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1. Introduction 
 

In recent years functionally graded materials (FGMs) 

have gained considerable importance as materials to be used 

in extremely high temperature environments such as nuclear 

reactors and high-speed spacecraft industries (Yamanouchi 

et al. 1990). FGMs were first introduced by a group of 

scientists in Sendai Japan in 1984 (Koizumi 1997). FGMs 

are new inhomogeneous materials, in which the mechanical 

properties vary smoothly and continuously from one surface 

to the other. This is achieved by gradually varying the 

volume fraction of the constituent materials. This 

continuous change in composition results in the graded 

properties of FGMs (Reddy 2001). Typically these materials 

are made from a mixture of ceramic and metal or from a 

combination of different materials. The ceramic constituent 

of the material provides the high-temperature resistance due 

to its low thermal conductivity. The ductile metal 

constituent on the other hand, prevents fracture caused by 

stresses due to the high temperature gradient in a very short 

period of time. Furthermore a mixture of ceramic and metal 

with a continuously varying volume fraction can be easily 

manufactured (Fukui, 1991). 

Dynamic analyses of FGM structures have attracted 

increasing research effort in the last decade because of the 

wide application areas of FGMs. For instance, Sankar et al. 

(2001) gave an elasticity solution based on the Euler-

Bernoulli beam theory for functionally graded beam  

                                           

Corresponding author, Dr. 

E-mail: had_laz@yahoo.fr 

 

 

subjected to static transverse loads by assuming that 

Young’s modulus of the beam vary exponentially through 

the thickness. Aydogdu and Taskin (2007) investigated the 

free vibration behavior of a simply supported FG beam by 

using Euler-Bernoulli beam theory, parabolic shear 

deformation theory and exponential shear deformation 

theory. Zhong and Yu (2007) presented an analytical 

solution of a cantilever FG beam with arbitrary graded 

variations of material property distribution based on two-

dimensional elasticity theory. Taj et al. (2013) conducted 

static analysis of FG plates using higher order shear 

deformation theory. Bourada et al. (2015) used a new 

simple shear and normal deformations theory for 

functionally graded beams. Hebali et al. (2014) studied the 

static and free vibration analysis of functionally graded 

plates using a new quasi-3D hyperbolic shear deformation 

theory. Bennoun et al. (2016) analyzed the vibration of 

functionally graded sandwich plates using a novel five 

variable refined plate theory. Bousahla et al. (2014) 

investigated a novel higher order shear and normal 

deformation theory based on neutral surface position for 

bending analysis of advanced composite plates. Draiche et 

al. (2016) used a refined theory with stretching effect for 

the flexure analysis of laminated composite plates. Hamidi 

et al. (2015) proposed a sinusoidal plate theory with 5-

unknowns and stretching effect for thermomechanical 

bending of functionally graded sandwich plates. Belabed et 

al. (2014) used an efficient and simple higher order shear 

and normal deformation theory for functionally graded 

material (FGM) plates. Bessaim et al. (2013) investigated a 

new higher-order shear and normal deformation theory for 

the static and free vibration analysis of sandwich plates with 

functionally graded isotropic face sheets. Bouafia et al. 
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(2017), used a nonlocal quasi-3D theory for bending and 

free flexural vibration behaviors of functionally graded 

nanobeams. Abualnour et al. (2018) analyze the free 

vibration of advanced composite plates using a novel quasi-

3D trigonometric plate theory. Abdelaziz et al. (2017) 

studied the bending, buckling and free vibration of FGM 

sandwich plates with various boundary conditions using an 

efficient hyperbolic shear deformation theory. Amar 

Meziane et al. (2014) proposed an efficient and simple 

refined theory for buckling and free vibration of 

exponentially graded sandwich plates under various 

boundary conditions. Bouderba et al. (2016) studied the 

thermal stability of functionally graded sandwich plates 

using a simple shear deformation theory. Bellifa et al. 

(2016) studied the bending and free vibration analysis of 

functionally graded plates using a simple shear deformation 

theory and the concept the neutral surface position. 

Bousahla et al. (2016) investigated the thermal stability of 

plates with functionally graded coefficient of thermal 

expansion. Beldjelili et al. (2016) studied the hygro-thermo-

mechanical bending of S-FGM plates resting on variable 

elastic foundations using a four-variable trigonometric plate 

theory. Bouderba et al. (2016) analyze the thermal stability 

of functionally graded sandwich plates using a simple shear 

deformation theory. Zidi et al. (2014) analyse the bending 

of FGM plates under hygro-thermo-mechanical loading 

using a four variable refined plate theory.  El-Haina et al. 

(2017) used a simple analytical approach for thermal 

buckling of thick functionally graded sandwich plates. 

Menasria et al. (2017) analyze the thermal stability of FG 

sandwich plates using a new and simple HSDT. Chikh et al. 

(2017) studied the thermal buckling analysis of cross-ply 

laminated plates using a simplified HSDT. Tounsi et al. 

(2013) use a refined trigonometric shear deformation theory 

for thermoelastic bending of functionally graded sandwich 

plates. Mouffoki et al. (2017) studied the vibration analysis 

of nonlocal advanced nanobeams in hygro-thermal 

environment using a new two-unknown trigonometric shear 

deformation beam theory. Khetir et al. (2017) developed a 

new nonlocal trigonometric shear deformation theory for 

thermal buckling analysis of embedded nanosize FG plates. 

Hamidi et al. (2015) proposed a sinusoidal plate theory with 

5-unknowns and stretching effect for thermomechanical 

bending of functionally graded sandwich plates. Attia et al. 

(2015) developed the free vibration analysis of functionally 

graded plates with temperature-dependent properties using 

various four variable refined plate theories. Karami et al. 

(2017) studied the effects of triaxial magnetic field on the 

anisotropic nanoplates. Zemri et al. (2015) proposed an 

assessment of a refined nonlocal shear deformation theory 

beam theory for a mechanical response of functionally 

graded nanoscale beam. Bellifa et al. (2017a) used a 

nonlocal zeroth-order shear deformation theory for 

nonlinear postbuckling of nanobeams. Bellifa et al. (2017b) 

used An efficient and simple four variable refined plate 

theory for buckling analysis of functionally graded plates. 

Bounouara et al. (2014) studied the free vibration of 

functionally graded nanoscale plates resting on elastic 

foundation using a nonlocal zeroth-order shear deformation 

theory. Ahouel et al. (2016) investigated a size-dependent 

mechanical behavior of functionally graded trigonometric 

shear deformable nanobeams including neutral surface 

position concept.  Saidi et al. (2016) investigated a simple 

hyperbolic shear deformation theory for vibration analysis 

of thick functionally graded rectangular plates resting on 

elastic foundations. Belkorissat et al. (2015) developed a 

new nonlocal refined four variable model for the vibration 

properties of functionally graded nano-plate. Larbi Chaht et 

al. (2015) studied the bending and buckling of functionally 

graded material (FGM) size-dependent nanoscale beams 

including the thickness stretching effect. Al-Basyouni et al. 

(2015) investigated size dependent bending and vibration 

analysis of functionally graded micro beams based on 

modified couple stress theory and neutral surface position. 

Boukhari et al. (2016) used an efficient shear deformation 

theory for wave propagation of functionally graded material 

plates. Houari et al. (2016) used a new simple three-

unknown sinusoidal shear deformation theory for 

functionally graded plates. Ait Yahia et al. (2015) analyzed 

the wave propagation in functionally graded plates with 

porosities. Benadouda et al. (2017) developed an efficient 

shear deformation theory for wave propagation in 

functionally graded material beams with porosities.   Hanifi 

et al. (2017) investigated the size-dependent behavior of 

functionally graded micro-beams with 

porosities. Ghorbanpour et al. (2016) studied the dynamic 

buckling of FGM viscoelastic nano-plates resting on 

orthotropic elastic medium based on sinusoidal shear 

deformation theory. Ait Atmane et al. (2016) studied the 

effect of porosity on vibrational characteristics of non-

homogeneous plates using hyperbolic shear deformation 

theory. Mahmoud et al. (2016) analyze the buckling of 

functionally graded sandwich plates with stretching effect 

using a new shear deformation plate theory. Recently, 

Besseghier et al. (2017) developed the free vibration 

analysis of embedded nanosize FG plates using a new 

nonlocal trigonometric shear deformation theory. Attia et al. 

(2018) used a refined four variable plate theory for 

thermoelastic analysis of FGM plates resting on variable 

elastic foundations. Kaci et al. (2018) studied the post-

buckling analysis of shear-deformable composite beams 

using a novel simple two-unknown beam theory. Zine et al. 

(2018) studied the bending and free vibration analysis of 

isotropic and multilayered plates and shells the using a 

novel higher-order shear deformation theory. Youcef et al. 

(2018) analyze the dynamic of nanoscale beams including 

surface stress effects. Benchohra et al. (2018) used a new 

quasi-3D sinusoidal shear deformation theory for 

functionally graded plates. Belabed et al. (2018) developed 

a new 3-unknown hyperbolic shear deformation theory for 

vibration of functionally graded sandwich plate. 

In this paper, a simple FSDT which was recently 

developed by Thai and Choi (2013) for functionally graded 

plates is evaluated for FG beams. Unlike the existing FSDT, 

the one presented by Thai and Choi contains only three 

unknowns and has strong similarities with the CPT in many 

aspects such as equations of motion, boundary conditions, 

and stress resultant expressions. The partition of the 

transverse displacement into the bending and shear parts 

makes the theory simple to use. Equations of motion and 
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boundary conditions are derived from Hamilton’s principle. 

Closed-form solutions of simply supported FG beam are 

obtained and the results are compared with the existing 

solutions. 

 

 

2. Theoretical formulation 
 

Consider a functionally graded beam with length L  

and rectangular cross section hb , with b  being the 

width and h  being the height as shown in Fig. 1. The 

beam is made of isotropic material with material properties 

varying smoothly in the thickness direction. 

 

2.1 Material properties 
 
The properties of FGM vary continuously due to the 

gradually changing volume fraction of the constituent 

materials (ceramic and metal), usually in the thickness 

direction only. The power-law function is commonly used 

to describe these variations of materials properties. The 

expression given below represents the profile for the 

volume fraction. 

k

C
h

z
V 










2

1
 (1a) 

k  is a parameter that dictates material variation profile 

through the thickness. The value of k  equal to zero 

represents a fully ceramic beam, whereas infinite k  

indicates a fully metallic beam, and for different values of  

k  one can obtain different volume fractions of metal.  

The material properties of FG beams are assumed to 

vary continuously through the depth of the beam by the rule 

of mixture (Marur 1999) as 

  bbt PPPzP  CV )(  (1b) 

where P  denotes a generic material property like 

modulus, tP  and bP  denotes the property of the top and 

bottom faces of the beam respectively, Here, it is assumed 

that modules E , G and   vary according to the Eq. 

(1(b)). However, for simplicity, Poisson’s ratio of beam is 

assumed to be constant in this study for that the effect of 

Poisson’s ratio   on deformation is much less than that of 

Young’s modulus (Delale and Erdogan 1983, Benachour et 

al. 2011). 

 

 

Fig. 1 Geometry of Rectangular FG Plate and Coordinates 

2.2 Kinematics and constitutive equations 
 
In this study, further simplifying assumptions are made 

to the existing FSDBT. The displacement field of the 

existing FSDT is given by 

),(),,(

),(),,(

0

0

txwtzxw

ztxutzxu x



 
 (2) 

where 0u , 0w  and x  are three unknown displacement 

functions of the midplane of the beam; and h  is the 

thickness of the beam. By deviding the transverse 

displacement w  into bending and shear parts (i.e., 

sb www  ) and making further assumptions given by 

xwbx  / , the displacement field of the new theory 

can be rewritten in a simpler form as 

),(),(),,(

),(),,( 0

txwtxwtzxw

x

w
ztxutzxu
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b








 (3) 

Clearly, the displacement field in Eq. (3) contains only 

three unknowns ( 0u , bw  and sw ). In fact, the idea of 

partitioning the transverse displacements into the bending 

and shear components is first proposed by Huffington et al. 

(1963), and recently by Thai and his colleagues (2012). 

The nonzero strains associated with the displacement 

field in Eq. (3) are 

2

2

0

x

w
z

x

u b

x








  (4a) 

 

x

ws

xz



  (4b) 

By assuming that the material of FG beam obeys 

Hooke’s law, the stresses in the beam become 

xx zQ   )(11  and xzSxz zQk   )(55  (5a) 

Sk  is a shear correction factor which is analogous to 

shear correction factor proposed by Mindlin (1951). Using 

the material properties defined in Eq. (1(b)), stiffness 

coefficients, ijQ  can be expressed as 

 
211

1
)(




zE
zQ  and 

 


12

)(
)(55

zE
zQ  (5b) 

 

2.3 Equations of motion 
 
Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as Reddy (2002) 
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  0
2

1


t

t

dtTU  (6) 

where t  is the time; 1t  and 2t  are the initial and end 

time, respectively; U   is the virtual variation of the 

strain energy;  and T   is the virtual variation of the 

kinetic energy. The variation of the strain energy of the 

beam can be stated as 
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where N , M  and Q  are the stress resultants defined as 





2

2

 ),1(),(

h

h

nsxxx dzzMN  and 



2

2

h

h

xzxz dzQ   (8) 

The variation of the kinetic energy can be expressed as 
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(9) 

dot-superscript convention indicates the differentiation with 

respect to the time variable t ; )(z  is the mass density; 

and ( 0I , 2I ) are the mass inertias defined as 
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Substituting the expressions for U   and T   from 

Eqs. (7) and (9) into Eq.(6) and integrating by parts versus 

both space and time variables, and collecting the 

coefficients of 0 u , bw  , and sw  , the following 

equations of motion of the functionally graded beam are 

obtained 
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Eqs. (11) can be expressed in terms of displacements 

( sb wwu ,,0 ) by using Eqs. (4), (5), and (8) as follows 

001111101111 uIwdBudA b
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where 11A , 11B , 11D , etc., are the beam stiffness, 

defined by 
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3. Analytical solution 
 
The equations of motion admit the Navier solutions for 

simply supported beams. The variables 0u , bw , sw  can 

be written by assuming the following variations 
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where mU , bmW , and smW  are arbitrary parameters to 

be determined,   is the eigenfrequency associated with 

m th eigenmode, and Lm /  . 

Substituting Eq. (14) into Eqs. (11(a)- 11(c)), the closed 

form solutions can be obtained from 

      02  MC   (15) 

where     ,,,
t

mmm WU   and  C  and  M  are 

the symmetric matrixes given by 
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4. Numerical examples 
 

In this section, various numerical examples are 

presented and discussed to verify the accuracy of present 

theories in predicting the free vibration response of simply 

supported FG beams. The FG beam is taken to be made of 

aluminum and alumina with the following material 

properties : 

Ceramic ( CP : Alumina, Al2O3): 380cE GPa;  

33800 m/kgc   ;   30. ;    

Metal ( MP :  Aluminium, Al): 70mE  GPa;   

32707 m/kgm  ;  30. ;    

And their properties change through the thickness of the 

beam according to power-law. The bottom surfaces of the 

FG beams are aluminium rich, whereas the top surfaces of 

the FG beams are alumina rich.  

For convenience, the following dimensionless form is 

used 

c

c

Eh

L 


2 
  (18) 

 

 

 

0 1 2 3 4 5 6 7 8 9 10

3,5

4,0

4,5

5,0

5,5

6,0

power law index k

 L/h=5

 L/h=20

 
Fig. 2 Variation of the fundamental frequency 

m

m

Eh

L 


2 
  of FG beam with power-law index k  

 

 

Table 1 show the nondimensional fundamental 

frequencies   of FG beams for homogenous beam 

 0k for different values of span-to-depth ratio L/h  

using a simple first-order shear deformation beam theory 

FSDBT and are compared with Euler-Bernoulli beam 

theory results (Reddy 1999), the first order shear 

deformation (Koochaki 2011) and the new first-order shear 

deformation theory (Hadji 2016). 

As can be seen the results of the simple first shear 

deformation beam theory is in good agreement with the 

Euler-Bernoulli beam and other shear deformation beam 

theory results. Also, the frequencies predicted by the three 

shear deformation theories are very close to each other. 

 

Table 1 Non-dimensional natural frequencies of simply supported homogenous beam versus thickness-to-length ratio 

 0k . 

c

c

Eh

L 


2 
  

Lh /  Euler-Bernoulli  

(Reddy 1999) 

NFSDBT 

 (Hadji 2016) 

FSDBT 

 (Koochaki 2011) 

Present  

FSDBT 

0.01 2.985526  2.9861309 2.986137 2.986134 

0.0125 2.985232  2.9858301 2.985827 2.985828 

0.0142 2.984340  2.9855685 2.985556 2.985582 

0.0166 2.984865  2.9851691 2.985155 2.985180 

0.02 2.983701  2.9845053 2.984505 2.984505 

0.025 2.982588  2.9832857 2.983285 2.983285 

0.033 2.979668  2.9806569 2.980657 2.980776 

0.04 2.976570  2.9780219 2.978020 2.978021 

0.05 2.971688  2.9731933 2.973193 2.973193 

0.066 2.961235  2.9628589 2.962858 2.963326 

0.1 2.931568  2.9340444 2.934044 2.934044 
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Fig. 2 shows the non-dimensional fundamental natural 

frequency   versus the power law index k  for different 

values of span-to-depth ratio h/L  using the present 

theory. It is observed that an increase in the value of the 

power law index leads to a reduction of frequency. The 

highest frequency values are obtained for full ceramic 

beams (p = 0) while the lowest frequency values are 

obtained for full metal beams (p → ∞). This is due to the 

fact that an increase in the value of the power law index 

results in a decrease in the value of elasticity modulus. In 

other words, the beam becomes flexible as the power law 

index increases, thus decreasing the frequency values. It can 

be also seen that the span-to-depth ratio L/h has a 

considerable effect on the non-dimensional fundamental 

natural frequency   where this latter is reduced with 

decreasing h/L . This dependence is related to the effect 

of shear deformation. 

 

 

5 Conclusions 
 

A simple FSDT was proposed for free vibration analysis 

of FG beam. Equations of motion derived from Hamilton’s 

principle are analytically solved for simply supported FG 

beam. The effects of volume fraction ratio and thickness-to-

length ratio on fundamental frequencies are investigated. 

The accuracy of the present theory is verified by comparing 

the obtained results with those reported in the literature. 

Finally, it can be concluded that the simple first-order shear 

deformation beam theory FSDBT is not only accurate but 

also simple in predicting the dynamic behavior of FG beam. 
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