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Abstract. The mechanism of wind-induced ovalling vibrations of cylindrical shells is numeric
investigated by using a vortex method. The subject of this paper is limited to a two-dimensional str
in the subcritical regime. The aerodynamic stability of the ovalling vibrations in the second to f
circumferential modes is discussed, based on the results of a forced-vibration test. In the analysis, tw
configurations are considered; one is symmetric and the other is anti-symmetric with respect to a d
parallel to the flow direction. The unsteady pressures acting on a vibrating cylinder are simulated a
work done by them for one cycle of a harmonic motion is computed. The effects of a splitter plate 
flow around the cylinder as well as on the aerodynamic stability of the ovalling vibrations are also disc
The consideration on the mechanism of ovalling vibrations is verified by the results of a free-vibration te

Key words: circular cylinder; ovalling vibration; cross flow; numerical simulation; vortex method; unste
aerodynamic force; two-dimensional.

1. Introduction

Ovalling vibration of cylindrical structures such as chimney stacks refers to the shell-m
vibration, involving deformation of the cross section in a circumferential mode, n, higher than unity.
This phenomenon has arisen with the construction of thin metal chimney stacks, which ar
enough to easily deform as shells and have low internal damping. Historically, such vibrations
first observed by Dickey and Woodruff (1956) and Dockstader et al. (1956). Johns and Allwood
(1968) described a case of large amplitude vibration, which eventually led to a collapse 
chimney during a typhoon. Even if the amplitude is not large enough to collapse the structu
vibration may cause the structural elements to fail due to fatigue.
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The ovalling vibrations were originally thought to be excited subharmonically by vortex shed
such that the ratio of one of the shell’s natural frequencies to the vortex shedding frequenc
integer at the onset of ovalling vibration (see Johns and Sharma 1974 and Panesar and John
On the other hand, Païdoussis et al. (1979, 1982a) experimentally revealed that the existence
regular, periodic vortex shedding is not essential for the onset of ovalling vibrations. 
subsequently developed an analytical model for predicting the onset velocity, in which the vib
was regarded as a flutter, drawing energy from the flow in synchronism with its natural mo
(1982b, 1988, 1991). In their model, the flow field is considered to be quasi-irrotational and s
the only unsteadiness being associated with shell motion. Katsura (1985) experimentally stud
ovalling vibrations of silo-like, thin cylindrical shells. Some of his results confirmed the finding
Païdoussis et al. He also examined the effect of free-stream turbulence on the characterist
ovalling vibrations and showed that the ovalling amplitude grew suddenly at a certain flow ve
in a smooth flow, while it increased nearly proportional to the square of the free-stream velocit
turbulent flow, or to the velocity pressure of the flow. Mazouzi et al. (1991) improved the Païdoussi
et al.’s analytical model, considering the Reynolds number effects on the flow around cir
cylinders. Recently, Laneville and Mazouzi (1995, 1996) have proposed a new criterion for the
of ovalling vibrations, which is based on a balance between the negative aerodynamic damping and
the shell’s structural damping. Uematsu et al. (1988) experimentally studied the ovalling vibration
of finite cylinders with relatively small aspect ratios and proposed an excitation mechanism, 
on a cross-spectral density analysis of the pressure fluctuations on the cylinder surface.

As mentioned above, the mechanism of wind-induced ovalling vibrations of cylindrical she
controversial even for the two-dimensional problem. It may be important for discussing
mechanism to investigate the aerodynamic stability of the vibrations, or the characteristics of the
unsteady aerodynamic forces acting on a vibrating cylinder. 

In this study, we choose a two-dimensional structure in the subcritical regime as the most funda
subject. The unsteady pressures acting on a vibrating cylinder are computed by using a vortex 
ovalling vibrations in the second to fourth modes (n = 2-4) are considered. The aerodynam
stability of these vibrations is discussed, based on the work done by the unsteady pressures
cycle of a harmonic motion. The effects of a splitter plate on the flow around the cylinder as well a
on the aerodynamic stability of the ovalling vibrations are also investigated. Furthermore, in or
verify the consideration on the mechanism of ovalling vibrations, a free-vibration test is made for a
cylindrical shell model with or without a splitter plate.

It should be mentioned that the present paper is an extended version of our previous 
(Uematsu et al. 1999a, b). The results and discussion are presented in more detail in this paper.

2. Method of numerical simulation

A vortex method developed by Inamuro and Adachi (1986) is applied to the present problem
some revisions. Cylinder surface is divided into a number, M, of segments of equal length an
replaced by a continuous vortex sheet. The circulation γ (s) per unit length of the vortex shee
changes linearly along the segment, with s being the coordinate along the cylinder surface C ; the
value at a node j is represented by γ j ( j = 1−M ). The free shear layers are replaced by discr
vortices shed into the flow field from the separation points at a time step ∆t. The circulation Γ of
each discrete vortex is given by (1/2)Us

2 ∆t, with Us being the velocity of the outer flow at the
separation point θs . It is assumed that the boundary layer is laminar and the thickness is
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enough to be neglected. The separation points are determined by solving the boundary
momentum equation with Pohlhausen’s quasi-steady approximation. In the numerical integra
this equation, the cylinder surface is divided into a number, 2M, of segments. The splitter plate o
length L, when placed behind the cylinder, is replaced by a number, K, of sources arranged at equa
distances. The strength Qk of each source is determined so as to cancel out the flow acros
source (see Kawai 1990).

The complex velocity potential f(z) at a point z is given by superimposing the components due
the uniform stream ( ), the vortex sheet (γ (s)), the discrete vortices (Γk) and the sources (Qk) as
follows:

 
 (1)

where N is the number of the discrete vortices; zwk and zqk represent the locations of the discre
vortex Γk and the source Qk , respectively; and i = . The conjugate complex velocity u at a point
z is given by the following equations:

 
 (2)

 (3)

 (4)

where zj represents the location of the node j; and sj the length of the segment j.
The boundary condition at the midpoint, regarded as the reference point, zrl of each segment l is

given by the following equation:

Re[(url −wrl) � nrl] = 0  (5)

where url  and wrl represent the complex velocities of the flow and the shell motion at zrl,
respectively; and nrl  is the unit normal vector, positive outward, at zrl. An additional equation is
given by Kelvin’s theorem as follows :

 (6)

From the boundary conditions at zrl (l = 1−M) together with Eq. (6), we obtain simultaneous line
equations with respect to γj ( j = 1−M). The equations can be solved by using the least squares me

The position of the discrete vortices is advanced in a way of simple Eulerian scheme with 
step of ∆t /2. In the region of point vortices, the velocity tends to infinity because of the sing
nature of ideal point vortices. This phenomenon is not encountered in a real fluid. Therefore,
type of artificial viscosity is required to compensate such an irregularity. Fig. 1 shows a vi
vortex model (solid lines) used in this study. Outside a viscous core radius σ , the circumferential
velocity Vθ is the potential solution; within the core radius, Vθ is proportional to the distance r from
the center. The value of σ is given by a function of the coefficient of kinematic viscosity υ of the
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fluid and the lifetime  of the vortex. Furthermore, it has been recognized that some circulation
reduction mechanism is inevitable to obtain reasonable results by the model. Fig. 2 shows a mo
developed in this study, based on the results of a wind tunnel experiment (Nagano et al. 1981) and a
preliminary analysis. In the figure,  represents the non-dimensional lifetime of the vortex, de
by , with D being the cylinder diameter. 

The instantaneous pressure p (θ , t) on the cylinder surface is given by the unsteady Bernou
equation :

 (7)

where θ = angle from the windward stagnation point; = pressure at upstream infinity; ρ = fluid
density; u and v are the velocity components in the longitudinal and lateral directions, respective
Φ = velocity potential; and  is approximated by a finite difference of the first order. 
pressure distribution is expanded into a circumferential Fourier series as follows :

 (8)

The coefficients bn(t) and cn(t) are determined by using the least squares method. We can e
compute the modal forces and the work done by the unsteady pressures with this approxi

t̂

t̂
*

t̂
*

U∞ t̂ D⁄=

p θ t,( ) p∞
1
2
---ρ U∞

2 u2 ν2
+( )–[ ] ρ–

∂Φ
∂ t
-------=–

p∞

∂Φ ∂t⁄

p θ t,( ) p∞– bn t( ) nθcos cn t( ) nθsin+[ ]
n 0=

12

∑=

Fig. 1 Viscous vortex model

Fig. 2 Circulation reduction model
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The pressure coefficient Cp(θ, t) is defined by Cp(θ, t) = ( p(θ, t)− )/ , with =1/2 .
The mode shape φn(θ) of the n-th ovalling vibration is expressed as follows (see Fig. 3) :

φn(θ) = cosn (θ −α)  (9)

where α represents the angle of an anti-node of vibration from the windward stagnation p
α = 0o and 90o/n respectively correspond to a symmetric and an anti-symmetric mode. Then-th
modal force Fn(t) is computed by

(10)

The modal force coefficient CFn(t) is defined by CFn(t) = Fn(t)/( D).
In the forced-vibration tests, the ovalling vibration is given by the following equation :

w(θ, t) = ansin(2πfmt) � φn(θ) = ansin(2πfmt) � cosn(θ −α) (11)

where an and fm are the amplitude and the frequency of the forced vibration, respectively. The 
done by p(θ , t) for one cycle, Tm (= 1/fm), of the harmonic motion is 

 (12)

The positive and negative values of W are related to the negative and the positive aerodynamic damping,
respectively. When W> 0, the energy from the unsteady pressures is applied to the shell, and the
vibration may be amplified. The non-dimensional work W * is defined by W * = W/(1/2 D2).

The values of the parameters involved in the simulation model are as follows :

M = 80, ∆t( ) = 0.15, Re = = 8�104 , L/D = 0.25−5.0, K = 25� (L/D)

These values were determined from the results of a preliminary analysis as well as of the p
studies.

In practice, the time development of flow around an impulsively started cylinder is simulate
transient response is seen when t* (= t( )) < 50. Therefore, the statistical analysis of th
response is made by using the results for t* = 75−150. 
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Fig. 3 Cross-sectional view of the mode of ovalling vibration (in the case of n = 2)
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3. Aerodynamic forces

3.1. Steady aerodynamic forces acting on a stationary cylinder

3.1.1. Cylinder without a splitter plate

Fig. 4 shows sample results on the instantaneous flow pattern around a stationary cylin
order to verify the simulation model used in this study, a comparison was made between the 
analysis and a wind tunnel experiment (Fage and Falkner 1931, quoted from Roshko 1961) 
aerodynamic properties. The result for the mean pressure coefficient Cp is shown in Fig. 5. Table 1
summarizes the results for the aerodynamic properties, together with some available exper
results obtained at Re≈8� 104. The agreement is generally good, confirming the validity of t
simulation model.

The mean and RMS values of the modal force coefficients CFn(t) (n = 2-4) are plotted against α
in Fig. 6. The mean value becomes the maximum when α = 0o and the minimum when α = 90o/n.
This feature is expected from a symmetric distribution of Cp with respect to a diameter parallel t
the flow direction. The results for the RMS value show the opposite trend. The power spectra Sn of
CFn(t) (n = 2-4) are shown in Fig. 7. The solid and broken lines represent the results for the
symmetric and anti-symmetric modes, respectively. The power spectra for the anti-symmetric 

Fig. 5 Comparison between simulation and experiment for the circumferential distribution of the 
pressure coefficient Cp

Fig. 4 Instantaneous flow pattern around a stationary cylinder at t* = 150
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generally exhibit predominant peaks at a non-dimensional frequency f * (= fD/ ) approximately
equal to the Strouhal number St. The power spectra for the third and fourth symmetric modes h
peaks at f *≈ 0.4, nearly equal to 2St. These results imply that with an increase in the no
dimensional flow velocity Un

* (= /fnD), the vibrations in the anti-symmetric modes (n = 2-4) are
excited at Un

* ≈ 1/St, while those in the symmetric modes (n = 3, 4) at Un
* ≈ 1/(2St). However, it

U∞

U∞

Table 1 Comparison of the computed results with the experimental results 

Aerodynamics Present analysis Experiment Reference

Drag coefficient CD 1.26 1.2 (Re= 8� 104) Wieselsberger (1921)
1.2 (Re= 8� 104) Schewe (1983)

RMS lift coefficient CL’ 0.51 0.32 (Re= 8� 104) Schewe (1983)
0.55 (Re= 9� 104) West & Apelt (1993)
0.56 (Re= 6� 104) Nishimura & Taniike (1998)

Strouhal number St 0.209 0.19 (Re= 8� 104) Relf & Simmons (1924)
0.20 (Re= 8� 104) Schewe (1983)

Separation point θs 81.1o 78o (Re= 1� 105) Achenbach (1968)
80o (Re= 9� 104) Adachi et al. (1985)
82o (Re= 8� 104) Yamada et al. (1988)

Fig. 6 Mean and RMS values of the modal force coefficients CFn(t)

Fig. 7 Power spectra of the modal force coefficients CFn(t)
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should be noticed that this prediction is based on a vortex-shedding hypothesis, in whic
ovalling vibration is regarded as a kind of forced vibration without any consideration of the 
shell interaction.

3.1.2. Cylinder with a splitter plate

The results for cylinders with a splitter plate are shown in Figs. 8~11. With an increase 
length L of the splitter plate, the magnitude of the base pressure coefficient decreases (see Fig. 9)

Fig. 10 Effect of L on the mean and RMS values of the second modal force coefficients CF2(t)

Fig. 9 Effect of L on the circumferential distribution of the mean pressure coefficient Cp

Fig. 8 Instantaneous flow pattern around a stationary cylinder with a splitter plate of L = D at t* = 150
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However, this change minutely affects the mean values of the modal force coefficients CFn(t), as
shown in Fig. 10a. On the other hand, the influence on the fluctuation of the modal force coef
is significant. The RMS value of CFn(t) becomes small, even when a splitter plate is as short asL =
0.25D (see Fig. 10b). Corresponding to this feature, the power spectra of CFn(t) exhibit peaks
neither at f * = St nor at f * = 2St, as shown in Fig. 11.

3.2. Unsteady aerodynamic forces acting on a vibrating cylinder

3.2.1. Cylinder without a splitter plate

The cylinder is forced to vibrate in either a symmetric or an anti-symmetric mode. The 
dimensional amplitude an

* (= an/D) and frequency fm
* (= fmD/ ) are varied from 0.00125 to 0.01

and from 0.12 to 0.80, respectively. Fig. 12 shows the variation of the power spectra S2 of the
second modal force coefficient CF2(t) with an increase in fm

*  for am
* = 0.00125 and 0.01. When the

amplitude is small (e.g., Fig. 12a), the spectrum for the anti-symmetric mode (broken line) has a
peak at f * ≈ 0.21 (=St) regardless of f m

* ; in particular, the peak is predominant when f m
* = 0.20 (≈ St).

On the other hand, the spectrum for the symmetric mode (solid line) is generally dominated b
frequency fluctuations, which may be related to the randomness of the flow around the cy

U∞

Fig. 11 Power spectra of the modal force coefficients CFn(t) on a stationary cylinder with a splitter plate of L = D

Fig. 12 Power spectra of the second modal force coefficient CF2(t) on a vibrating cylinder
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The spectral peak due to the forced vibration can be seen only when f m
*  is relatively high, for

example, such as f m
* > 0.4. As the amplitude becomes large (e.g., an

* > 0.005), the spectral peak a
f * = fm

*  becomes predominant for both symmetric and anti-symmetric modes. When fm
* = 0.4, the

spectrum for the anti-symmetric mode has predominant peaks both at f * ≈ 0.2 (≈ St) and at f * ≈ 0.4
(≈ 2St) (see Fig. 12b). The results for the third and fourth modal forces, F3(t) and F4(t), not shown
in this paper, were similar to those for the second modal force F2(t).

Plotted in Fig. 13 is the variation of the non-dimensional work W*  with f m
*  in the case of an

* =
0.005 (n = 2-4); the behavior of W * for the other an

*  values was almost the same as that shown in
this figure, although the values of W* depended on an

* . The non-dimensional frequency range
giving positive W *  values (i.e., negative aerodynamic damping), are summarized in Table 2. Rega
the second mode vibration, for example, the value of W *  becomes positive in a non-dimension
frequency range around fm

* = St for the anti-symmetric mode (α = 45o) and in a range of f m
* < 2St for

the symmetric mode (α = 0o). These features are consistent with the variation of the power sp
of F2(t) with f m

* (Fig. 12). Based on these results, the behavior of the second mode vibration w
increase in U2

* (= /f2D), or with a decrease in f 2
*(= f2D/ ), may be predicted as follows. Self

excited vibrations in the symmetric and anti-symmetric modes occur at U2
* ≈ 1/(2St) and U2

* ≈ 1/St,
respectively. The prediction for the symmetric mode is in accordance with the experimental 
by Païdoussis et al. (1979), who showed that a divergence-type vibration in the symmetric m
occurred at U2

* ≈ 1/(2St). In their experiment, the onset non-dimensional flow velocity for the a
symmetric mode was U2

* ≈ 1/(4St), lower than the prediction from the present study (i.e., U2
* = 1/St).

However, the observed vibration subsided after reaching a maximum at a flow velocity; in othe
words, the vibration was excited only in a limited range of flow velocity. In this flow velocity ran
W * is negative according to the present results (Fig. 13). Furthermore, the power spectrum exhibits
a predominant peak at f *≈ 0.8 (≈ 4St), when f m

* = 0.8 (see Fig. 12). These results imply that t
vibration induced at U2

* ≈ 1/(4St) can be explained by the subharmonic excitation mechanism

U∞ U∞

Fig. 13 Variation of W * with f m*  for a vibrating cylinder (an* = 0.005) 

Table 2 Non-dimensional frequency range giving positive W * values

 Mode Symmetric Anti-symmetric

2nd < 2St ≈ St

3rd ≈ St St − 3St

4th 2St − 4St ≈ St
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3.2.2. Cylinder with a splitter plate

Fig. 14 shows sample results on the power spectra S2 of CF2(t) acting on a vibrating cylinder (a2
*

= 0.005) with a splitter plate of L = 3D. In the power spectra, any Strouhal components are not s
only the fm-component being predominant; this is due to the suppression of the periodic v
shedding (see Fig. 11). 

The variation of W * with f m
*  is plotted in Fig. 15. Comparing the results with those in Fig. 13

can be seen that the splitter plate affects the behavior of W* only slightly. When the splitter plate is
placed behind the cylinder, the value of W*  for the second anti-symmetric mode (α = 45o) is
negative over the whole non-dimensional frequency range analyzed; a positive peak of W* observed
at fm

* ≈ St in the no splitter plate case disappears. This is the case for the third symmetric 
(α = 0o) and for the fourth anti-symmetric mode (α = 22.5o). These results suggest that the negat
aerodynamic damping at fm

* ≈ St, observed in the no splitter plate case (see Fig. 13), is related t
vortex shedding. Furthermore, it is found that self-excited vibrations in the second, third and 
modes can occur at non-dimensional flow velocities of approximately 1/(2St), 1/(3St) and 1/(4St),
respectively, as the flow velocity is increased. Considering that the vortex shedding is suppres

Fig. 15 Variation of W * with f m
*  for a vibrating cylinder (an

* = 0.005) with a splitter plate of L = 3D

Fig. 14 Power spectra of the second modal force coefficient CF2(t) for a vibrating cylinder (a2
* = 0.005) with a

splitter plate of L = 3D 
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the splitter plate (Fig. 11), it is thought that these vibrations are not related to the vortex shedd

4. Dynamic response of a shell model

4.1. Method of analysis

The consideration is limited to small-amplitude vibrations, as the first approximation. The shell 
considered to be purely elastic, homogeneous and isotropic. Taking the coordinate system as
in Fig. 16, the basic equations governing the motion of a shell of density ρs, Young’s modulus E,
and Poisson’s ratio υ, may be given by the following equations (see Flügge 1957) :

 (13)

(14)

where κ = h2/12a2 ; γ = ρsa
2(1−υ 2)/E ; qr = pi−pe, with pi and pe being respectively the internal and

external pressures acting on the shell surface; and Cv and Cw represent the damping coefficients wit
respect to the displacements v and w, respectively. Since the internal volume does not change du
an ovalling vibration, it is assumed that pi = 0. The external pressure is computed in the sa
manner as that described in Chapter 2. The effect of the flow-shell interaction is not represe
the equations explicitly, but it is involved in the process of the numerical simulation. 

The displacements, v and w, are approximated by the following equations:

(15)

(16)

Substituting Eqs. (15) and (16) into Eqs. (13) and (14) and applying the Galerkin method to
we obtain simultaneous coupled equations with respect to the coefficients An(t) to Dn(t). The equations
are numerically solved by using the Newmark β method with β = 1/4. 

∂2ν
∂θ2
-------- ∂w

∂θ
-------+ Cv

∂ν
∂ t
------ γ∂2ν

∂ t2
--------+=

∂ν
∂θ
------ w κ ∂4w

∂θ4
--------- 2

∂2w

∂θ2
--------- w+ + 

 + + C– w
∂w
∂t
-------−γ ∂2w

∂t2
---------

qr

ρsh
--------– 

 =

v θ t,( ) An t( ) nθcos Bn t( ) nθsin+[ ]
n 2=

N

∑=

w θ t,( ) Cn t( ) nθcos Dn t( ) nθsin+[ ]
n 2=

N

∑=

Fig. 16 Shell geometry and coordinate system
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4.2. Results of analysis

The properties of a shell model analyzed in this study are as follows : 

D = 76.2 mm, h = 0.483 mm, ρs = 1.29� 103 kg/m3, E = 0.28� 1010N/m2, υ = 0.4.

These values are the same as those of a clamped-clamped cylinder tested by Païdousset al.
(1982a). The second and third natural frequencies of the present model are 65.9 and 18
respectively. These natural frequencies are different from those of the Païdoussis et al.’s specimen,
because of the difference in the boundary condition.

Fig. 17(a) shows the time history response of C2(t) and D2(t) for an undamped system (Cv = Cw =
0) when = 20 m/s, i.e., = 4.0; in the figure, t = 0 represents the time when the fre
vibration test is started. The corresponding non-dimensional frequency f 2

*  is 0.25, which gives
positive W* values both for the symmetric and anti-symmetric modes, according to the results of the
forced-vibration test (see Fig. 13). It is seen that the vibration in the symmetric mode (C2(t)) grows
with time t. Plotted in Fig. 17(b) are the RMS values of C2(t) and D2(t), computed from the
responses in a range of t * (= /D) from 15 to 100, as a function of U2

* (= /f2D). Fig. 18
shows the power spectra of C2(t) and D2(t), normalized by h, for various values of U2

* . From the
results in Fig. 17(b), it is found that the non-dimensional onset velocities for the symmetric
anti-symmetric modes are approximately 2.5 and 3.5, respectively. These values correspond 
the predicted values from the results in Fig. 13, showing that the sign of W* becomes positive at
fm

* ≈ 0.4 and 0.3 for the symmetric and anti-symmetric modes, respectively, as the value fm
*

decreases. At U2
* = 5.0 (i.e., f 2

* = 0.2), the power spectra exhibit predominant peaks at f *≈ 0.2 (≈ St). 
Fig. 19 shows the results for a slightly damped system when = 20 m/s; the critical dam

ratio η2 of this model is assumed to be 0.001. Comparing the results in Fig. 17, we can se
only a little structural damping reduces the vibration amplitude significantly. In this study,
critical damping ratio η2 is determined from the uncoupled equations for A2(t) to D2(t), obtained by
neglecting the coupling terms in the simultaneous equations. Such a manner to determine the s

U∞ U∞ f2D⁄

tU∞ U∞

U∞

Fig. 17 Responses of C2(t) and D2(t) in the no splitter plate case (η2 = 0)
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Fig. 18 Power spectra of C2(t) and D2(t) in the no splitter plate case (η2 = 0)

Fig. 19 Responses of C2(t) and D2(t) in the no splitter plate case (η2 = 0.001)

Fig. 20 Responses of C2(t) and D2(t) for a cylinder with a splitter plate of L = 3D (η2 = 0)
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damping is still controversial; this is the subject of a future investigation.
The results for a cylinder with a splitter plate of L = 3D are shown in Fig. 20, in which it is

assumed that η2 = 0. The vibration in the symmetric mode is excited at U2
* ≈ 2.5 in the same manne

as that for the no splitter plate case. On the other hand, the vibration in the anti-symmetric m
rather suppressed. These features are consistent with the expectation from the result for W* (Fig. 15).

5. Conclusions

The mechanism of wind-induced ovalling vibrations of cylindrical shells has been investigate
based on a numerical simulation of the unsteady aerodynamic forces acting on a vibrating c
by using a vortex method. First, a comparison was made between the present analysis and
tunnel experiment for the aerodynamics of a stationary cylinder. A good agreement was ob
suggesting the validity of the simulation model used in this study. Then, the second to fourth 
forces acting on a vibrating cylinder were computed under various conditions. The results indicate tha
the characteristics of the unsteady aerodynamic forces are related to the vortex shedding fr
cylinder. The aerodynamic stability of the ovalling vibrations in the second to fourth modes 
investigated, based on the work done by the unsteady pressures for one cycle of a harmonic mot
vortex shedding may cause self-excited vibrations in a flow velocity range near the resonant velo
some mode configurations; i.e., the second anti-symmetric, the third symmetric and the fourt
symmetric mode. It may be interesting to note that the suppression of vortex shedding by using a
plate minutely affects the behavior of the work for some mode configurations; i.e., the s
symmetric, the third anti-symmetric and the fourth symmetric mode. Even if the vortex shedd
suppressed by a splitter plate, self-excited vibrations in these modes may occur at some flow ve
as the flow velocity is increased. In other words, the existence of periodic vortex shedding 
essential for the onset of ovalling vibrations in these modes. These features are consistent with th
experimental observations presented by Johns and Sharma (1974) and by Païdoussis and Helle
to some degree. Finally, the dynamic response of a cylindrical shell model was numerically sim
The results are consistent with the expectation from the results of the forced vibration tests; this 
the validity of the consideration on the mechanism of the ovalling vibrations.

There are some problems to be solved, regarding the application and accuracy of the simulat
model used in this study. Further investigations, including a forced vibration test in a wind tu
are planned in order to investigate these problems as well as to discuss the mechanism of 
vibrations in more detail.

The authors gratefully acknowledge helpful discussion with Prof. H. Shirato of Kyoto University d
this work.
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