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1. Introduction 
 

Functionally graded materials (FGMs) which are a new 

class of advanced composites, are made from a mixture of 

two different materials (metals and ceramics). The 

mechanical properties of FGM change with a smooth and 

continuous variation from layer to another through the 

thickness direction, and thus, eliminating the inter-laminar 

and residual stresses as founded in classical composites. 

Because of this feature, the FGMs are widely used in many 

engineering fields such as aircraft, aerospace, naval/marine, 

optical, civil, automotive, electronic, chemical, construction 

and mechanical engineering (Bousahla et al. 2014, 

Belkorissat et al. 2015, Taibi et al. 2015, Hamidi et al. 

2015, Bellifa et al. 2016, Beldjelili et al. 2016, Bouderba et 

al. 2013, 2016. Bellifa et al. 2017a, Menasria et al. 2017, 

Mouffoki et al. 2017, Sekkal et al. 2017a, b, Zine et al. 

2018, Bouhadra et al. 2018).  

Due to the importance of these new materials, many 

theories have been developed by researchers to study the 

static and dynamic responses of functionally graded 

structures. Yang and Chen (2008) studied the free vibration 

and buckling of FGM beams with the presence of open  
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cracks. Li et al. (2009) analyzed a small vibration of post-

buckled FGM beams with surface-bonded piezoelectric 

layers in thermal environment by a numerical shooting 

method based the exact geometrically non-linear theory for 

axially extensible beams. Şimşek and Kocatürk (2009) 

analyzed the dynamic behavior of an FGM simply 

supported beam under a concentrated moving harmonic 

load, in which the effects of the material homogeneity, the 

velocity of the moving harmonic load, and the excitation 

frequency on the dynamic responses of the beam were 

discoursed. 

In the framework of the first shear deformation theory or 

the Timoshenko beam theory, Li (2008) presented analytical 

solutions for the static bending and free vibration of FGM 

Timoshenko and Euler-Bernoulli beams. Huang and Li 

(2010) studied the free vibration of axially FGMs with non-

uniform cross-sections by using the integration technique to 

transform the differential governing equations into the 

Fredholm integral equations. Bouremana et al. (2013) 

developed a new first shear deformation theory based on 

neutral surface position for FGM beams. Using Timoshenko 

beam theory, Arani and Kolahchi (2016) presented buckling 

analysis of embedded concrete columns armed with carbon 

nanotubes. 

Based on higher order shear deformation theories, 

Aydogdu and Tashkin (2007) studied the free vibration 

behavior of a simply supported FGM beam based on the 

first, parabolic, and exponential shear deformation beam 
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theories, respectively, in which natural frequencies were 

obtained by the Navier type solution method. Şimşek 

(2010) investigated the dynamic responses of functionally 

graded beams by different beam theories, in which a system 

of equations of motion was derived by Lagrange‟s 

equations. Mahi et al. (2010) analyzed the free vibration of 

FGM beams with the temperature dependent material 

properties. The formulation was derived based on a unified 

higher order shear deformation theory. The effects of the 

initial thermal stress on the natural frequencies were also 

discussed.  The free vibration of thin and thick-walled 

FGM box beams has been studied by Ziane et al. (2013). 

Thai and Kim (2013), Thai and Choi (2014) and Belabed et 

al. (2014) presented a quasi-3D sinusoidal, polynomial and 

hyperbolic shear deformation theory, respectively, with only 

five unknowns for bending and free vibration analysis of E-, 

and P-FGM plates. Zidi et al. (2014) investigated the 

bending response of FG plates subjected to hygro-thermo-

mechanical loading. Ahmed (2014) analyze the post-

buckling of sandwich beams with functionally graded faces 

by employing a consistent HSDT. The influence of 

stretching effect and porosities on the free vibration 

behavior of thick FG beams was analyzed by Ait Atmane et 

al. (2015). A new simple and refined hyperbolic and 

sinusoïdal higher- order beam theory for bending and 

vibration analysis of FG beams with including the thickness 

stretching effect was performed by Bourada et al. (2015) 

and Meradjah et al. (2015), respectively. Based on physical 

neutral surface, Han et al. (2015) proposed a four variable 

refined theory to study a dynamic stability of S-FGM plates. 

Lee et al. (2015) developed a refined higher order shear and 

normal deformation theory with only five unknowns for 

predicting a bending response of E-, P-, and S-FGM plates 

on Pasternak elastic foundation. A static analysis of 

functionally graded (FG) single and sandwich beams by 

using a simple and efficient 4-unknown quasi-3D hybrid 

type theory, which includes both shear deformation and 

thickness stretching effects was presented by Mantari and 

Yarasca (2015). Akavci (2016) investigated mechanical 

response of FG sandwich plates on elastic foundation. 

Abdelaziz et al. (2017) presented an efficient hyperbolic 

shear deformation theory for bending, buckling and free 

vibration of FG sandwich plates with various boundary 

conditions. Kolahchi and Bidgoli (2016) presented a size-

dependent sinusoidal beam model for dynamic instability of 

single-walled carbon nanotubes. Recent plate/beam theories 

can be consulted in references of Ait Amar Meziane et al. 

(2014), Fekrar et al. (2014), Al-Basyouni et al. (2015), 

Kolahchi et al. (2017a, b, c), Kolahchi et al. (2016a, b), 

Boukhari et al. (2016), Bounouara et al. (2016), Bilouei et 

al. (2016), Madani et al. (2016), Ahouel et al. (2016), 

Draiche et al. (2016), Bousahla et al. (2016), Kolahchi and 

Cheraghbak (2017), Zamanian et al. (2017), Zaoui et al. 

(2017a,b), Kolahchi (2017), El-Haina et al. (2017), Fahsi et 

al. (2017), Chikh et al. (2017), Hajmohammad et al. (2017), 

Zarei et al. (2017), Shokravi (2017a, b, c, d), Yazid et al. 

(2018), Youcef et al. (2018), Mokhtar et al. (2018), Fourn et 

al. (2018) and Bakhadda et al. (2018).   

Recently, Yarasca et al. (2016) established an Hermite-

Lagrangian finite element formulation to investigate the 

static behavior of functionally sandwich beams with 

including both shear deformation and stretching thickness 

effects. Simsek (2016) presented a two dimensional 

functionally graded materials (2D FGM) to investigate the 

buckling of beams with different boundary conditions. 

Benbakhti et al. (2016) presented a hyperbolic plate theory 

with 5-unknowns using stretching effects for thermo-

mechanical bending of FG sandwich plates. Tounsi et al. 

(2016) presented a non-polynomial shear deformation 

theory with three unknowns for buckling and vibration 

analysis of FG sandwich plates. Tossapanon and 

Wattanasakulpong (2016) utilized Chebyshev collocation 

method to solve buckling and vibration problems of 

functionally graded (FG) sandwich beams resting on two-

parameter elastic foundation including Winkler and shear 

layer springs. Kheroubi et al. (2016) proposed a simple and 

refined nonlocal hyperbolic higher-order beam theory for 

bending and vibration response of nanoscale beams. Meftah 

et al. (2017) analyzed the free vibration of thick FG plates 

resting on two parameter elastic foundation using a non-

polynomial refined plate theory. The nonlinear thermal 

buckling of single-walled Borone Nitride nanotubes 

(SWBNNTs) using a new nonlocal first-order shear 

deformation beam theory was investigated by 

HadjElmerabet et al. (2017). Baseri et al. (2016) presented 

an analytical solution for buckling of embedded laminated 

plates based on higher order shear deformation plate theory. 

Recently, a new class of quasi-3D HSDTs is developed by 

several authors to study macro/nano-structures (Abualnour 

et al. 2018, Benchohra et al. 2018, Bennoun et al. 2016).  

In this article, a new displacement field based on quasi-

3D hybrid-type higher order shear deformation theory is 

developed to analyze the static and dynamic behaviors of 

exponential (E), power-law (P) and sigmoïd (S) functionally 

graded beams. Novelty of this theory is that contain just 

three unknowns with including stretching effect, as opposed 

to four or even greater numbers in other shear and normal 

deformation theories. It also does not require a shear 

correction factor because of the parabolic distribution of the 

transverse shear stresses across the thickness, and satisfies 

the free surfaces boundary conditions of transverse shear 

stresses. The Hamilton‟s principle is used to determine the 

beam governing equations. Navier-type analytical solutions 

of bending and free vibration analysis are provided for 

simply supported beams subjected to uniform distribution 

loads. 

 

 

 

Fig. 1 Geometry and coordinates of a FG beam 
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The effect of the sigmoid, exponent and power-law volume 

fraction, the thickness stretching and the material length 

scale parameter on the deflection, stresses and natural 

frequencies are discussed. To evaluate the performance of 

this theory, the obtained results are compared with results 

available in literature. 

 

 

2. Analytical modeling 
 
2.1 Material properties 
 

In this study, we consider a functionally graded beam of 

length L and rectangular cross-section with b the width and 

h the thickness, with the Cartesian coordinate system 

O(x,y,z) and the origin at O as shown in Fig. 1. The material 

characteristics of the FGM are defined based on one of the 

following rules of mixture: 

 
2.1.1 The power-law (P-FGM) variation 
The volume fraction of the P-FGM beam given in the 

Fig. 2 is considered to change smoothly within the thickness 

of the beam in according to the power law form (Bao and 

Wang 1995, Tounsi et al. 2013, Hebali et al. 2014, Houari et 

al. 2016, Meksi et al. 2018) as follow 
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2.1.2 The exponential (E-FGM) variation 
The volume fraction of the E-FGM beam that is plotted 

in the Fig. 3, is supposed to vary continuously in the 

thickness direction according to the exponential variation 

(Delale and Erdogan 1983) as given in Eq. (2) 
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Fig. 2 Volume fraction profile of the material )(zVc
 

through the thickness of P-FGM beam for different value of 

the parameter  k  

 

 

 

Fig. 3 Exponential function profile along the thickness of an 

EGM beam for different values of the parameter 

 

 

2.1.3 The sigmoïd (S-FGM) variation 
The volume fraction of the S-FGM beam as shown in  

the Fig. 4 is defined by using two power-low functions 

which ensure smooth distribution along the thickness 

direction (Lee et al. 2015) as follow 
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(3b) 

Where P represents the effective material property, 
cP

and
mP denote the properties of metal and ceramic 

respectively, and k is the exponent that specifies the 

material distribution profile through the thickness. Poisson 

ratio is considered to be constant (Attia et al. 2015, 2018). 

 

2.2 Kinematic and constitutive relations 
 

According to the higher order shear deformation theory 

(HSDT), the displacement field of the proposed refined 

hybrid quasi-3D shear deformation theory can be expressed 

as 

 

 

 

Fig. 4 Volume fraction profile of the material )(zVc

through the thickness of S-FGM beam for different value of 

the parameter  k  
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Where 
0u ,

0w ,   are in-plane displacement, transverse 

deflection and the shear rotation of transverse normal on the 

plane, respectively. )(zf denotes a shape function 

determining the distribution of the transverse shear strains 

and stresses through the thickness. 

In this study, an hybrid type shear strain shape functions 

are used 
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The linear strain relations determined from the 

kinematic of Eqs. 4(a) and 4(b) can be constituted with Eqs. 

6(a)-6(c) 
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For the FG beams, the linear elastic constitutive 

equations can be obtained by 
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In which, ( x ,
z , xz ) and ( x ,

z , xz ) are the 

stresses and the strain vectors with respect to the beam 

coordinate system. ijQ are the elastic coefficients which 

they are defined in terms of engineering constants as below 
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2.3 Equations of motion 
 
The equations of motion and the constitutive relations 

are derived by applying Hamilton‟s principle. The principle 

can be stated in analytical form as (Larbi Chaht et al. 2015, 

Zemri et al. 2015, Mahi et al. 2015, Bellifa et al. 2017b, 

Benadouda et al. 2017, Besseghier et al. 2017, Bouafia et 

al. 2017, Khetir et al. 2017, Klouche. et al. 2017, Zidi et al. 

2017, Hachemi et al. 2017a, b, Belabed et al. 2018, Kaci et 

al. 2018) 
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where U  is the variation of strain energy; V  is the 

variation of the potential energy of external transverse load 

; and K  is the variation of kinetic energy. 

The variation of strain energy of the FG beam is given 

by 
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Where the stress resultants xN ,
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xM s
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The variation of the potential energy of external loadcan be 

expressed by 

dxwqV
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The variation of kinetic energy of the beam can be written 

as 

 

 

dx
xx

K
x

w

xxx

w
J

u
xx

uJ
x

w

x

w
I

u
x

w

x

w
uIK

wwJwwuuI

dxdzzwwuuK

L

L

h

h





































































































 

































2
00

2

001
00

2

0
00

010

0

0

0000000

0

2

2

)(

)(  

 

(14) 

Where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; )(z  
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is the mass density; and ( iI , iJ , iK ) are mass inertias 

defined as 
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Substituting Eqs. (11), (13), and (14) into Eq. (10), 

integrating by parts, and collecting the coefficients of 0 u , 

0 w  and ,  the equations of motion are obtained in 

terms of efforts as follow 
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Substituting Eq. (6) into Eq. (8) and the subsequent results 

into Eq. (12), the stress resultants can be expressed in terms 

of generalized displacements ( 0u , 0w , ) as 
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Where ,A ,B ,D ,B s ,Ds
etc… are the stiffnesses of the 

FG beam given by 
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Substituting Eqs. (17) into Eqs. (16), the equations of 

motion of the proposed quasi-3D hybrid-type HSDT can be 

expressed in terms of displacements ( 0u , 0w ,  ) as 
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3. Closed-form solution for simply supported beam 
 
Using Navier‟s procedure, the solution of the 

displacement variables satisfying the above boundary 

conditions can be expressed in the following Fourier series: 
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Where ( mU , mW , m )are unknown functions to be 

determined and is the natural frequency. isexpressed 

as 

Lm /   (21) 

The transverse load q is also expanded in the double-

Fourier sine series as 
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Where mq is the intensity of the load calculated from 

the Eq. (23) 
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For sinusoidal distributed load 

,0qqm   (24) 

For uniform distributed load 

 (25) 

Substituting Eqs. (20) and (22) into equations of motion 

(19),the closed-form solutions can be obtained from the 

following equations 
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4. Numerical results and discussions  
 

In this section, a various numerical analyzes are 

presented to verify the accuracy of the present theory in 

predicting the bending and free vibration responses of three 

type of simply supported FG beam (P-FGM, E-FGM,S-

FGM). Materials characteristics for metal and ceramic used 

in the FG beams are outlined in Table 1. 

For convenience, the following non-dimensional 

parameters areused 
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Table 1 Materialspropertiesof metal and ceramic 

Material 
Properties 

Young‟s modulus (GPa) Poisson‟s ratio Mass density (kg/m3) 

Aluminium (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 

Table 2 Non-dimensional deflections and stresses of P-FGM beams under uniform load 

k  Method x  
5/ hL  20/ hL  

w  u  x  xz  w  u  x  xz  

0 

Li et al. (2010) 0  3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500 

OuldLarbi et al. (2013) 0  3.1253 0.9162 3.8091 0.7777 2.8908 0.2294 15.0194 1.0103 

Bouremana et al. (2013) 0  3.1657 0.9209 3.7500 0.5990 2.8963 0.2303 15.0000 0.5993 

Meradjah et al. (2015) 0  3.1357 0.9261 3.8614 0.7438 2.8906 0.2300 15.2708 0.7656 

Present 0  3.1394 0.9285 3.8050 0.7354 2.8944 0.2302 15.0152 0.8283 

0.5 

Li et al. (2010) 0  4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676 

OuldLarbi et al. (2013) 0  4.8282 1.6608 4.9956 0.7660 4.4644 0.4087 19.7013 0.7795 

Bouremana et al. (2013) 0  4.8347 1.6331 4.9206 0.6270 4.4648 0.4083 19.6825 0.6266 

Meradjah et al. (2015) 0  4.7584 1.6124 5.0789 0.7604 4.4292 0.4010 20.0787 0.7824 

Present 0  4.7605 1.6120 4.9990 0.7692 4.4333 0.4010 19.7050 0.8940 

2 

Li et al. (2010) 0  8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787 

OuldLarbi et al. (2013) 0  8.0683 3.1146 6.8878 0.6870 7.4421 0.7691 27.1005 0.7005 

Bouremana et al. (2013) 0  8.0307 3.0741 6.7678 0.5101 7.4400 0.7686 27.0704 0.5102 

Meradjah et al. (2015) 0  7.8501 2.9703 6.9957 0.6838 7.2688 0.7390 27.5763 0.7044 

Present 0  7.8585 2.9904 6.8780 0.6293 6.7344 0.6994 27.0712 0.7102 

5 

Li et al. (2010) 0  9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790 

OuldLarbi et al. (2013) 0  9.8345 3.7128 8.1187 0.6084 8.8186 0.9134 31.8151 0.6218 

Bouremana et al. (2013) 0  9.6484 3.6496 7.9427 0.3926 8.8068 0.9120 31.7710 0.3927 

Meradjah et al. (2015) 0  9.6028 3.5488 8.2440 0.6079 8.6396 0.8798 32.3457 0.6271 

Present 0  9.5438 3.5939 8.0776 0.6310 8.6421 0.8814 31.8016 0.6721 

10 

Li et al. (2010) 0  10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436 

OuldLarbi et al. (2013) 0  10.9413 3.8898 9.7203 0.6640 9.6907 0.9537 38.1408 0.6788 

Bouremana et al. (2013) 0  10.7194 3.8098 9.5231 0.4288 9.6770 0.9524 38.0915 0.4292 

Meradjah et al. (2015) 0  10.7561 3.7501 9.8597 0.6625 9.5715 0.9278 38.7327 0.6835 

Present 0  10.6709 3.8019 9.6720 0.6291 9.5666 0.9288 38.1248 0.6704 
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4.1 Bending response 
 
4.1.1 Case of P-FGM beam 
To validate this study, a dimensionless displacements 

and stresses of thick and thin FG beam subjected to uniform 

distributed load using a power law variation of Young‟s 

modulus are presented in Table 2. The values obtained are 

compared with the 2D shear deformation theories given by 

Li et al. (2010), Ould Larbi et al. (2013), Bouremana et al. 

(2013) where the effect normal strain is neglected and the 

quasi-3D shear deformation theory reported by Meradjah et 

al. (2015) which taking into account for the effect of normal 

and transverse shear deformations . Since the 

proposed and the quasi-3D theory of Meradjah et al. (2015) 

include the thickness-stretching effect, the results are close 

to each other. Meanwhile, 2D theories which the thickness 

stretching effect is omitted overestimate the results. This 

table gives also the effect of the volume fraction exponent 

ratio and side-to-thickness ratio '''' / hL .  

From these results, it can be noticed that the axial and 

transverse displacements „„ , ‟‟ and in-plane 

stress„„ ‟‟increase with the increasing value of power law 

index .The shear stress  are also sensitive to the 

variation of . 

In Figs. 5-8, the stress and displacement distribution

s through the thickness of Al/Al2O3 FGM thick beam 

under uniform load, are presented. The results are plott

ed as compared with those obtained by Meradjah et al.

 (2015) for several values of power law index „„ ‟‟.A

 very good accuracy between the solutions is observed,

 except a small difference between the results of the tr

ansverse shear stress „„ ‟‟ is found (see Fig. 8). It is

 due to shear strain shape function. 

 

 

 

Fig. 5 The variation of the axial displacement u through-

the-thickness of a P-FGM beam (L = 2h) 

 

 

Fig. 6 The variation of the transversal displacement w
through the length scale of a P-FGM beam (L = 2h) 

 

 
 

 

Fig. 7 The variation of the axial stress 
x through the 

length scale of a P-FGM beam (L = 2h) 

 
 
 

 

Fig. 8 The variation of the transverse shear stress 
xz

through-the-thickness of a P-FGM beam (L = 2h) 
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4.1.2 Case of S-FGM beam 
In this example, a simply supported S-FGM beam will 

be analyzed. A sigmoid function given in Eq. (3) is used to 

define the material properties of the beam. 

The homogeneous  0k  and P-FGM  1k beams are 

used herein for the verification. Table 3 shows the non-

dimensional displacements, of simply supported beams, 

with various values of span-to-depth ratio
'''' h/L and power 

law index .  

The calculated displacements and stresses of 2D and 3D 

present theory are compared. The present results are in good 

correlation, in the cases of homogeneous and functionally 

graded  1k beams, with those obtained by Meradjah et al. 

(2015). This is due to the fact that the S-FGM material 

properties are the same with P-FGM, when the power law 

exponent is 1. The small difference between the present 2D 

and quasi-3D shear deformation results is due to omitting 

the thickness stretching effect. Also, it can be seen that the 

beam becomes stiffer when the effects of normal 

deformations is considered, and hence, leads to a decreasing 

of deflection and an increase in stresses.  

In Fig. 9, variations of non-dimensional displacements 

and stresses according to the thickness of an S-FGM beam 

are plotted using the present theory with including the thick

ness stretching effect. It can be shown that the fully 

ceramic beams produce the smallest displacements and 

stresses. As the volume fraction index increases, the  

 

 

deflection, axial displacement and stresses will increase. 

It should be noticed that Fig. 9(b) demonstrates the 

stretching thickness effect because it provides distributions 

of deflection within the thickness of beam. When this effect 

is ignored, these become constant through the thickness. 

 

4.1.3 Parameter studies 
In this party, parametric studies have been presented to 

evaluate the effect of power law index and side-to-

thickness ratio
'''' h/L on bending analysis of functionally 

graded beams with variable functions.  

In Fig. 10, the influence of side-to-thickness ratio on 

non-dimensional deflection of simply supported beams with 

variable functions is plotted. It can be observed from this 

figure that, increasing of side-to-thickness ratio causes 

reducing of the magnitude of deflection, it means that the 

effect of shear deformation is significant when beams are 

thick  20h/L , and negligible for thin beams. 

Another comparative study for evaluating the 

dimensionless center deflections of P-FGM, E-FGM, S-

FGM beams is carried out.  From Fig.11, it is showed that 

the deflection at the center of P-FGM beam is larger than 

those of E-FGM and S-FGM beams. The S-FGM beam 

which has the smallest deflection is stiffer than the other 

FGM beams. 

 
 

 

'''' k

'''' k

Table 3 Non-dimensional deflections and stresses of S-FGM beams under uniform load 

k  Method 
5/ hL  20/ hL  

w  u  x  xz  w  u  x  xz  

0 
Present εz = 0 4.9076 1.4491 3.8108 0.7539 4.4539 0.3544 15.0152 0.7689 

Present εz ≠ 0 4.8164 1.3914 3.8296 0.8306 4.4446 0.3525 15.0242 1.0419 

0.1 
Present εz = 0 4.9364 1.5244 6.1814 0.7542 4.4824 0.3732 24.34367 0.7691 

Present εz ≠ 0 4.8399 1.4530 6.2129 0.8307 4.4679 0.3678 24.35887 1.0419 

0.2 
Present εz = 0 5.0027 1.6006 6.0300 0.7545 4.5484 0.3922 23.7394 0.7694 

Present εz ≠ 0 4.8942 1.5153 6.0615 0.8309 4.5218 0.3833 23.7545 1.0420 

0.5 
Present εz = 0 5.2806 1.8155 5.8638 0.7550 4.8256 0.4458 23.0732 0.7699 

Present εz ≠ 0 5.1212 1.6908 5.8953 0.8312 4.7482 0.4271 3.08839 1.0421 

1 

Present (P-FGM) εz =0 5.7388 2.1012 5.8985 0.7539 5.2851 0.5174 23.20909 0.7689 

Present εz = 0 5.7388 2.1012 5.8985 0.7539 5.2851 0.5174 23.20909 0.7689 

Present (P-FGM) εz ≠ 0 5.4950 1.9237 5.9303 0.8306 5.1232 0.4856 23.2244 1.0419 

Present εz ≠ 0 5.4950 1.9237 5.9303 0.8306 5.1232 0.4856 23.2244 1.0419 

2 
Present εz = 0 6.3540 2.4508 6.1005 0.7494 5.9059 0.6055 24.0174 0.7642 

Present εz ≠ 0 5.9957 2.2082 6.1328 0.8281 5.6297 0.5574 24.0330 1.0412 

10 
Present εz = 0 7.2178 2.9196 6.4914 0.7373 6.7848 0.7242 25.5903 0.7513 

Present εz ≠ 0 6.6967 2.5884 6.5244 0.8214 6.3467 0.6542 25.6062 1.0392 

15 
Present εz = 0 7.2735 2.9493 6.5189 0.7362 6.8418 0.7318 25.7016 0.7502 

Present εz ≠ 0 6.7418 2.6125 6.5519 0.8208 6.3932 0.6604 25.7175 1.0390 

20 
Present εz = 0 7.2955 2.9611 6.5298 0.7358 6.8643 0.7347 25.7457 0.7497 

Present εz ≠ 0 6.7596 2.6219 6.5629 0.8206 6.4115 0.6628 25.7616 1.0390 
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4.2 free vibration response 
 
To investigate the accurate of the present theory in 

predicting a free vibration response of functionally graded 

beams, dimensionless natural frequencies are calculated in 

Table 4 and compared with those available in literature. 

Table 4 reveals that the results of the present theory with 

only three unknowns exhibits an excellent agreement with 

those obtained by the sinusoidal shear deformation beam 

theory developed by Meradjah et al. (2015) with four 

unknowns . This indicates that the same accuracy 

is realizable with the proposed theory using a few numbers 

of unknowns than other theories, and clearly highlights how 

the proposed theory can provide accurate solutions for free 

vibration problems. 

Fig. 12(a) depicts the effect of power law index on 

natural frequencies of P-FGM beam with variable values of

 h/L . It observed that the natural frequencies reduce with 

increasing of power law index and become almost constant 

with respect to the variation of power law index  5p . 

Also, the maximum values of frequencies are showed in 

thick beams where the shear deformation is important. In 

Fig. 12(b), the variations of non-dimensional natural  

 

 

frequencies respect to side-to-thickness ratio for different  

values of power law index are displayed. The increasing 

value of side-to-thickness ratio leads to the increase of 

natural frequencies. 

 
 

 

Fig. 10 Effect of side-to-thickness ratio  hL /  on non-

dimensional deflection of FGM beam 

 

 0z

  

(a) In plane displacement u  (b) Transverse displacement w  

 
 

(c) In plane stresses  
x  (d) Transverse shear stresses 

xz  

Fig. 9 Variation of displacements and stresses through the thickness of S-FGM beam (L = 2h) 
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Fig. 11 The comparison of the deflection of E-FGM, P-

FGM and S-FGM beams  / 10L h   

 
 

 
(a) 

 
(b) 

Fig. 12 Effect of the power-law index )(k and side-to-

thickness ratio )h/L( on the natural frequency of P-

FGM beam 

 
 
Figs. 13 and 14 plots the influence of side-to-thickness 

ratio and power law index on natural frequencies of S-FGM 

beams, respectively. It can be seen from Fig. 13, the 

diminishing effect of volume fraction exponent on      

natural frequencies. It is due to the fact that a higher value  

of“ k ” corresponds to lower value of volume fraction of the 

ceramic phase and thus leads to the decrease of the value of 

the elasticity modulus which makes the beams softer. It can 

be noticed from the Fig. 14 that for a given value of „„ k ‟‟, 

as the thickness ratio increase, the natural frequency 

increase and the effect of side-to-thickness ratio becomes 

negligible for the values higher than 20. 

 

 

5. Conclusions 
 

The bending and free vibration responses of P, E, and S-

FGM beams have been studied in this paper by using a new 

quasi-3D hybrid type HSDT. The theory is developed by 

making further simplifying assumptions to the existing 

HSDTs, with the incorporation of an undetermined integral 

term.  

 
 

 

Fig. 13 Variation of fundamental natural frequency   

versus power-law index )(k for different side-to-thickness 

ratio )h/L( of S-FGM beam 

 
 

 

Fig. 14 Variation of fundamental natural frequency   

versus side-to-thickness ratio )h/L(  for different power-

law index )(k of S-FGM beam 
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The number of variables and equations of motion of the 

proposed quasi-3D hybrid type HSDT are reduced by one, 

and hence, make this theory simple and efficient to use. 
The equations of motion are obtained through the 

Hamilton‟s principle. These equations are analytically 

solved by utilizing Navier‟s procedure. Results demonstrate 

that the beam becomes stiffer when the thickness stretching 

effect is incorporated, and consequently, leads to a 

reduction of deflection and an increase of frequency. It was 

concluded that the present formulation provides a very 

accurate results compared to the other existing higher-order 

beam theories. So, it can be used as a reference for the 

prospective researchers to compare their results. 
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