Furthermore, it has bemognized that some circulation-
reduction mechanism is inevitable to obtagasonable results by the model. Fig. 2 shows a model
developed in this study, based on the results of a wind tunnel experiment (agari981) and a
preliminary analysis. In the figure,  represents the non-dimensional lifetime of the vortex, defined
byt = U,t/D, with D being the cylinder diameter.

The instantaneous pressyé€f,t) on the cylinder surface is given by the unsteady Bernoulli's
equation :

P(6,1) =P = 5P[UZ — (1 + V)] - 52 ™

where 8=angle from the windward stagnation poigt, = pressure at upstream infortyiuid
density;u andv are the veloty components in the longitudinal and lateral directions, respectively;
@ = velocity potential; andd®/dt is approximated by a finite difference of the first order. The
pressure distribution is expanded into a améerential Fourier series as follows :

p(6,t)—p, = 122 [by(t) cosné + c,(t) sinnd] (8)
n=0

The coefficientsh,(t) and c,(t) are determined by using the least squares method. We can easily
compute the modal forces and the work done by the unsteady pressures with this approximation.



Mechanism of ovalling vibrations of cylindrical shells in cross flow 89

Fig. 3 Cross-sectional view of the mode of ovalling vibration (in the case=&f)

The pressure coefficief@,(6, t) is defined byC,(6,t) = (p(6, t)— P )/ d. , With d,, =1/20U2 .
The mode shape,(6) of then-th ovalling vibration is expressed as follows (see Fig. 3) :

®(0) = cos (6-a) ()

where o represents the angle of an anti-node of vibration from the windward stagnation point;
a =0 and 90/n respectively correspond to a symmetric and an anti-symmetric moden-fihe
modal forceF,(t) is computed by

Fa(t) = 2127P(6,1) - .} ()46 (10)

The modal force cefficient Ce(t) is defined byCeq(t) = Fn(t)/(d., D).
In the forced-vibration tests, the ovalling vibration is given by the following equation :

w(6,t) = asin(2rf.t) - @n(6) = assin(2rfit) - con(8-a) (11)

wherea, andf,, are the amplitude and the frequency of the forced vibration, respectively. The work
done byp(@, t) for one cycleT,, (= 1/,), of the harmonic motion is

_ 9 TmD 2n d_VV 0

The positive and negative values\Wfare related to the negative and the poséredynamic damping,
respectively. Wherw > 0, the energy from the unsteady pressures is applied to the shell, and the shell
vibration may be amplified. The non-dimensional wark is defined byw" = WI(1/2q,, D?).

The values of the parameters involved in the sitrmdanodel are as follows :

M =80, At(U.,/D)=0.15R.=U,D/v=8x10" L/D = 0.25-5.0,K = 25 (L/D)

These values were determined from the results of a preliminary analysis as well as of the previous
studies.

In practice, the time development of flow around an impulsively started cylinder is simulated. A
transient response is seen wher=t(U,/D))<50. Therefore, the statistical analysis of the
response is made by using the resultst fer75-150.
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3. Aerodynamic forces

3.1. Steady aerodynamic forces acting on a stationary cylinder

3.1.1. Cylinder without a splitter plate

Fig. 4 shows sample results on the instantaneous flow pattern around a stationary cylinder. In
order to verify the simulation model used in this study, a comparison was made between the presen
analysis and a wind tunnel experiment (Fage and Falkner 1931, quoted from Roshko 1961) for the
aerodynamic properties. The result for the mean pressure coefliiémtshown in Fig. 5. Table 1
summarizes the results for the aerodynamic properties, together with some available experimental
results obtained aR=8< 10’. The agreement is generally good, confirming the validity of the
simulation model.

The mean and RMS values of the modal force coeffici€atd) (n=2-4) are plotted against
in Fig. 6. The mean value becomes the maximum wher0® and the minimum whew = 9¢°/n.

This feature is expected from a symmetristribution of C, with respect to a diameter parallel to

the flow direction. The results for tHRMS value show the opposite trend. The power sp&;tod

Crn(t) (n=2-4) are shown in Fig. 7. The solid and broken lines represent thés résr the
symmetric and anti-symmetric modes, respectively. The power spectra for the anti-symmetric modes

(a) Distribution of discrete vortices (b) Stream lines

Fig. 4 Instantaneous flow pattern around a stationary cylindér—=at50
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Fig. 5 Comparison between simulation and experiment for the circumferential distribution of the mean
pressure coefficiert,
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Table 1 Comparison of the computed results with the experimental results

Aerodynamics Present analysis Experiment Reference
Drag coefficientCp 1.26 1.2 R.=8x 10 Wieselsberger (1921)
1.2 R.=8x 10 Schewe (1983)
RMS lift coefficientC/ 0.51 0.32 R.=8x 104 Schewe (1983)
0.55 R.= 9% 109 West & Apelt (1993)
0.56 R.= 6 109 Nishimura & Taniike (1998)
Strouhal numbef 0.209 0.19R.= 8x 10% Relf & Simmons (1924)
0.20 R.= 8% 10% Schewe (1983)
Separation poinfs 81.1° 78 (R.= 1% 10°) Achenbach (1968)
80 (R.= 9 107 Adachiet al. (1985)
82 (R.= 8% 10) Yamadaet al (1988)
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Fig. 6 Mean and RMS values of the modal force coeffici€atét)
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generally exHiit predominant peaks at a non-dimensional frequéndy fD/U,,) approximately
equal to the Strouhal numb&:. The power spectra for the third and fourth symmetric modes have
peaks atf’=0.4, nearly equal to @ These results imply that with an increase in the non-
dimensional flow velocityJ, (=U.,/f,D), the vibrations in the anti-symmetric modes=(2-4) are
excited atU,=1/S, while those in the symmetric modes=(3, 4) atU,=1/(2S). However, it
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should be noticed that this prediction is based on a vortex-shedding hypothesis, in which the
ovalling vibration is regarded as a kind of forced vibration without any consideration of the flow-
shell interaction.

3.1.2. Cylinder with a splitter plate

The results for cylinders with a splitter plate are shown in Figs. 8~11. With an increase in the
length L of the splitter plate, the magnitude of the base pressaficient dereases (see Fig. 9).
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g. 8 Instantaneous flow pattern around a stationary cylinder with a splitter plate®fatt” = 150

0 PRI RV S NRRU SR B
0 30 60 90 120 150 180
6 (deg)

Fig. 9 Effect ofL on the circumferential distribution of the mean pressure coeffi@gnt
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Fig. 10 Effect ofL on the mean and RMS values of the second modal force coeffiCieftls
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Fig. 11 Power spectra of the modal force coeffici€rigt) on a stationary cylinder with a splitter platel 6f D

However, this change minutely affects the mean values of the modal force coeffi@Gigf)s as

shown in Fig. 10a. On the other hand, the influence on the fluctuation of the modal force coefficient
is significant. The RMS value &@¢y(t) becomes small, even when a splitter plate is as shart-as
0.25D (see Fig. 10b). Corresponding to this feature, the power spect@,@f exhibit peaks
neither atf * = S nor atf " = 25, as shown in Fig. 11.

3.2. Unsteady aerodynamic forces acting on a vibrating cylinder

3.2.1. Cylinder without a splitter plate

The cylinder is forced to vibrate in either a symmetric or an anti-symmetric mode. The non-
dimensional amplitude;, (= a,/D) and frequencyf, (= f,D/U,,) are varied from 0.00125 to 0.01
and from 0.12 to 0.80, respectively. Fig. 12 shows the variation of the power sgectirahe
second modal force coefficie@q,(t) with an increase i, for a,,=0.00125 and 0.01. When the
amplitude is small (e.g., Fig. 12a), the spectrum for the anti-symmetric mode (rakehas a
peak atf "= 0.21 (=S) regardless of ,,; in particular, the peak is predominant wHgyF 0.20 £ S).
On the other hand, the spectrum for the symmetric mode (solid line) is generally dominated by low-
frequency fluctuations, which may be related to the randomness of the flow around the cylinder.
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Fig. 12 Power spectra of the second modal force coeffi@gift) on a vibrating cylinder
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Fig. 13 Variation ofw" with f;, for a vibrating cylinderg;= 0.005)

Table 2 Non-dimensional frequency range giving posMivevalues

Mode Symmetric Anti-symmetric
2nd < a =

3rd =§ §-38

4th 25 -4 =

The spectral peak due to the forced vibration can be seen only fighén relatively high, for
example, such ak,>0.4. As the amplitude becomes large (eag > 0.005), the spectral peak at
f* =fn becomes predominant for both symmetric and anti-symmetric modes. #/keh4, the
spectrum for the anti-symmetric mode has predominant peaks bbtls t2 £ S) and atf “ = 0.4
(= 29) (see Fig. 12b). The results for the third and fourth modal foFeg, and F,(t), not shown
in this paper, were similar to those for the second modal feite

Plotted in Fig. 13 is the variation of the non-dimensional watkwith f,, in the case of, =
0.005 (1= 2-4); the behavior ofV" for the othera, values was almost the same as #fadwn in
this figure, although the values & depended ora;. The non-dimensional frequency range,
giving positiveW" values (i.e., negative aerodynamic damping), are summarized in Table 2. Regarding
the second mode vibration, for example, the valu&\Vof becomes positive in a non-dimensional
frequency rangaroundf,= S for the anti-symmetric modex(= 45°) and in a range df,< 2S for
the symmetric modeo(= 0°). These features are consistent with the variation of the power spectra
of F,(t) with f,,(Fig. 12). Based on these results, the behavior of the second mode vibration with an
increase inU, (=U,,/f,D), or with a decrease i (=f,D/U,,), may be predicted as follows. Self-
excited vibrations in the symmetric and anti-symmetric modes ocdug atl/(2S) and U= 1/S,
respectively. The prediction for the symmetric mode is in accordance with the experimental result
by Paidoussi®t al (1979), who showed that a divergence-type vibration in the symmetric mode
occurred atU;=1/(2S). In their experiment, the onset non-dimensional flow velocity for the anti-
symmetric mode wabl, = 1/(4S), lower than the prediction from the present study (Ues 1/9).
However, the observed vibration subsided afesrching a maximum at a flow velocity; in other
words, the vibration was excited only in a limited range of flow velocity. In this flow velocity range,
W’ is negative according to the present results (Fig. 13). Furthermoneowlee spectrum exhibits
a predominant peak dt'=0.8 £4S), whenf,=0.8 (see Fig. 12). These results imply that the
vibration induced au; =1/(4S) can be explained by the subharmonic excitation mechanism, as
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Johnset al. (1974) suggested.
3.2.2. Cylinder with a splitter plate

Fig. 14 shows sample results on the power sp&tod Ce,(t) acting on a vibrating cylindeaf
=0.005) with a splitter plate df = 3D. In the power spectra, any Strouhal components are not seen,
only the f,-component being predominant; this is due to the suppression of the periodic vortex
shedding (see Fig. 11).

The variation ofW " with f , is plotted in Fig. 15. Comparing the results with those in Fig. 13, it
can be seen that the splitter plate affects the behaviét adnly slightly. When the splitter plate is
placed behind the cylinder, the value W for the second anti-symmetric mode <45 is
negative over the whole non-dimensional frequency range analyzed; a positive péalblserved
at fn=S in the no splitter plate case disappears. This is the case for the third symmetric mode
(a=0° and for the fourth anti-symmetric mode £ 22.5). These results suggest that the negative
aerodynamic damping &f,= S, observed in the no splitter plate case (see Fig. 13), is related to the
vortex shedding. Furthermore, it is found that self-excited vibrations in the second, third and fourth
modes can occur at non-dimensional flow velocities of approximatel®)1/@(33) and 1/(4),
respectively, as the flow velocity is increased. Considering that the vortex shedding is suppressed by
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Fig. 14 Power spectra of the second modal force coeffi€gitt) for a vibrating cylinderds = 0.005) with a
splitter plate ofL = 3D
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the splitter plate (Fig. 11), it is thought that these vibrations are not related to the vortex shedding.
4. Dynamic response of a shell model
4.1. Method of analysis

The consideration is limited to small-aliyde vibrations, as the first approximation. The shell is
considered to be purely elastic, homogeneous and isotropic. Taking the coordinate system as show
in Fig. 16, the basic equations governing the motion of a shell of dgmsitpung’s modulusE,
and Poisson’s ratio, may be given by the following equations (see Fliigge 1957) :

dzv ow v v

o6 08~ S Voe ~
ﬂ/ +W i 02W +W D — de\N yl:ﬁv qr D (14)
00" T Dy 092 ot "Og2 ~ phD

wherek = h?/12a% ; y= pa*(1-v?)/E; g = p—pe, With pi andp, being respectively the internal and
external pressures acting on the shell surfaceGarathdC,, represent the damping coefficients with
respect to the displacememandw, respectively. Since the internal volume does not change during
an ovalling vibration, it is assumed thpt=0. The external pressure is computed in the same
manner as that described in Chapter 2. The effect of the flow-shell interaction is not represented in
the equations explicitly, but it is involved in the process of thmaatical simulation.

The displacements, andw, are approximated by thelllmving equations:

v(6, 1) z [A,(t)cosnB + B,(t)sinnd] (15)

n=2

w(6,1) z [C,(t)cosnb + D,(t)sinnb] (16)

Substituting Egs. (15) and (16) into Eqgs. (13) and (14) and applying the Galerkin method to them,
we obtain simultaneous coupled equations with respect to the coeffigiéht D,(t). The equations
are numerically solved by using the Newmgrknethod withB=1/4.

Fig. 16 Shell geometry and coordinate system
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4.2. Results of analysis

The properties of a shell model analyzed in this study are as follows :
D =76.2 mm,h = 0.483 mm,0s = 1.29x 10° kg/n?, E = 0.28% 10"°N/m?, u=0.4.

These values are the same as those of a clamped-clamped cylinder tested by Paidalissis
(1982a). The second and third natural frequencies of the present model are 65.9 and 186.5 Hz
respectively. These natural frequencies are different from those of the $28ddial’s specimen,
because of the difference in the boundary d@m

Fig. 17(a) shows the time history response&gt) andD,(t) for an undamped syster@ (= C,, =
0) when U, =20 m/s, i.e.U,/f,D =4.0; in the figures O represents the time when the free
vibration test is started. The reesponding non-dimensional frequenty is 0.25, which gives
positive W values both for the symmetric and anti-symmetric modes, according to tlis ofshe
forced-vibration test (see Fig. 13). It is seen that the vibration in the symmetric Gule drows
with time t. Plotted in Fig. 17(b) are the RMS values @f(t) and D,(t), computed from the
responses in a range of (=tU,/D) from 15 to 100, as a function &f; (=U,, /f,D). Fig. 18
shows the power spectra 6k(t) and D4(t), normalized byh, for various values obl,. From the
results in Fig. 17(b), it is found that the non-dimensional onset velocities for the symmetric and
anti-symmetric modes are approximately 2.5 and 3.5, respectively. These values correspond well to
the predicted values from the results in Fig. 13, showing that the sign’ dfecomes positive at
fn=0.4 and 0.3 for the symmetric and anti-symmetric modes, respectively, as the vdliie of
decreases. Alt),=5.0 (i.e.,f 3 =0.2), the power spectra exhibit predominant peaks=a0.2 & S).

Fig. 19 shows the results for a slightly damped system whgn =20 m/s; the critical damping
ratio n, of this model is assumed to be 0.001. Comparing the results in Fig. 17, we can see that
only a little structural damping reduces the vibration amplitude significantly. In this study, the
critical damping ration, is determined from the uncoupled equationsAgt) to D(t), obtained by
neglecting the coupling terms in the simultaneous equations. Such a manner to determine the structure
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damping is still controversial; this is the subject of a future investigation.

The results for a cylinder with a splitter plate lof 3D are shown in Fig. 20, in which it is
assumed thaf),= 0. The vibration in the symmetric mode is excitedat 2.5 in the same manner
as that for the no splitter plate case. On the other hand, the vibration in the anti-symmetric mode is
rather suppressed. These features are consistent with the expectation from the W&/SUJFipr15).

5. Conclusions

The mechanism of wind-induced ovalling viboas of cylindrical shells has been investigated,
based on a numerical simulation of the unsteady aerodynamic forces acting on a vibrating cylinder
by using a vortex method. First, a comparison was made between the present analysis and a win
tunnel experiment for the aerodynamics of a stationary cylinder. A good agreement was obtained,
suggesting the validity of the simulation model used in this study. Then, the second to fourth modal
forces acting on a vibrating cylinder were computed under various ioosdiThe results indicate that
the characteristics of the unsteady aerodynamic forces are related to the vortex shedding from the
cylinder. The aerodynamic stability of the ovalling vibrations in the second to fourth modes was
investigated, based on the work done by the unsteady pressures for one cycle of a harmonic motion. Th
vortex shedding may cause self-excited vibrations in a flow velocity range near the resonant velocity for
some mode configurations; i.e., the second anti-symmetric, the third symmetric and the fourth anti-
symmetric mode. It may be interesting to note that the suppression of vortex shedding by using a splittel
plate minutely affects the behavior of the work for some mode configurations; ie., the second
symmetric, the third anti-symmetric and the fourth symmetric mode. Even if the vortex shedding is
suppressed by a splitter plate, self-excited vibrations in these modes may occur at some flow velocities
as the flow velocity is increased. In other words, the existence of periodic vortex shedding is not
essential for the onset of ovalling vibrations in these modes. Teatees are consistent with the
experimental observations presented by Johns and Sharma (1974) and by Paidoussis and Helleur (197
to some degree. Finally, the dynamic response of a cylindrical shell model was numerically simulated.
The results are consistent with the expectation from the results of the forced vibration tests; this implies
the validity of the consideration on the mechanism of the ovallbrgtions.

There are some problems to b@ved, regarding the application and accuracy of the simulation
model used in this study. Further investigations, including a forced vibration test in a wind tunnel,
are planned in order to investigate these problems as well as to discuss the mechanism of ovalling
vibrations in more detail.

The authors gratefully acknowledge helpful discussion with Prof. H. Shirato of Kyoto University during
this work.
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