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1. Introduction 
 

One of the most important advances in the field of 

numerical methods was the development of the finite 

element method (FEM) in the 1950s. In the FEM, a 

continuous media with a complicated shape is divided into 

some elements. The individual elements are connected 

together by a topological map called a mesh. The FEM is a 

robust and thoroughly developed method, hence it is widely 

used in engineering applications due to its versatility for 

complex geometries and flexibility for many types of linear 

and non-linear problems(Liu and Gu 2005, Akgul et al. 

2017). 

However, the FEM has the inherent shortcomings of 

numerical methods that rely on meshes or elements that are 

connected together by nodes in a properly predefined 

manner. This approach suffers from some weaknesses 

including: a) high cost of gridding the problem domain, b) 

low accuracy of stresses calculation, c) difficulties in 

adaptive analysis, d) limitations in solving some problems 

(the ones with large deformation simulate crack growth and 

failure). The root of these problems is the use of elements or 

mesh in the formulation stage. 

In recent years to conquer these difficulties, new 

computational methods were presented, which unlike the 

FEM, gridding of the domain is not required to solve a 

problem. These are called elementfree or meshfree (MFree) 

methods. In these methods, only a set of nodes which are  
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distributed in the domain of the problem are used to solve 

the governing differential equations. The merits of MFree 

methods have absorbed many researchers in calculation 

mechanics and they have carried out a plethora of research 

in order to expand these approaches. 

An MFree method is used to establish system algebraic 

equations for the whole problem domain without the use of 

a predefined mesh for the domain discretization. MFree 

methods use a set of nodes scattered within the problem 

domain as well as sets of nodes scattered on the boundaries 

of the domain to represent (not discretize) the problem 

domain and its boundaries. These sets of scattered nodes are 

called field nodes, and they do not form a mesh. Advantages 

of MFree methods in recent published literature made many 

researchers to study and develop such methods. 

One of the earliest MFree methods were finite 

difference method (FDM) that were described in 1937 and 

1938 Szafrana (2005). Another well-known MFree method 

is the Smoothed Particle Hydrodynamics (SPH), which was 

put forward in 1977; it was initially used for modeling 

astrophysical phenomena such as exploding stars and dust 

clouds that had no boundaries. Later, this method was used 

in solving problems in fluid and solids mechanics Johnson 

(1996), Colagrossi (2003). Due to the instability of 

Smoothed Particle Hydrodynamics (SPH) solution method 

monitoring, Liu et al. (1995)) presented a correction 

function labeled as the reproducing kernel practice method 

(RKP) solution. Generally, few studies can be found in the 

literatures devoted to MFree strong-form methods. This 

may be partly because of the MFree strong-form methods 

were less robust than the methods based on the weak-form, 

and partly because of concentrating the researches on the 

FEM which used weak-form. 
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Research and development of MFree methods was 

initiated the early 1990s. A number of weak form MFree 

methods were carried out by researchers can be introduced 

as follows: In 1994, the meshless EFG (Element Free 

Galerkin), in 1999, the MLPG (Meshless Local Petro-

Galerkin method), in 1999, the PIM (Point Interpolation 

method) and in 2001, the RPIM (Radial Point Interpolation 

method) have been developed Liu and Gu (2005). It appears 

that these methods, despite their recent development and 

short life, will be able to be a rival for the FEMs. 

Fewer researches have been used the strong from MFree 

solution methods in their studies. This may be, on the one 

hand, often unstable, not robust, and inaccurate, especially 

for problems with derivative boundary conditions compared 

with weak form and on the other hand due to more intimacy 

of the weak form with the FEM. 

Today's plates are integral components of the industries. 

Due to various applications of plates in various industries, 

their analysis is important and essential. The behavior of 

plates in different static and dynamic situations can be 

represented by differential or integral equations. Because of 

the complexity of the analytical solution, a finite number of 

them are possible. Therefore, in order to solve these 

equations, along with the development of computers, 

scientists have approached numerical (approximation) 

solution methods. The latest numerical methods, is the 

meshless method, which is also utilized in the analysis of 

plates. Krysl and Belytschko Krysl (1996) have extended 

the element-free Galerkin (EFG) method to static analysis 

of thin plates and shells. In their work, the essential 

boundary conditions are enforced by a method of Lagrange 

multipliers. An EFG method has also been formulated for 

modal analyses of Euler–Bernoulli beams and Kirchhoff 

plates Ouatouati (1999), buckling problems of thin plates 

(Liu 2002) as well as composite laminates Chen (2003). In 

those works, the essential boundary conditions are imposed 

using orthogonal transform techniques. The determination 

of the stress intensity factor at the crack tip is one of the 

most widely used by Benchiha et al. (2016) methods to 

predict the fatigue life of aircraft structures. 

Memar Ardestani et al. (2014) analyzed reinforced 

functionally graded plates under bending loads, using 

RKPM method. The analysis of piezoelectric circular plates 

by the MLPG method was carried out by Sladek et al. 

(2013). Liew et al. proposed a review of meshless methods 

for laminated and functionally graded plates and shells 

Liew et al. (2011). Sladek et al. (2007)‎ in their research 

analyzed the plates under both ‎harmonic dynamic and 

impact loads by using MLPG method, using this ‎numerical 

method thermal analysis of plates based on the Mindlin 

theory  have been carried ‎out by Sladek et al. (2008)‎ . In 

addition, thick sheets analysis with the help of 

local ‎integration method ‎ Sladek et al. (2007)‎,analysis of 

FGM composite plates Based on classical theory 

using ‎element free methods And making comparison of 

numerical methods in bending the plates ‎could be noticed‎ ‎ 

Sladek et al. (2014)‎.‎ A state space differential reproducing 

kernel (DRK) method was developed by Wu and Liu (2016) 

for the three-dimensional (3D) analysis of functionally 

graded material (FGM) axisymmetric circular plates with 

simply-supported and clamped edges. Hadji et al. (2016) 

investigated the response of functionally graded ceramic-

metal plates. The dynamic analysis of a transversely 

isotropic thin plate was presented by Fadodun et al. (2017). 

In this paper, the MLPG meshless method is utilized to 

analyze plates with different geometries due to demonstrate 

the accuracyof the results. The obtained results will be 

compared with available analytical and finite element 

solutions. Using a set of mappings, composite plates of 

various shapes are transformed into a standard rectangular 

shape and then through MLPG method, they are analyzed. 

In MLPG Method, due to the lack of Kronecker delta 

properties approximation function, and because of the 

nature of function system in node by node form, it is 

possible that the boundary conditions be directly applied. 

By the usage of MFree methods in classical plates, each 

node only has one movement variable in the direction of 

perpendicular axis and therefore applying two boundary 

conditions simultaneously into one node, is not possible. 

Hence, the usage of adjacent boundary conditions is 

discussed in this paper. 

 

 

2. MLS shape function 
 

In the MLPG method, the MLS approximation function 

is used. This function was introduced in 1993 with sum of 

the series as a function of x . In this function, a variable 

such as ( )w x in the domain  at point x is expressed as 

following (Lancaster 1981) 

         
1

m
h T

j j

j

w x p x a x P x a x


   (1) 

where ( )P x  is the basic function and m is the number of 

basic functions. The function ( )P x  is quadratic 

polynomial basis made from Pascal's triangle to satisfy the 

minimum requirements. ( )a x  is the vector of coefficients 

as 

𝑎𝑇(𝑥) = *𝑎1(𝑥) 𝑎2(𝑥) … 𝑎𝑚(𝑥)+ (2) 

Note that the vector of unknown coefficients ( )a x in Eq. 

(2) is a function of x. These coefficients are obtained by 

minimizing the following function 

     
2

1

ˆ
n

T

i i i

i

J W x x P x a x u


      (3) 

Eq. (3) is called weighted residual equation, in which n is 

number of nodes within the local domain of an arbitrary 

point x , ˆ ( ) 0iW x x   is the weight function and iu  

is the value of u in 
ix x . It is worth mentioning that the 

number of nodes n  used in MLS approximation is often 

more than the number of unknown variables m , therefore 

approximation function ( )hw x  does not pass through all 

nodes. The stability equation of J with respect to ( )a x

gives 
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0
J

a





 (4) 

Simplifying above equation gives the following system 

equations 

      sA x a x B x U  (5) 

 

𝑈𝑠 = *𝑢1 𝑢2 … 𝑢𝑛+𝑇 (6) 

Where 
sU  is the vector variable nodes within the local 

domain and ( )A x  is called the weighted moment matrix 

which can be expressed as follows 

       
1

n
T

i i i

i

A x W x P x P x


  (7) 

 

   ˆ
i iW x W x x   (8) 

The B(x) matrix is defined in Eq. (5) as following 

𝐵(𝑥) = ,𝑊̂1(𝑥)𝑃(𝑥1) 𝑊̂2(𝑥)𝑃(𝑥2) … 𝑊̂𝑛(𝑥)𝑃(𝑥𝑛)- (9) 

solving Eq. (5) for (x)A and substituting in Eq. (1), the 

following equations are obtained 

     
n

h T

i i s

i 1

u x x u x U 


   (10) 

Here, ( )x  is vector of MLS shape functions for n
nodes within a local area of an arbitrary point x that can 

be calculated as follows 

∅𝑇(𝑥) = *∅1(𝑥) ∅2(𝑥) … ∅𝑛(𝑥)+(1×𝑛) = 𝑃𝑇(𝑥)𝐴−1(𝑥)𝐵(𝑥) (11) 

 

 

3. Plate theories 

 
Consider a plate with the domain Ω showed in Fig. (1). 

The values of displacement along the x, y and z directions 

are indicated as u, v, w. 

 

 

 

Fig. 1 Configuration of a plate and its coordinate system 

Based on the Kirchhoff assumptions the displacement 

components in terms of z are given as 

1

z
xu

v z w w
y

w

 
 

   
   

      
   

   
 
 

u
u L  (12) 

The strain-displacement equation is expressed as 

2

2

2

2

2

2

xx

yy d

xy

x

z w zL w
y

x y



 



 
 
  

  
     

  
   

 
   

 (13) 

Applying Eqs. (12) and (13) into the constitutive equation 

of the material, the stress components in terms of 

displacement can be expressed as follows 

xx

yy d

xy

zcL w



 



 
 

  
 
 

 (14) 

For an isotropic material, the stiffness matrix is  reduced 

as (Krysl 1996) 

 
 

2

1 0

1 0
1

0 0 1 / 2

E
c








 
 

  
  

 (15) 

Which can be used for wide range of composites.  In this 

study, the material is assumed to be orthotropic. In plane 

stress condition, the stiffness matrix can be expressed as 

follows (Kaw 2006) 

11 12 16

16 22 26

16 26 66

젨

Q Q Q

Q Q Q Q

Q Q Q

 
 

  
 
 

 (16) 

Where 
ijQ is calculated by using the following transfer 

matrix 

2 2

2 2

2 2

2 ?

2 ?

젨

cos sin sin cos

T sin cos sin cos

sin cos sin cos cos sin

   

   

     

 
 

  
   

 (17) 
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1 0 0

0 1 0

0 0 2

R

 
 


 
  

 (18) 

 

      
1 1

Q T Q R T R
 

     (19) 

In above equations,   is fiber twisting angle, 
ijQ are the 

stiffness matrix components in the original coordinate 

system (in the direction of the fibers and perpendicular with 

the fibers). Based on the mechanical properties of the plate 

in the principal directions, this matrix is expressed as 

follows 

 
11 12

12 22

66

0

0

0 0

Q Q

Q Q Q

Q

 
 


 
  

 (20) 

In which 

𝑄11 =
𝐸1

1−𝜗12𝜗21
                                                    𝑄12 =

𝜗12𝐸2

1−𝜗12𝜗21
  

𝑄22 =
𝐸2

1 − 𝜗12𝜗21
                                                    𝑄66 = 𝐺12 

𝜗12𝐸2 = 𝜗21𝐸1 

(21) 

Based on the given relations between equations, it can be 

observed that the stress equations are linear functions in 

accordance with the vertical distance to the middle plate (z). 

Herein, two parameters of pseudo strain and pseudo stress 

are defined as follows which are constant in plate cross 

section and independent of z value. 

p dL w   (22) 

 

 p p dD DL w    (23) 

The matrix D in isotropic and composite materials can be 

expressed as follows, respectively 

 
 

3

2

1 0

1 0
12 1

0 0 1 / 2

Eh
D








 
 

  
  

 (24) 

 

3 3

1

1

1

3

ln

ij ij k kk
k

D Q z z 



        (25) 

 

 

4. Enforcing essential boundary conditions 
 

The boundary conditions of a plate are expressed as 

follows 

𝑢ᴦ = 𝑢𝑏                                           ᴦ 𝑢 = ᴦ 𝑤 ∪ ᴦ 𝜃 (26) 

Where bu is a vector involving transverse and rotation 

displacement on the boundaries consisting of essential 

conditions in plates is defined as follows 

b bu L W  (27) 

In this equation, 
b bu L W is differential operator vector 

which can be defined as follows for various support 

conditions: 

 

For fixed support 

1

bL

n

 
  
 
 

 (28) 

For simply supports 

1

0
bL

 
  
 

 (29) 

 

 

5. MLPG method 

 

The MLS approximation function has been widely used 

in the MLPG method. MLPG method was presented by 

Atlury and Shen in 1998 (Atluri 1998). This method is still 

being used and developed by other researchers in solving 

elasto-static problems, elasto-dynamic problems, analysis of 

thin and thick beams, analysis of plates and shells, fluid 

flow, fracture mechanics, etc. 

The element free Galerkin method (EFG) is based on 

general Galerkin weak form process, in which a background 

gridding is required for the numerical integration; hence, 

this solution methodology is not thoroughly meshless. To 

avoid the complete gridding of the domain of the problem, 

the local weak form MLPG method was presented. In this 

approach, local quadrature domains of each node are used 

for numerical integration. 

As mentioned above, the MLS shape functions are used 

in this method and due to the fact that this function does not 

have Kronecker's delta approximation property, it is 

therefore required to apply some measures to enforce 

boundary essential conditions and here direct method is 

used. 

In the MLPG method, the governing equations are 

expressed using a weak form of the weighted residuals. 

∫ 𝑉̂(𝜎𝑖𝑗,𝑗 + 𝑏𝑖)𝑑Ω

 

Ω𝑠

− 𝛼 ∫ 𝑉̂(𝑤𝑖 + 𝑤𝑗̅̅ ̅)𝑑ᴦ

 

𝑞𝑢

= 0 (30) 

Where ˆV is weight or test function, the second integral 

is for satisfying  essential boundary conditions , qΩ  is 

the problem domain, qu is the area on boundary with 
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essential boundary conditions and α is the penalty factor.  

If the penalty method is used in enforcing the boundary 

conditions, the governing equation will be presented as Eq. 

(30), but since direct method is used in this study, the 

governing equation is expressed as following 

 
 

,
ˆ 0

s

ij j iV b d  
Ω

Ω  (31) 

Substituting Eqs. (23) and (27) in Eq. (31) and simplifying 

the governing equations in MLPG method yields 

 
 

4ˆ 0

q

V D w b d  
Ω

Ω  (32) 

Using the approximation functions (Eq. (1)) in the 

governing equations (Eq. (32)) and simplifying by means of 

parts by part integration technique, the matrix form of the 

equilibrium equations is achieved as follows 

    W FK 
 

(33) 

[K] is stiffness matrix, [W] is displacement vector and [F] is 

the vector of force. Each of the matrices can be calculated 

as follows 

     
i

K K K


   (34) 

 

[𝐾𝑖𝑗]Ω = ∫{[𝑉̂𝑖,𝑥𝑥 𝑉̂𝑖,𝑦𝑦 𝑉̂𝑖,𝑥𝑦] [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

] [

∅𝑗,𝑥𝑥

∅𝑗,𝑦𝑦

∅𝑗,𝑥𝑦

]}

 

Ω𝑠

𝑑Ω (35) 

 

 



       
si

ij iji
K B d  (36) 

 

  

  

 

 

11 , 12 66 ,

22 , 12 66 ,

, 11 , 12 , 66 ,

, 66 , 12 , 22 ,

ˆ

ˆ

ˆ

2

2

2

2

ij i j xxx j xyy x

j yyy j xxy y

i x j xx j yy x j xy y

i y j xy x j xx j yy y

B V D D D n

D D D n

V D D n D n

V D n D D n

        

    


      
 

      
 

 
(37) 

 

𝑓𝑖 = ∫ 𝑉̂𝑖𝑓𝑑Ω

 

Ω𝑠

− ∫𝛼1𝑉̂𝑖𝑤̅𝑑ᴦ −

 

ᴦ𝑞𝑢

∫𝛼2𝑉̂𝑖,𝑛𝜃̅𝑑ᴦ

 

ᴦ𝑞𝑢

 (38) 

Obviously it can be seen that the stiffness matrix [K] is 

bounded and asymmetric whereas in the EFG method, the 

stiffness matrix is symmetric; therefore the computational 

cost in this method is much more. 

Since there is one unknown variable in each node, two 

boundary conditions cannot be simultaneously enforced to 

each node. In order to enforce boundary conditions, the 

neighborhood boundary condition is implemented. This 

modification for enforcing boundary conditions is 

introduced and applied in this study for MLPG method for 

the first time. 

To apply the neighborhood boundary conditions some 

new nodes are located in the neighborhood of bounder 

nodes in ε distance where ε is approximately equal to one 

millionth of the average distance between nodes. Later the 

displacement boundary conditions are enforced to nodes on 

the boundary and the derivational displacement conditions 

are enforced to the adjacent nodes. 

The governing equations for each node on the boundary 

and each adjacent node are as follows 

 
1

1i n i

n

w

w w

w

 

 
 

 
 
  

 (39) 

 

1

1i n i

n

w
w w

n n n n
w

 
 

      
        

  

 (40) 

 

 

6. Geometry mapping 

 

As stated before, the governing differential equations 

and boundary conditions equations are given in Cartesian 

coordinates for plates. The plates with curved form 

geometry cannot be easily analyzed. Therefore, the curved 

line environment into rectangular shape environment is 

mapped. This mapping is often performed by shape 

functions which are mostly used in finite element. The 

accuracy of the mapping is increased by increasing the 

order of the shape function. Hence, third order shape 

functions are utilized here as shu (2000) 

 
12

1

, .i i

i

x N x 


  (41) 

 

 
12

1

, .i i

i

y N y 


  (42) 

 

    2 21
1 1 9 10

32

1,2,3,4

i i iN

i

        
 



 (43) 

 

   29
1 1 1 9

32

5,6,7,8

i i iN

i

      



 (44) 
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   29
1 1 1 9

32

9,10,11,12

i i iN

i

       



 (45) 

 

 

7. Numerical results 

 
In this section, the accuracy and reliability of the present 

method are evaluated by some examples. To use the MLPG 

method a comprehensive code has been written by 

MATLAB Software. The obtained results by the present 

method will be compared with analytical solution and 

FEMs to verify the results.   

To demonstrate the reliability of the written code, a 

rectangular plate is studied with the specified demonstrated 

in Table (1) in which the analytical solutions are available. 

The deviations of the results with the exact solution are 

examined by following function 

100
exat p

exat

Error
 




   (46) 

 

7.1 Thin square plate with simple and fixed support 

under distributed load 

 

A 0.01m thin square SSSS support plate under 

distributed force of 
2

100
N

m
 is considered. The 

dimensionless formula for deflection state is considered as 

follows Liu (2002) 

4

maxW D
W

qb
  (47) 

Where q is the force, b is plate dimension and D is 

bending stiffness of the plate which is defined as 

 

3

212 1

Eh
D





 (48) 

The results of the transverse deflection are shown in 

Table 2. In exact solution of this example case, which has 

been conducted by Timoshenko, the quantity of 

dimensionless deflection is equal to 0.00406 Timoshenko 

(1959) while the result of the FEM for this problem is 

0.00405 Zienkiewicz(2000). 

 

 

Table 1 Geometrical and mechanical characteristics 

Dimension plates(m) 0.6×0.6 

Young's modulus(GPa) 200 

Poisson coefficient 0.3 

Thickness(m) 0.01 

 

 

Table 2 Dimensionless deflection of thin square plate with 

simply support under constant load 

Number of nodes 10×10 13×13 15×15 18×18 

Abaqus 
900 

linear 

element 

Abaqus 
900 

nonlinear 

element 

Dimensionless 
deflection 

0.0037 0.00417 0.00419 
0.0040

3 
0.00408 0.00410 

Error 8.8% 2.7% 3.2% 0.7% 0.5% 0.98% 

 

 

Table 3 Dimensionless deflection of thin square plate with 

fix support under constant load 

Number of 

nodes 
10×10 13×13 15×15 17×17 

Abaqus 

900 

linear 

element 

Abaqus 

900 

nonlinear 

element 

Dimensionless 

deflection 
0.00130 0.00128 0.00127 0.00127 0.00125 0.00126 

Error 3.1% 1.5% 0.7% 0.7% 0.5% 0.98% 

 

 

Table 3 exhibits the results of the mentioned plate whose 

four sides are under fixed supports. ‎The exact solution of 

this example was conducted by Timoshenko(1995) and the 

quantity of ‎dimensionless deflection is equal to 0.00126.  

while in FEM solution, this value is equal to ‎‎0.001283 

Zienkiewicz (2000).‎ As can be seen, the accuracy of the 

results of the MLPG approach is more than the finite 

element results. 

Modified forms of a square plate in two simple and 

fixed supports positions are respectively illustrated in Figs. 

2 and 3. As can be seen in these figures, problem domain 

and the form modification for plate is only shown by nodes. 

Paying attention to the type of nodes deformation, the 

effects of boundary conditions on the solution results could 

be seen. 

 

 

 

Fig. 2 Modified form of a square plate with simple support 

under constant distributed latitudinal force 
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Fig. 3 Modified form of a square plate with cantilever 

support under constant distributed latitudinal force 

 

 

Fig. 4 shows Von Misses pseudo stress 
vp  

distribution calculated from Eq. (49) at middle line of the 

plates ( 0.3x  ) under both simply and clamp supports. By 

multiplying the vertical distance of any points to the meddle 

plane of the plate, von Misses stress at that point can be 

computed as follows 

 2 2

vp xp yp xp yp        (49) 

 

7.2 Thin rectangular plate with simple and fixed 

supports under distributed load 

 

The rectangular plate with mechanical properties 

introduced in Table 1, is investigated here. The results are 

compared with the analytical solution outputs as stated in 

Timoshenko (1959). Also, Tables 4 and 5 show the 

displacement of a rectangular plate obtained by Abaqus 

Software with 15 × 15 nodes under a distributed transverse 

load (100 N/m
2
) with simply and fixed supports, 

respectively.  

Fig. 5 illustrates the Von Misses pseudo stress (
vp ) 

distribution along the line / 2 0.3b  (the line that divides 

the plate into two parts) in both simply support and fixed 

boundary condition. It is observed that in the case of simply 

and fixed supports, critical point is located on the plate 

center and plate bounders, respectively. 

 

 

Fig. 4 Von Misses pseudo stress 

 

 
(a) SSSS support 

 
 

Fig. 5 Von Misses pseudo stress of thin rectangular plate under 

constant load 

 

 

Table 4 Dimensionless deflections of thin rectangular plate 

simply support under constant load 

length 

/width  
1.5 2 3 4 

MLPG 0.00772 0.01014 0.01225 0.01289 

Reference 0.00772 0.01013 0.01223 0.01282 

Abaqus  

900 

linear 

element 

0.00770 0.01008 0.01212 0.01268 

 

 

Table 5 Dimensionless deflections of thin rectangular plate 

fix support under constant load 

length 

/width  
1.2 1.5 1.8 2 

MLPG 0.00175 0.00222 0.00249 0.00260 

Reference 0.00172 0.00220 0.00245 0.00254 

Abaqus  

900 

linear 

element 

0.001717 0.00216 0.00235 0.00249 

 

 

7.3 Thin circular plate with simple and fixed supports 
under distributed load 

 

Consider a circular thin plate with 1 m radius under 

100N/m
2
 uniformly distributed load. The obtained results 

have been become dimensionless though local Petro 
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Galerkin meshless method, based on the following equation 

3

4

maxw Eh

pa
   (50) 

The comparison between present results and those obtained 

by Timoshenko (1959) reveals that high accuracy can be 

achieved by the usage of 15 × 15 nodes for problem 

domain. It is important to note that some of the observed 

errors are from mapping of the circular into the rectangular 

domain. By applying appropriate mapping, perfect precision 

for results can be obtained.  

Figs. 6 and 7 show distribution of deformation for 

simple and fixed circular plates, respectively. 

Fig. 8 presents Von Misses pseudo stress distribution 

along the diameter of the circular plate under the force 

constant for both simply and fixed supports. In the case of a 

fixed support the magnitudes of stress is more than simply 

support ones. The critical point of simply support plate is 

located in the near of supports, whereas for fixed support, it 

is located in the plate center. 

 

 

 

Fig. 6 Modified form of circular plate with simple support 

under constant latitudinal distributed force 

 

 

 

Fig. 7 Modified form of a circular plate with cantilever 

support under constant latitudinal distributed force 

 

 

 

Table 6 Dimensionless displacement of circular plate 

 MLPG Method Reference 

Timoshenko 

(1959) 

Abaqus  Abaqus  

Number 

of nodes 
10×10 13×13 15×15  925 linear 

925 

nonlinear 

simply 

support 
0.05544 0.06241 0.06212 0.06370 0.0635 0.0637 

fixed 

support 
0.01428 0.01549 0.01553 0.01562 0.0156 0.0156 

 

 

 

Fig. 8 Von Misses pseudo stress of thin circular plate under 

constant load 

 

 

7.4 Elliptical shaped thin plate with simple and fixed 

supports under distributed load 

 

An Elliptical shaped plate with mechanical properties of 

table 1 is analyzed and by the usage of Eq. (50), the 

dimensionless form of obtained results from the software 

can be derived. The dimensionless displacement for simply 

and fixed support, using 20×20 nodes for the problem 

domain are exhibited in Tables 7 and 8, respectively. 

Besides, Figs. 9 and 10 show the modified form of oval 

plates in specific state of a/b=2 for two different supporting 

conditions. 

 

 

Table 7 Dimensionless displacement of oval plate with joint 

support 

a/b 1.5 2 3 4 

MLPG 1.23 1.53 1.83 1.98 

Abaqus 1.25 1.55 1.856 2.00 

Timoshenko 

(1959)‎ 
1.26 1.58 1.88 2.02 

 

 

Table 8 Dimensionless displacement of oval plate with 

fixed support 

a/b 1.5 2 3 4 

MLPG 0.2958 0.3443 0.3983 0.4236 

Abaqus 0.304 0.3697 0.4177 0.434 

Timoshenko 

(1959)‎ 
0.3046 0.3701 0.4188 0.4352 
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Fig. 9 Deformed shape of oval plate with simply support 

under uniform latitudinal distributed load 

 

 

Fig. 10 Deformed shape oval plate with cantilever support 

under constant distributed latitudinal distributed force 

 

 

Fig. 11 shows the Von Misses pseudo stress (
vp ) 

distribution along Small diameter in both simply and fixed 

support. It can be observed that the maximum value of the 

stress takes place in the center of the plate and near the 

supports for the simply and fixed support boundary 

conditions, respectively. 

 

7.5 Ortho-tropic rectangular and square plates under 

distributed load 

 

Here, the analysis and comparison of behavior of the 

orthotropic plates under uniformly distributed load for 

simply and fixed support conditions have been carried out. 

Table 9 presents the results of the orthotropic plate, 

considering properties of 
1 2 12 2E 25E G 0, ,.5E   

𝜗12 = 0 25. The exact solution of this case is given by 

Reddy (2003) and dimensionless deflection has been 

obtained as 0.6497 . 

The results for finite element for this problem in two 

boundary conditions of using conforming and non-

conforming elements are calculated as 0.6551 and 0.6535, 

respectively. It is observed that the error of the finite 

element results is 2.5% Reddy (2003). In Fig. 12 compare 

the results of the analytical solution and Galerkin meshless 

method in a composite rectangular four-layer plate with the 

layout of (0/90/90/0) for which the properties of the layers 

are𝐸1 = 25𝐸2 , 𝐺12 = 0 5𝐸2, 
12 0.25  . 

 
(a) Clamp support 

 
(b) Simply support 

Fig. 11 Von Misses pseudo stress of thin Elliptical plate 

under constant load 

 

 

 

Fig. 12 Dimensionless displacement of composite 

rectangular plate with fixed support 

 

 

Table 9 Dimensionless deflection of thin orthotropic cubic 

plate with simple support under constant load 

Number of 

nodes 
10×10 13×13 15×15 17×17 

Dimensionless 

deflection 
0.6602 0.6547 0.6313 0.6577 

Error 0.6602 0.6547 0.6313 0.6577 

 

 

7.6 Orthotropic circular plate 

 

The comparison of the displacement in an orthotropic 

circular plate with properties of   1 = 131   ,  2 =
13   ,  12 = 6 4   ,  12 = 0 34 , and dimensions of 

1 ?R m   12 ?h m m  under distributed force of 

100N/m
2
  for both the meshless Galerkin and FEMs is 

presented Rao (1994). 
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Fig. 12 Deformed Crescent shape of oval plate 

 

 

 

Table 10 displacement in the center of circular plate (in 

millimeters) 

 Solution method MLPG 
Rao 

(1994)‎ 

Number 

of nodes 
10×10 13×13 15×15  

Fixed 

support 
1.3 1.4 1.4 1.84 

 

 

 

 
Table 11 maximum displacement in the Crescent-shaped 

plate 

Type plates Type support 
EFG 441 

node 

Abaqus 

1088 

element 

isotropic 
simply support 0.483 0.46 

Cantilever 0.098 0.102 

orthotropic 
simply support 0.705 0.898 

Cantilever 0.14 0.18 

 
 

7.7 Crescent-shaped plate isotropic and orthotropic 
 
Given the capabilities of  the different forms analysis the 

crescent-shaped plate of the hitting of a circle with a radius 

of one meter and a geometric ellipse equation is 

2 24 1x y   is created, Under the uniform force 
2

100
m

N  in 

two the simply support and fixed studied. Table 11 shows 

that the results for both isotropic and orthotropic plate are 

consistent with the mechanical characteristics of the 

previous example. Fig. (12) compares a modified form of 

sheets with the computer programs and Abaqus software. 

 
 

8. Conclusions 

 
Analysis of thin isotropic and orthotropic plates with 

various geometries and boundary conditions is proposed, 

based on the meshless Galerkin method. As can be realized 

from the results, the outputs are relatively stable with the 

number of nodes and this is the benefit of weak form 

method. Also, element categorization of the solution 

domain is not necessary, which is a complex process in 

FEM. Therefore, because there is no networking for 

problem domain in this method, network computations are 

removed. In comparison with FEM, it also has advantages 

such as more accurate results, faster convergence and fewer 

nodes in comparison with the number of elements. 

In the computer code, using adjacency boundary 

conditions instead of penalty method gives more accurate 

results whereas in the penalty method the error penalty 

coefficient is estimated by trial and error. It needs to be 

mentioned that change in the distance between adjacent 

nodes to the node on the boundary has insignificant effect 

on the results accuracy. 
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