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A new ALE finite element techniques
for wind-structure interactions

Chang-Koon Choi' and Won-Jin Yu*

Department of Civil Engineering, KAIST, Taejon 305-701, Korea

Abstract. A new finite element technique to solve the problem of wind and structure interactions is
presented. Conventionally, wind analysis is performed on the Eulerian description in which the finite
element mesh would not move in accordance with the wind flow. However, it is not the case in wind-
structure interaction problems because nodes attached to the surface of structure should move with the
displacement of structure. The arbitrary Lagrangian-Eulerian (ALE) method treats the mesh and flow
independently, and allow the mesh to move. In this study, the analysis domain is divided into regions of
the structure, air around the structure and the interface of two regions. To satisfy the compatibility and
equilibrium conditions between separated regions and to carry out the efficient analysis, the rigid link is
used. Also the equation of wind and that of structure are arranged in a single matrix equation.
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1. Introduction

Aerodynamic characteristics of flow around structures become more important in civil engineering
as structures become larger and taller. To date, the aerodynamic stability of structures under planning
and/or construction have been mostly estimated from the wind tunnel test rather niancadu
simulation. The main reasons are; 1) the computing time for numerical simulation of nonlinear
transient equation is too large, 2) the spatial descritization of structures and its circumference is not
easy, and 3) the algorithm that promise the robust solution is yet to be found in spite of a lot of
research efforts in the past. However, the amazing development of computer hardware and its
increased availability will reduce the computing time and expenses to make the numerical
computation technology more practically applicable in the wind engineering.

Wind induced vibration of structures is one of the interesting subject to many researchers.
Conventionally, the computational fluid analysis is performed on the Eulerian description in which
the analysis mesh would not move in accordance with the flow. However, it is not true in the wind-
structure interaction problem because nodes attached to the surface of structure actually move wit
the displacement of structure. On the contrary, the Lagrangian description which is frequently used
in the contained fluid cannot be used in the case of convection dominated flow such as the wind
because the serious meslkstartion can not be avoided. In the ardiy Lagrangian-Eulerian
formulation (ALE), the mesh and flow are treated independently and the mesh is admitted to move.
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Thus, the ALE formulation can be regarded as a suitable algorithm for the wind-structure interaction
problem. Donea (1982) showed kinematics and conservation laws of fluid in the ALE description.
Liu (1988) established a general ALE formulation oiité element method (FEM) and applied to

the problems of wave propagation, penetration, impact, and so on. ALE formulation for incompressible
viscous flows is developed and applied to modeling the fluid subdomain of fluid-structure
interaction and free-surface problems (Hughes 1981).

In the wind induced vibration problems of civil structures, e.g., for a bridge section, the deflection
of structure is more important factor than the deformation of section itself to many engineers. To
date, only limited literatures are available in this area of study. The structure can be idealized as a
rigid body supported by a series of springs in this case (Nomura and Hughes 1992).ebalrate
(1998) proposed the nonlinear algorithm of rotational case and solved the vibration of bluff body
around fluid. Mendes and Branco (1999) used a flutter model for bridge section in place of rigid
body equation proposed by Nomura (1992).

In this paper, the combined matrix procedure is proposed to reduce the computation time. The
matrix equations of wind and structure are combined to form one matrix equation so that the
compatibility and equilibrium conditions can be satisfied automatically. The penalty function method
which can reduce the number of independent variables is adopted for the purpose of computationa
efficiency and the selected reduced integration is carried out for the convection and pressure terms
to maintain the stability of solution. When the Galerkin formulation is applied to the convection term,
numerical solutions are unstable and wiggle phenomena will appear. To prevent the wiggle problem,
the quadrature upwind technique is used (Hughes 1979) and the predictor multi-corrector scheme is
used to solve nonlinear equation.

2. Formulation of wind

In the Fig. 1, the wind flows into the domafd- and the prescribed velocity and traction are
given on the boundarieS; and "y, respectively. The interaction bounddrybetween the structure
and fluid moves in accordance with the motion of the structure denotégs.a$he governing
equation of wind based on ALE description can be derived as

Incompressibility condition u;; =0 A
Navier-Stokes equation — pU; ; + p(U; —u)u; ; +u;—pu(uj+u;;) =0 Q)

where u is the velocity of wind,u is the moving velocity of mesgh,is the pressurep is the

Fig. 1 Problem statement of the wind structure interaction
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density of air andu is the viscosity of air. The element matrix equation is obtained from the
governing Eqg. (1) by conventional Galerkin formulation.

E] 0 E] 0 Oy 0 Of O
0 0 O 0o ‘Yo
[M]Dv D+[N(UV)]DV D+[K]DVD OF, O (2)
0.0 O 0’0
0P 0 oPO DP 00 O

To reduce the number of total degrees of freedom and avoid any additional iterative calculation for
pressure, the penalty formulation is introduced. The pressure can be replaced by the penalty
parametet and the incompressibility condition. (Huebner 1995)

U, Vg
P = A vl ©)

The value of penalty parametérdepends on the computer capacity, the physical parameters of
wind, equation solver used, and so on. By the penalty formulation, Eq. (2) is rearranged without
pressure® as

{M o}% g, {N 0}%u 0, [2Ku ke Ky [u, ) |_$1 LifBu 00, [
O MpOovg [ONDOV DO Koy  Kp+2K,/OV O LoLyOvo Of,0
_ _ ~ N . N
M = _![2p{N}[N]d_Q N = Igu—u){l\l} D‘;—Xm (v=W{N} D‘;—y[%dg
0N [N 06N
-[ Dﬂxbﬁdx }dQ Lap = ID(?X gdxb} Q )

The matricesM, N, K, L are the element mass, convection, viscosity, and pressure matrix,
respectively. To prevent wiggle phenomena and obtain a stable solution, the optimal upwind technique
needs to be applied to the computation of convection matrix. Details of element matrices can be
found in references (Choi and Yu, 1998, 1999a)

3. Modeling of structure

The concept of mass-spring system, which is frequently used in the wind tunnel test for wind
induced vibration of bridge section, can also be applied to the numerical modeling. Nomura and
Hughes (1992) proposed the simple mass-spring system in which the structure is assumed as a rigi
body as shown in Fig. 2(a). Some transformation matrix is needed tdiskstdle relationship
between the nodal kinematic variables on theriate and degrees of freedom of rigimly structure,
and to match the force equilibrium condition.

In the previous worka new modeling for the structure is proposed using beam elements as shown
in Fig. 2(b) (Choi and Yu 1999b). As nodes on the surface of structure are connected to the support
inside the structure with beam elements of large stiffness, the compatibility and equilibrium conditions
are satisfied automatically since they are in one system. However, the numerical instability may
occur when beams used do not have masses. Thus, a new formulation to obtain stable solution i
developed.
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(a) rigid body modeling (b) beam analogy

Fig. 2 Modeling of structure using connection beams

A

X1, Xy

rigid links 9,

Fig. 3 Modeling of structure using ligid links

When the structure is uncoupled with wind, the matrix equation for the structure is given as
M®as+ CSus+ K3ds= fs (6)

where superscripg and subscripts denotes structurdd, C, andK are global mass, damping, and
stiffness matrices of structure modeled as a rigid body, respectivelg, an@ndd are acceleration,
velocity, and displacement vectors of the structure, respectively. Kinematic variables are defined as

05 0O 95 0 95 0
5 5
0% Qg 0.0 00O
d;=04,0 Us=04 0 &=05, 0 (7)
O 20 020 020
060 0g 0 090
0° 0 0° 0

Nomura (1992) showed the compatibility relationship okhiatic variables to relate variables of
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center with those on the surface. Then, displacements, velocity and acceleration on the surface ar
written as

Od, 0 06 O [cosf— 1 —sing |Ox, O
d=pgotg=g% g |0 sinb 1 5% 5 (8a)
Od, 0O 06 O | sin@ cos6-10X%: 0O
Y
. 51
10-L,/0 "0
= 205, 0= Ty (8b)
01L,|07°0
0 g O
o O
Oo. O
oy
a = 10_"2[]'5 0 Ly o =Ta+Af (8¢)
01 L]0 20 [L
g O
o O
4. Interaction problem
The governing equation for wind (Eqg. (4)) can be rearranged in a single equation as
[M"]{a} +[C"){u} = {f} ©)

Then, Egs. (6) and (9) are arranged to form one equation as uncoupled form between wind anc
structure.

MvvvleVVy,oE]aWE] cvvylcvvy,o%uwg ooo%dw% %fwg
Mlvvvvmxvo%al%+ cmcwo%ulg+ooo%dl%=%flg (10)
o omIOad |o ociousg [00KIOdsg Ofs D

where subscriptay, | and s describe the regions of wind only, interface, and structure only,
respectively, and superscriptsands denote the wind and structure, respectively.
As a general expression, Eq. (10) can be rewritten as

[M{a} + [Cu}+[K[{d}={T} (11)

Eqg. (11) should be solved by the nonlinear transient solution algorithm since the Gnh&scthe
nonlinear effect asing from convectionerm. The predictor multi-corrector algorithm with velocity-
form method is used for the time history analysis (see Hughesl 1979 for detail). In the
predictor multi-corrector algorithm, predictors at the timen+1 are given as

~ At
On+1 = dn+Atun+7(1—2ﬁ)an (12a)
sy = Up+ (1-))Ata, (12b)

é-n+1 =0
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The recursive relation determineg as

t+C+&EP

n+1

ALK ~
EVA Fosi— q/At Ly%hnu—'(dml (13)

For the nonlinear problems, Eq. (13) should be changed to an incremental form as given
caulid = R, (14)

0)

where the effective coefficient matr®” and the residudR}., are given as

* M BAt
C =—+C K
yAt+ + v (15a)
R\, = fo.i—Mal), —Cuf), —Kd{, (15b)

The fast solution of nonlinear problem can be obtained using Eq. (15), because the effective
coefficient matrix (or tangent matrixg” is calculated every iteration steps. The convergence of
iteration is checked comparing the residBél, and cervergence criterion. Finally, correctors in the
incremental form are given as

u(r::i) = u(i) +Au(i+i)
(uGiD —Un. 1)/ (vAD)
dr(1lzrl = dn+1+ﬁAt anig (16)

a(' +1)

n+1

At this point, the compatibility conditions between variables of nodes on the surface and those of
center of rigid body should be considered in Eq. (14). Eq. (14) is described as

i+1) i)
CowCi O E]]Au Ef UR, E]f
Ciy Ci 0|0 Au, D = 0R E] 17)

0 OCSS[]AUSE[]1 []RSQHl

Ooood

where residual vector is given as

(1) (1) i)
or, 0 06,0 (MM, 0]0a, 0" [CuCu 0]0u,
OR O =0f O —MlWMl,ODalE] -1Cy, C, 0|0y O
O_ 0 0. O 0
oRsg,, 0Ofg,, [0 O l\/lss[]asq+1 0 0 Cg4ypousq,,
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OOOE]dWE](]
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Substituting Eg. (8) into (17) and multiplying the transformation méatria rows of interface, the
condensed matrix equation can be obtained.

¢ coT' |Daw,d ) o r, O
" " g™g =g_ "™ g (19)
TG TC, T +C 0 Aus le OTR +R; le

In this procedure, displacements, velocities, and accelerations of nodes on the surface are treate
as dependent variables of those of the center by Eq. (8).

As the computation of incremental wind-structure interaction proceeds, a new mesh should be
defined at every time step in accordance with the movement of the structure. New coordinates of
nodes do not depend on the solution algorithm or velocity of flow. That is, the shape of new mesh
can be arbitrary if the boundary catiwhs are satisfied and proper shapes amgnts are
maintained.

The new fluid mesh distribution around structure is needeshelh time step for next analysis
after the structure is moved. The mesh distribution is arbitrary in ALE analysis. Thus many individual
researchers proposed different schemes for ALE mesh generation. Donea (1982) used a grid mea
velocity of neighboring nodes at the previous time step. Benson (1989) recommended finite difference
mesh relaxation stencils to get a smoothed mesh distribution. If the distortiornoénel shape
generated by the scheme can be minimized, the time consuming scheme for miesiticshistvill
not be recommended.

A simple and efficient scheme for mesh distribution is proposed in which the solution domain is
separated into three zones; i.e., Attached, Interim, and Fixed zone as sketched in Fig. 4. In the
Attached zone, nodes move in the fashion of rigid body motion as the structure moves. On the other
hands, nodes do not change coordinates through the entire solution time in the Fixed zone. In the
Interim zone, the new coordinates of nodes vary in the proportion to the distance between Fixed
circle and Attached circle. This scheme makes the re-distribution very simple and smooth, and the
distortion of elements is minimized.

Fixed Zone

Fixed Circle

Attached Zone

Attached Circle

Structure
Fig. 4 Separation of solution domain for new location of nodes



298 Chang-Koon Choi and Won-Jin Yu

5. Numerical examples

The free vibration analysis of a single cylinder in a circular domain filled with viscous fluid as
shown in Fig. 5 has been performed to verify the ability of the proposed procedure to solve the
fluid-structure interaction problem. The mass and the spring coefficient of the interior cylinder are
3.408 g and 34611.3 g/srespectively. The inner diameter and the outer diameter are 1.27 cm and
6.35 cm, respectively. The inner cylinder is forced to deflect by 0.0127 from the initial zero velocity
state. The natural angular frequency of the cylinder is 100 rad/sec or the natural period is 0.0623
second. The time step for analysis is 0.001 second.

Displacement, velocity and acceleration histories for the four cases were depicted in the Fig. 6.
Since the density and the viscosity of air is very small compared with those of cylinder, the
amplitude of displacement history curve and the frequency of vibrating cylinder are nearly the same
as those of inner cylinder. On the other hand, densities of ottes fluids are fairly large to
generate the added mass effect. The ratios of densities of fluids to that of inner cylinder are
approximately 1 to 3. The amplitude of despdment is reduced most rapidly in the case of silicon
oil which has the largest viscosity value. Properties of the four different fluids filed and damped
natural frequencies are given in Table 1 with some results of Nomura (1992). The velocity distribution
of the air at tima = 0.02 second is drawn in Fig. 7.

In the second example, the rotational motion of a rectangular cylinder submerged in a viscous
fluid is shown in Fig. 8. The mesh consists of 3Zh®nts and 344 nodes. At the initial state, the
cylinder is rotated with 0.02 angular velocity at zero displacement. The rotational stiffness and
inertia are given as 707.56 and 10000, respectively. To observe the effects of the viscosity, three
different values of dynamic viscosity are selected, these are 0.01, 0.001, 0.0001.

Fig. 9 shows the rotational displacements for three different viscosity values of fluids. It can be
found that the larger the viscosity, the faster the amplitude decreases. This tendency can also b
found in the reference (Sarragé¢ al 1998). The natural frequency of this cylinder does not change
in three cases of different viscosity because thiesraf densities of fluids to cylindeare larger
than 100. Fig. 10 shows the streamlines and mesh (displacements are scaled by 10) for dynami

\"‘
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No slip
Fig. 5 Vibration of a circular cylinder
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Fig. 6 Displacement, velocities, and acceleration histories
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Table 1 Fluid properties and damped natural angular velocity

Fluid Silicon oil Mineral oil Water Air
Density(g/crd) 0.956 0.935 1.000 0.00118
Viscosity(g/cm s) 1.450 0.410 0.0133 0.000182
fy (1/s) (Nomura 1992) 12.37 12.87 13.26 15.96
fq (1/s) (present) 12.37 12.86 13.26 15.95

fy: damped natural frequency

e
“3"-!","’
= #‘5“""%""""%‘
= g
()

Fig. 8 Rotational vibration of rectangular cylinder

viscosity v=0.01 during one period of vibration. As the radius of Fixed circle is the same as radius
of outer cylinder, the Fixed zone does not appear.



A new ALE finite element techniques for wind-structure interactions

rigid body displacement

0.08
i dynamic viscousity
—=--—v=0.01
v =0.001
0.04

---------- v =0.0001

angular displ.
(=1

-0.04

0 50 100 150 200 250 300
time (sec)

Fig. 9 Rotational displacement of cylinder
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Fig. 10 Meshes, streamlines and Zoomed Streamlines during one period of vibration
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6. Conclusions

A new scheme for wind-structure interaction analysis is proposed. As the structure is connected
by rigid links and the governing equations of wind and structure are combined to form a single
equation, the iteration process on the interface to satisfy the kinematic condition and force
equilibrium is not needed. The ALE method is applied to the wind-structure interaction analysis to
treat the fluid domain ith moving mesh. The proposed scheme to determine new locations of
nodes, in which the solution domain is separated into three zones, is simple and efficient. The
numerical test results indicate that the potential of applicability of the proposemhesdb actual
wind-structure interaction problems is high. The expansion of current study to include the 3-D
effects and turbulence atacteistics of wind will be of inérest and should be continued to make
the proposed scheme a useful tool for the practical wind-structure interaction analysis.
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