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1. Introduction 
 

Recently, as the span of suspension bridge is longer and 

longer, it is more and more sensitive to wind. Thus, the 

flutter analysis of this kind of bridges has been the subject 

of many researches (Larsen 1997, Agar 1988, Chen and Cai 

2003, Han et al. 2015, Zhang et al. 2011). These studies 

were conducted based on an assumption that all the 

parameters of bridge are complete deterministic. 

Researchers usually call this deterministic flutter analysis. 

In reality, however, there are many uncertainties during the 

process of erection of the bridge. The parameters of bridge 

may fluctuate in the vicinity of the nominal values rather 

than be exactly equal to them. These uncertainties include 

material mechanical properties, geometric properties and 

wind characteristics, etc. Compared with flutter reliability 

analysis, the deterministic analysis can’t provide complete 

and accurate information adequately. Therefore, the flutter 

analysis should be studied from a probabilistic perspective 

(Milev and Tagliani 2017, Gzyl et al. 2017, Zhang and 

Pandey 2013, Zhang et al. 2011, Pandey and Zhang 2012, 

Shi et al. 2016). 

Unlike the deterministic flutter analysis of suspension 

bridges, the probabilistic flutter analysis has not been well 

studied. Considering the uncertainties of wind load 

parameters, Prenninger et al. (1990) studied the reliability  
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of two kinds of long span bridges respectively-a cable 

stayed and a suspension bridge. Ostenfeldrosenthal et al. 

(1992) studied the flutter reliability of cable-supported 

bridges by considering several variables including structural 

damping, turbulence intensity, extreme wind speeds and 

conversion of results from model tests to prototype bridges. 

Ge et al. (2000) proposed a reliability analysis model based 

on first order reliability method (FORM) to study the flutter 

reliability of bridge. According to the fundamental theory of 

reliability, Pourzeynail and Datta (2002) calculated the 

flutter failure probability of suspension bridge. In these 

studies above, the limit state function is considered to be 

explicit formula. In other words, the flutter reliability 

analysis is conducted based on empirical formula. The 

uncertainties included in wind loads and resistances are 

simply considered in explicit limit state function based on 

some assumptions. 

However, in fact, the flutter response of bridges should 

be calculated by an implicit function. That is to say, a closed 

empirical formula solution of flutter response can’t consider 

the complexity of structure and the diversity of random 

variables. Therefore, the basic theory of reliability, first 

order reliability method (FORM) and second order 

reliability method (SORM) used in previous studies are not 

suitable any more. 

Monte Carlo simulation (MCS) is a traditional method 

for reliability analysis of structures. This method is not only 

simple and easy to conduct but also suitable for both 

explicit and implicit limit state function. Thus, the method 

is often regarded as a standard to validate the analysis 

results of other methods. However, computation efficiency 
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of the method is very low for complicated structure. So the 

method is obviously not appropriate for complicated flutter 

analysis.  

Response surface method (RSM) is an available method 

for reliability analysis of implicit limit state functions. The 

main idea of this method is to replace the complex implicit 

limit state function by a simple response surface function. A 

major advantage of RSM is that implicit limit state function 

can be transformed to explicit form (Bucher and Bourgund 

1990, Rajashekhar and Ellingwood 1993, Faravelli 1989, 

Yao and Wen 1996, Huh and Haldar 2001, Kaymaz and 

McMahon 2005). Some scholars have studied the reliability 

of structure based on RSM. Liu and Moses (1994) improved 

the RSM based on Monte Carlo importance sampling 

(RSM-MCIS) to study the structural reliability. Huh and 

Haldar (2002) used systematic RSM to study the seismic 

reliability of nonlinear frames. Zheng and Das (2000) 

improved the RSM and then applied it to stiffened plate 

reliability analysis. However, RSM has also unavoidable 

shortcomings for structural reliability analysis. The general 

response surface function of the structure is usually 

established only in local definition domain and the 

approximation accuracy of the response surface function is 

rapidly deteriorated in other domains. So when the 

structural design parameters change, continuous experiment 

redesign and reestablishing of the response surface is 

unavoidable (Zhang et al. 2011). On the other hand, the 

RSM-MCIS may produce significant errors due to the noise 

added in limit state function obtained by RSM (Cheng et al. 

2005). Thus, an alternative reliability method which is 

accurate, efficient, and appreciate for both explicit and 

implicit limit state functions is required. 

The principle of maximum entropy (MaxEnt) proposed 

by Jaynes (1957) is another method for reliability analysis. 

Interest in MaxEnt principle has raised with the emergence 

of concept of fractional moments (Inverardi et al. 2005, 

Taufer et al. 2009, Milev et al. 2012).Some scholars have 

developed the method with fractional moments. Zhang and 

Pandey (2013) studied structural reliability based on the 

concepts of entropy, fractional moment and dimensional 

reduction method. Balomenos et al. (2015) conducted 

reliability analysis of reinforced concrete slabs by 

dimensional reduction method. Based on previous studies, 

the purpose of this paper is to propose a more robust and 

efficient method for probabilistic finite element analysis 

with application to flutter of suspension bridges. The 

proposed method is multiplicative dimensional reduction 

method (M-DRM), which provides a highly accurate 

approximation of the response distribution. The basic 

procedures of proposed method are (1) Obtaining the 

explicit or implicit limit state function. (2) Computing the 

parameters of MaxEnt distribution based on M-DRM. (3) 

Using the obtained parameters to get probability density 

function (PDF), then calculate the failure probability of 

structure. After two numerical examples are discussed in 

this paper to demonstrate the efficiency and accurate of the 

method, the flutter reliability analysis of suspension bridge 

is conducted based on M-DRM. 

 

 

2. Multiplicative dimensional reduction method 
 
2.1 Evaluation of the response statistical moments 

 

The structural reliability response can be calculated by a 

function of some input variables. For instance, when the 

capacity of a reinforced concrete beam is evaluated, one 

output variable of interest is the ultimate bending moment. 

This can be described by a function of some input variables, 

such as width of beam, area of reinforcement, yield stress of 

reinforcement, etc., which is denoted as 

 Y h X  (1) 

Where Y is a scalar of output response and X  is a vector 

of input random variables, i.e. 
1 2, ,..., nX X X X . 

The probability of a structural failure due to Y less than 

a certain value can be obtained after knowing the 

probability distribution of all random variables X , which 

can be denoted as 

  0f cp p h X y   
 

 (2) 

Where 
fp  is the probability of a structural failure and 

cy

is a certain value, where each output response less than this 

certain value leads to structural failure. 

So the limit state function can be defined as 

    cg X h X y   (3) 

The probability of failure can be calculate by the 

following integral 

( ) 0
( )f x

g X
p f x dx

  

   (4) 

Where [ ( ) 0]g X   represents the failure domain and ( )xf x  is 

the reinforced concrete beam probability density function 

(PDF) of the previous defined vector X . 

According to Balomenos (2015), the integral can be 

calculated usually by using three methods: (1) Direct 

integration, but the PDF is hardly available when limit state 

function is implicit and the dimension of integral is usually 

too large to calculate conveniently; (2) Simulations, such as 

Monte Carlo simulation (MCS), but the efficiency of 

calculation about it is very low. Especially when the number 

of uncertain parameters is more, this method always costs 

much computational time; (3) Approximate methods, such 

as first- and second- order reliability methods (FORM and 

SORM), but they also can’t consider the implicit limit state 

function. And they can give accurate solutions only for 

extremely large failure probability problems (Cheng et al. 

2005). 

Li and Zhang (2011) thought that the method of moment 

is another way for calculating structural reliability since it 

costs much less computational time and requires no 

iterations. Comprehensively analyzing all kinds of the 

methods of moment such as additive dimensional reduction 

method (A-DRM), high-dimensional model representation 

(H-DRM) and M-DRM, Balomenos (2015) in his Ph.D. 

thesis point out that only the M-DRM principle can be 

adopted since it makes the computation of both fractional 
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and integer moments of response easy and simple. 

According to the proposed A-DRM method in previous 

studies (Rabitz and Alis 1999, Li et al. 2001, Rahman and 

Xu 2004), a scalar of output response have the following 

approximate form 

1 1 2 2 0 0

1

( ) ( ) ( ) ... ( ) ( 1) ( ) ( 1)
n

n n i i

i

Y h X h X h X h X n h h X n h


         
 

(5) 

Where h0 defines the output response when all of the 

random variables are fixed to the mean values, i.e., 

 0 1 2, ,..., nh h c c c  a constant,  i ih X  is an one-dimensional 

cut function, i.e.,    1 2, ,..., ,...,i i i nh X h c c X c  and 1 2, ,..., nc c c  

corresponds to the mean value of each random variables. 

Unlike the A-DRM, the response function can be 

transformed logarithmically by M-DRM method, which can 

derive the multiplicative approximation of the response 

function as 

(1 ) (1 )

0 1 1 2 2 0
1

( ) [ ( ) ( ) ... ( )] ( )
n

n n

n n i i
i

Y h X h h X h X h X h h X 



         (6) 

Thus, according to the M-DRM, a scalar function Eq. 

(5) can be replaced by a product form Eq. (6). The product 

form makes both integer and fractional moments of 

response easy to get. 

According to the M-DRM representation above, a kth 

statistical moment of the response function Eq. (6) can be 

written as 

(1 )

0
1

[ ] [( ( )) ] [( ( )) ]
n

k k n k

i i
i

E Y E h X E h h X



    (7) 

Where the mathematical expectation operation is denoted as 

E [ ] and when k=1, E [ kY ] = E [Y] represents the expected 

value of Y, i.e., the mean value of Y. 

Based on a basic assumption that all input random 

variables are exactly independent, Eq. (7) can be rewritten 

as 

          

  

(1 )

0 1 1 2 2

(1 )

0
1

[ ] ...
k k k kk n

n n

n kk n

i i
i

E Y h E h X E h X E h X

h E h X







                   

     

 (8) 

The evaluation of a kth statistical moment of output 

response Y need the calculation of the kth moments of all 

the cut functions though one-dimensional integration. 

 ( ( )) ( ) ( )
i

kk

i i i i i i i
x

E h X h x f x dx      (9) 

For simplicity, the numerical integration of Gauss 

quadrature formulas can be used instead of one-dimensional 

integration. For example, a kth moment of an ith cut function 

can be approximated as a weighted sum 

1

[ ( )] ( ) [ ( )]
i

L
k k

i i i i j i j
x

j

h x f x dx w h z


  (10) 

Where L is the number of the Gauss quadrature points, 

jw and jz are the weights and coordinates of the Gauss 

quadrature points (j=1,…, L) and ( )i jh z (i=1,2…,n; 

j=1,…,L) is the structural response when thi cut function is 

set at thj Gauss quadrature point. 

Table 1 lists the Gaussian integration schemes which 

was derived for Normal, Lognormal and Gumbel. Table 2 

lists the Gauss Weights ( jw ) and Gauss Points ( jz ) of the 

five-order rule (L=5) of Gauss-Laguerre quadratures, 

Gauss-Hermite, Gauss-Legendre schemes. For more orders 

of Gauss Weights ( jw ) and Gauss points ( jz ), one can refer 

to the literature for details (Davis and Rabinowitz 1984, 

Zwillinger 2011, Hong et al. 2015) 

 

2.2 Response function probability distribution using 
maximum entropy method 

 

MaxEnt optimization procedure can be conducted with 

integer moments or fractional moments respectively. 

Ramirez and Carta (2006) used MaxEnt optimization 

procedure with integer moments constraints to derive the 

wind probability distribution, but Pandey and Zhang (2012) 

 

 

Table 1 Gaussian integration of formula for one-dimension 

fractional moment calculation 

Distribution Support 

domain 

Gaussian 

Quadrature 

Numerical integration 

Formula 

Normal ( ,  ) Gauss-

Hermite 
1

[ ( )]
L

k

j j

j

w h u z


  

Lognormal ( 0, ) Gauss-

Hermite 
1

{ [exp( )]}
L

k

j j

j

w h u z


  

Gumbel ( 0, ) Gauss-

Laguerre 
1

1
[ ( ln )]

L
k

j j

j

w h z u
a

   

Note: 21
ln[1 ], ln( )

2
u u

u


      

 

 

Table 2 Weights and points of five-order Gaussian 

quadrature rules 

Gaussian 

rules 
L 1 2 3 4 5 

Gauss-

Legendre 

jw

 

0.23693 0.47863 0.56889 0.47863 0.23693 

jz  -0.90618 -0.53847 0 0.53847 0.90618 

Gauss-

Hermite 

jw

 
0.01126 0.22208 0.53333 0.22208 0.01126 

jz  -2.85697 -1.35563 0 1.35563 2.85697 

Gauss-

Laguerre 

jw

 
0.52176 0.39867 0.07594 0.00361 0.00002 

jz  0.26356 1.4134 3.5964 7.0858 12.641 
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studied the reliability analysis of the robotic manipulator 

and point that the estimation error would increase as the 

order of the integer moments increases. Furthermore, a few 

fractional moments are far more effective in summarizing 

the entire distribution than integer moments (Zhang and 

Pandey 2013). 

So the Eqs. (8) and (10) can be rewritten as 

  (1 )

0
1

[ ]
n

n

i i
i

E Y h E h X
  



     
 (11) 

 

1

[( ( )) ] [ ( )]
L

i i j i j

j

E h X w h z 



  (12) 

Where  is a fraction. 

After getting the response statistical moments, the most 

unbiased probability distribution of response can be 

estimated by MaxEnt principle with fractional moments. 

The true entropy of response variable Y can be written as 

[ ] ( ) [ ( )]Y Y
Y

H f f y In f y dy   (13) 

Where,  Yf y  is the probability density function of 

response variable Y. 

The Lagrangian function associated with the MaxEnt 

problem is written as 

0

1

[ , ; ( )] ( ) [ ( )] ( 1)[ ( ) 1]

[ ( ) ]i i

Y Y Y Y
Y Y

m

i Y Y
Y

i

L f y f y In f y dy f y dy

y f y dy M
 

  




    

 

 

 
 (14) 

Where 
0 1[ , ,..., ]T

m    are the Lagrange multipliers; 

1[ ,..., ]T

m    are the fractions associated with the fractional 

moments; i

YM
 represents the ith fractional moment of 

response variable Y; m is the number of fractional moments. 

For optimal solution, Eq. (14) must meet a key 

condition as follow 

[ , ; ( )]
0

( )

Y

Y

L f y

f y

 



 (15) 

When i=0, 0  Thus, we can obtain the estimated 

PDF (  Yf y ) of true PDF (  Yf y ) from the Eq. (15) 

0

( ) exp( )i

m

Y i

i

f y y


   (16) 

According to the principle of the normalization 

condition that the integration of the PDF must be exactly 

equal to 1, 0  can be defined as follow 

0

1

ln[ exp( ) ]i

m

i
Y

i

y dy 


   (17) 

A significant advantage of the proposed computational 

approach is that the fractions i (i=1, 2,…,m) do not need to 

be specified a priori, since they can be calculated as a part 

of the entropy maximization procedure (Balomenos 2015). 

In order to achieve the idea of the MaxEnt optimization 

with fractional moments, the cross-entropy which 

represents the minimization of the Kullback-Leibler (K-L) 

divergence between the estimated PDF ( ( )Yf y ) and the true 

PDF ( ( )Yf y ) is used here 

[ , ] ( ) ln[ ( ) / ( )]

( ) ln[ ( )] ( ) ln[ ( )]

Y Y Y
Y

Y Y Y Y
Y Y

K f f f y f y f y dy

f y f y dy f y f y dy

 





 
 (18) 

Substituting ( )Yf Y  from Eq. (16) and [ ]H f  from Eq. 

(13) into Eq. (18) and taking into account Eq. (11), the K-L 

divergence can be rewritten as 

0

1

[ , ] [ ] i

m

i Y

i

K f f H f M  


     (19) 

Where [ ]H f  is the entropy of the true PDF which is 

independent of  and . Therefore, minimization of the 

K-L divergence implies the following function 

minimization 

0

1

( , ) [ , ] [ ] i

m

i Y

i

I K f f H f M    


     (20) 

Therefore, MaxEnt parameters with fractional moments, 

i.e., the fractional exponents (i) and the Lagrange 

multipliers ( i ) can be obtained by using the following 

optimization 

1 1

1 1

:{ } { }

: ( , ) ln[ exp( ) ]i i

m m

i i i i

m m

i i Y
Y

i i

Find

Minimize I y dy M
 

 

   

 

 





  


 
 (21) 

The Eq. (21) can be conducted in MATLAB with the 

simplex search method (Lagarias et al. 1998). Substituting 

these obtained parameters into Eq. (16), then we can get the 

estimated PDF of output response. 

 

2.3 Procedure for the proposed method 

 

The procedures of the proposed method are: 

(1) Obtaining the limit state function (explicit or 

implicit) of output response; 

(2) Evaluation of the response statistical moments; 

(3) Calculation of response probability density function 

(PDF) by M-DRM method; 

(4) Calculation of failure probability of structure by 

PDF. 

A flow chart for the M-DRM method with fractional 

moments is given in Fig. 1. 

 

 

3. Verification examples and investigations 
 

Because a direct verification of the complicated 

suspension bridge flutter is very difficult, two relative 

simple examples are presented here to investigate the 

computation efficiency and accuracy of the M-DRM 

method for reliability analysis. The first example is a simply 

supported beam. This example demonstrates the accuracy 

and efficiency of M-DRM method for reliability analysis by 

comparison with other methods such as FORM and SORM.  

152



 

Flutter reliability analysis of suspension bridges based on multiplicative dimensional reduction method 

Define n random variables, i.e. 

Chose the appropriate Gauss quadrature for each random 

variables (Table 1) 

Select an       (j=1,…,5)value of a random variable

Define the limit state 

function(implicit or empilicit)

Calculate the response of a cut 

function     

          (i=1,…,n. and j=1,…,5.)

1 2, ,..., nx x x x

Calculate the     (j=1,…,5) for each random variable, using 

the equation (Table 1) and      (Table 2)
jx

jx

Calculate the mean and variance of a cut function using 

equation (12) and the relevant 

Calculate the mean and variance of the response, using 

Eq.(11)

Apply MaxEnt optimization, using Eq.(21) 

Estimate the distribution of the response, using Eq.(16)

jz

( )i jh x

jw

Update the related random variable 

with        value
jx

Update the previous      value with 

the mean value of the related random 

variable

jxYes

Total M-DRM required trials obtained ?

No

 

Fig. 1 Flow chart for the procedures of the M-DRM method 

 

 

 

Fig. 2 The simply supported beam 

 

 

The second example is a linear frame structure. This 

example demonstrates the application where the limit state 

function is not available, i.e., the limit state function is 

implicit. 

 

3.1 Example 1: Simply supported beam (explicit limit 
state function) 

 

Considering a concrete beam shown in Fig. 2, the 

ultimate bending moment of resistance UM  and ultimate 

shearing force of resistance UV  are given by explicit 

functions, respectively. 

The ultimate bending moment of resistance UM  

0

1
( )

2

y s

U y s

c

f A
M f A h

f b
   (22) 

The ultimate shearing force of resistance UV  

0 0 00.663 0.015sv
U t yv c

A
V f bh f h f bh

s
    (23) 

Where fy is yield strength of steel bar; fyv is yield strength of 

web reinforcement; fc is compressive strength of concrete; ft 

is tensile strength of concrete; h is depth of cross section, 

0 0.035h h m  ; b is width of cross section; As is area of 

reinforced bars; Asv is area of web reinforcement; s is the 

spacing of web reinforcement, s=150mm; strength level of 

concrete = C25. 

Thus, the limit state functions of the ultimate bending 

moment of resistance and ultimate shearing force of 

resistance for reliability analysis are defined as 

M U B

V U B

g M M

g V V

 


 
 (24) 

Where BM is maximum bending moment exerted in the 

beam; BV is maximum shearing force exerted in the beam. 

40 /q kN m , L= 3.6m, 21

8
BM qL , 

1

2
BV qL . 

From the Eq. (24), one can see that the failure 

probabilities of the ultimate bending moment and shearing 

force can be computed as [ 0]F r MP P g   and [ 0]F r VP P g  , 

respectively. 

Considering five input random variables of structure, 

their distributions are listed in Table 3. 

Firstly, four integer product moments of bending 

moment resistance and shearing force resistance are 

computed using M-DRM and MCS methods, respectively. 

Numerical moment integration grid based on Gaussian rules 

is given in Table 4 and the integration points of each 

variable are highlighted. Method proposed in section 2.1 is 

used to determine the integration gird, which can help 

reader to verify the numerical results. It is worth noting that 

the calculations of MaxEnt distribution and statistical 

moment are only based on the 26 (=1+5 5) deterministic 

model evaluations. 

Numerical accuracy of four integer moments obtained 

from M-DRM is compared against the benchmark results 

obtained from MCS with 106 samples. Results from the 

Table 5 show that M-DRM estimates have less than 0.1% 

error for all the four integer moments of both bending 

moment resistance and shearing force resistance. 

As shown in Fig. 3, the estimated PDFs of the ultimate 

bending moment 
UM  and shearing force 

UV , obtained 

from M-DRM proposed in section 2 are in consistent with 

those obtained from the MCS method. The Lagrangian 

multipliers and the fractional moments of the estimated 

MaxEnt PDFs obtained from M-DRM are listed in Tables 6 

and 7. 

Considering the limit state functions Eq. (24), then the 

probabilities of failure can be computed by FORM, SORM, 

M-DRM and MCS methods respectively, and the results are 

listed in Table 8. 

 

 

Table 3 Random variables in the simply supported beam 

example 

Variable Distribution Mean Units Cov Reference 

fy Normal 3.50E8 Pa 0.05 Nowak et 

al.2003 fyv Normal 3.00E8 Pa 0.05 

fc Normal 1.67E7 Pa 0.15 

h Gumbel 0.40 m 0.1 Assumed 

b Gumbel 0.20 m 0.1 
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Table 4 Numerical integration grid for computing the moments with M-DRM: simply supported beam example 

Variable 
 

NO. 
Numerical integration grid 

UM  

( KN m ) 

UV  

( KN ) fy (Pa) fyv (Pa) fc (Pa) h (m) b (m) 

fy 

1 3.000E+08 3.000E+08 1.670E+07 0.4 0.2 75.741 145.717 

2 3.263E+08 3.000E+08 1.670E+07 0.4 0.2 81.626 145.717 

3 3.500E+08 3.000E+08 1.670E+07 0.4 0.2 86.837 145.717 

4 3.737E+08 3.000E+08 1.670E+07 0.4 0.2 91.950 145.717 

5 4.000E+08 3.000E+08 1.670E+07 0.4 0.2 97.497 145.717 

fyv 

6 3.500E+08 2.571E+08 1.670E+07 0.4 0.2 86.837 139.820 

7 3.500E+08 2.797E+08 1.670E+07 0.4 0.2 86.837 142.919 

8 3.500E+08 3.000E+08 1.670E+07 0.4 0.2 86.837 145.717 

9 3.500E+08 3.203E+08 1.670E+07 0.4 0.2 86.837 148.515 

10 3.500E+08 3.429E+08 1.670E+07 0.4 0.2 86.837 151.614 

fc 

11 3.500E+08 3.000E+08 9.558E+06 0.4 0.2 78.851 137.896 

12 3.500E+08 3.000E+08 1.331E+07 0.4 0.2 84.116 142.006 

13 3.500E+08 3.000E+08 1.670E+07 0.4 0.2 86.837 145.717 

14 3.500E+08 3.000E+08 2.009E+07 0.4 0.2 88.640 149.428 

15 3.500E+08 3.000E+08 2.384E+07 0.4 0.2 90.039 153.538 

h 

16 3.500E+08 3.000E+08 1.670E+07 0.4236 0.2 93.142 155.138 

17 3.500E+08 3.000E+08 1.670E+07 0.3712 0.2 79.140 134.217 

18 3.500E+08 3.000E+08 1.670E+07 0.3421 0.2 71.354 122.582 

19 3.500E+08 3.000E+08 1.670E+07 0.3209 0.2 65.700 114.134 

20 3.500E+08 3.000E+08 1.670E+07 0.3028 0.2 60.874 106.923 

b 

21 3.500E+08 3.000E+08 1.670E+07 0.4 0.2118 87.433 151.879 

22 3.500E+08 3.000E+08 1.670E+07 0.4 0.1856 86.008 138.196 

23 3.500E+08 3.000E+08 1.670E+07 0.4 0.1710 85.027 130.587 

24 3.500E+08 3.000E+08 1.670E+07 0.4 0.1604 84.202 125.062 

25 3.500E+08 3.000E+08 1.670E+07 0.4 0.1514 83.408 120.346 

Mean-

value 

26 3.500E+08 3.000E+08 1.670E+07 0.4 
0.2 

86.837 145.717 

Table 5 Integer moments of the ultimate bending moment and shearing force 

Method 
Moments (

UM ) Moments (
UV ) 

1st 2nd 3rd 4th 1st 2nd 3rd 4th 

M-DRM 86.450 7605 6.8040E+5 6.1870E+7 145.73 2.1612E+4 3.2605E+6 5.0018E+8 

MCS 86.451 7606.9 6.8079E+5 6.1928E+7 145.72 2.1610e+04 3.2600e+06 5.0005e+08 

Relative 

error(%)  

-1E-3 -2.4E-2 -5.7E-2 -9.4E-2 6.8E-3 9.3E-3 1.5E-2 2.6E-2 

Table 6 Parameters of MaxEnt PDF of 
UM  derived from M-DRM 

Entropy m 0 1 2 3 

3.8815 

m  28.3333 -1.4620 0.6548 1.7483 

m   1.2402 1.3867 0.6088 

m

YM
   252.9409 487.1855 15.0721 
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Table 7 Parameters of MaxEnt PDF of 
UV  derived from 

M-DRM 

Entropy m 0 1 2 3 

4.365405 

m  73.7373 -1.2616 1.2490 -4.3845 

m   0.5456 1.0649 0.8497 

m

YM
   15.1205 201.4566 68.8568 

 

 

Table 8 Results of example 1 

Method Ultimate bending  

moment (
UM ) 

Ultimate shearing  

force (
UV ) 

Pf Relative  

error (%) 

Pf Relative 

error (%) 

FORM 0.0248 11 6.18E-6 23.6 

SORM 0.0267 4.3 5.81E-6 16.2 

M-DR

M 

0.0277 0.72 4.94E-6 1.2 

MCS 0.0279 - 5E-6 - 

 

 

From the Table 8, one can see that the results obtained 

from M-DRM method agree more well with the exact 

results obtained from MCS method than other methods 

(FORM, SORM). In other words, the relative error of M-

DRM is the smallest. Furthermore, the M-DRM method is 

more efficiency of calculation than MCS. This is because 

that the calculations of MaxEnt distribution and statistical 

moment are only based on the 26 (=1+5 5) deterministic 

model evaluations, but MCS is based on 106 samples. 

 

 
3.2 Example 2: Linear frame structure (implicit limit 

state function) 
 

The second example discussed here is a linear frame 

structure as shown in Fig. 4. Different horizontal loads Pi 

(i=1, 2), cross sectional area A and the Young’s modulus E 

are treated as exactly independent random variables. These 

input random variables and their distributions are listed in 

Table 9. The sectional moment of inertia is expressed as 
2 ( 0.08333)I A   . The focus of concern here is the  

 

 

probability that the horizontal displacement at node 3 

exceeds 0.015 m. Thus, the limit state function can be 

expressed as 

1 2 3 1 2( , , , ) 0.015 ( , , , )g E A P P u E A P P   (25) 

In this example, FORM and SORM methods are not 

appropriate any more since the limit state function is 

implicit in terms of input random variables. So we can use 

M-DRM and MCS to calculate the probability of failure 

respectively below. 

Using the five Gaussian points of Table 2 to calculate 

the integration of each component function. Then the entire 

numerical integration grid can be obtained and the results 
are listed in Table 10, in which one can see that the totally 

number of deterministic model evaluation is only 21(=1+4
 5). 

 

 

 

Fig. 4 Linear portal frame 

 

 

Table 9 Random variables in the linear frame structure 

Variable Distribution Mean Units Cov Reference 

E Normal 2.1e11 Pa 0.1 Zhang and 

Pandey 

2013 

 

A Lognormal 0.04 m2 0.1 

P1 Lognormal 50000 N 0.1 

P2 Lognormal 20000 N 0.1 
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Fig. 3 Distributions of the ultimate bending moment and shearing force 
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Table 11 Integer moments of the horizontal displacement of 

node 3 

Method Moments (
3u ) 

1st 2nd 3rd 4th 

M- 

DRM 

11.3646 136.3186 1726.5786 23100.6208 

MCS 11.3662 136.3447 1726.6984 23094.7804 

Relative 

error 

(%) 

0.01407 0.0191427 0.00693 -0.0252888 
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Fig. 5 Distribution of horizontal displacement of node 3 

 

 

Table 12 Parameters of MaxEnt PDF of horizontal 

displacement of node 3 derived from M-DRM 

Entropy m 0 1 2 3 

2.2617 

m  31.5806 -7.1408 1.2744 -9.5759 

m   0.5724 1.2108 0.3959 

m

YM
   3.994 19.10 2.601 

 

 

The four integer moments of the horizontal 

displacement at node 3 (
3u ) are listed in Table 11. From the 

Table 11, one can see that the M-DRM method provide 

highly accurate estimates with relative error less than 0.1%. 

The MaxEnt PDF of the horizontal displacement at node 

3 (
3u ) estimated from M-DRM is compared with the 

simulation result from MCS in Fig. 5. Fractional moments 

and parameters of MaxEnt distribution are listed in Table 

12. Calculations of them involved in the M-DRM procedure 

are based on Table 10. 

Considering the critical displacement 0.015 m proposed 

above and the estimated PDF in Fig. 5, we can obtain the 
failure probability of the linear frame structure by 

integration. The probability of failure from M-DRM is 

compared with the result from MCS in Table 13. From the 

Table 13, one can see that the result from M-DRM method 

also agree well with the exact result from MCS method for  

Table 10 Numerical integration grid for computing the moments with M-DRM: Linear frame structure example 

Variable 
 

NO. 
Numerical integration grid Horizontal displacement at 

node 3（mm） E(Pa) A(m2) P1(N) P2(N) 

E 

1 1.500E+11 4.000E-02 5.000E+04 2.000E+04 15.324 

2 1.815E+11 4.000E-02 5.000E+04 2.000E+04 12.664 

3 2.100E+11 4.000E-02 5.000E+04 2.000E+04 10.945 

4 2.385E+11 4.000E-02 5.000E+04 2.000E+04 9.637 

5 2.700E+11 4.000E-02 5.000E+04 2.000E+04 8.513 

A 

6 2.100E+11 3.033E-02 5.000E+04 2.000E+04 19.040 

7 2.100E+11 3.499E-02 5.000E+04 2.000E+04 14.305 

8 2.100E+11 3.982E-02 5.000E+04 2.000E+04 11.045 

9 2.100E+11 4.531E-02 5.000E+04 2.000E+04 8.530 

10 2.100E+11 5.228E-02 5.000E+04 2.000E+04 6.406 

P1 

11 2.100E+11 4.000E-02 3.791E+04 2.000E+04 8.644 

12 2.100E+11 4.000E-02 4.374E+04 2.000E+04 9.754 

13 2.100E+11 4.000E-02 4.977E+04 2.000E+04 10.902 

14 2.100E+11 4.000E-02 5.664E+04 2.000E+04 12.209 

15 2.100E+11 4.000E-02 6.535E+04 2.000E+04 13.867 

P2 

16 2.100E+11 4.000E-02 5.000E+04 1.516E+04 10.600 

17 2.100E+11 4.000E-02 5.000E+04 1.750E+04 10.767 

18 2.100E+11 4.000E-02 5.000E+04 1.991E+04 10.939 

19 2.100E+11 4.000E-02 5.000E+04 2.266E+04 11.135 

20 2.100E+11 4.000E-02 5.000E+04 2.614E+04 11.384 

Mean value 21 2.100E+11 4.000E-02 5.000E+04 2.000E+04 10.945 
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Table 13 Results of example 2 

 M-DRM MCS 

Failure 

probability 

0.0936 0.0948 

Relative 

error(%) 

1.27 - 

 

implicit limit state function. The relative error between 

them is only 1.27%. However, the M-DRM method costs 

much less calculation time than MCS method. Such 

phenomena of outperforming the classical Monte Carlo 

method also has been found in some particular cases 

(Sobhani and Milev 2017, Kabaivanov 2015). 

Since the two examples above show that the M-DRM 

method is accurate, efficient, and appreciate for both 

explicit and implicit limit state functions, it can be applied 

to a much more complicated flutter reliability analysis of a 

long span suspension bridge. 

 

 

4. Application to a long span suspension bridge 
 
4.1 Description of bridge 
 
The prototype bridge studied here is a suspension bridge 

with a 1160 m central span length. The bridge span 

arrangements are (290+1160+402) m. The bridge deck 

cross section is an aerodynamically shaped closed 

streamlined steel box girder with 2.8 m high and 34.7 m 

wide. More specific sizes of the bridge are shown in Fig. 6. 

 

4.2 Finite element modeling 
 
A three-dimensional finite element model of the long 

span suspension bridge has been established by ANSYS. 

Three-dimensional beam44 elements were used to model 

the bridge towers ,  main girder and bridge piers. The 

suspenders and cables were modeled by three-dimensional 

link8 elements. The second load was modeled by the 

mass21 elements. Only the suspension bridge in 

construction state is analyzed in this paper since the 

structure in operation state can be analyzed with the same 

method. Table 14 shows the main parameters of streamlined 

steel box girder of suspension bridge in construction state. 

The flutter derivatives were obtained from CFD. The 

detailed calculation procedure of flutter derivatives is 

omitted here owing to space reasons For the sake of 

simplicity, only the flutter derivatives of main girder in 

construction state at the wind attack angle of 0 degree are 

considered in the following analyses. 

 

 

Fig. 6 Arrangement of the bridge span and the bridge deck 

cross section (unit: m) 

Table 14 Main parameters of streamlined steel box girder of 

suspension bridge in construction state 

Torsional  

fundamental

 frequency 

(Hz) 

Vertical  

fundamental

 frequency 

（Hz） 

Generalized 

mass 

（kg/m） 

Generalized  

mass moment  

of inertia  

（kg  m2/m） 

0.3594 0.1686 14215 1372840 

 

 

4.3 Deterministic flutter analysis 
 

In the classical flutter theory, flutter is a divergent self-

excited vibration with the interaction of wind and structure. 

Long span bridges are long and slender structures whose 

geometric scales tend to be large in one direction and small 

in the other two directions. The effect of wind on the 

structure can be expressed in terms of strip theory. 

Therefore, the two-dimensional (2D) frequency domain 

analysis theory is a common research method in bridge 

flutter analysis. 

Only first vertical modal and first torsional modal are 

considered, then the 2D flutter equation can be written as 

 

 

2

2

2

2

h h hm h h h L

I M  

  

     

   


  

 (26) 

Where m and I are mass and mass moment of inertia per 

unit length; h and  are vertical displacement and torsional 

displacement, respectively; ,h    are vertical and 

torsional fundamental frequency, respectively; ,h    are 

vertical and torsional damping ratios, respectively; L and M 

are aerodynamic self-excited forces per unit length. 

According to the Scanlan’ theory, the 2D aerodynamic 

self-excited forces can be expressed as 

2 * * 2 * 2 *

1 2 3 4

2 2 * * 2 * 2 *

1 2 3 4

1
(2 )( )

2

1
(2 )( )

2

h B h
L U B KH KH K H K H

U U B

h B h
M U B KA KA K A K A

U U B


 


 


   



    


 (27) 

Where   is air density; U is average wind speed; B is 

bridge deck width; h,  are vertical displacement and 

torsional displacement, respectively; K is reduced 

frequency i.e. K=
B

U


; 

*

iH , *

iA  (i=1,2,3,4) are flutter 

derivatives. 

According to the basic theory above, the 2D frequency 

domain flutter analysis can be achieved by self-edited 

program based on MATLAB. We call this finite element 

method. For comparison, both finite element method and 

empirical formula are used to analyze the flutter response 

of suspension bridge here. The empirical formula is 

expressed as: (Cheng et al. 2005) 

1 ( 0.5) 0.72 ( )cr s h

r
V b

b
   

 
     

 
 (28) 
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Table 15 Comparison between the results obtained by finite 

element method and by empirical formulas 

Critical flutter  

velocity 

Finite element  

method 

Empirical  

formulas 

crV  66.3(m/s) 59.8(m/s) 

 

 

2

m

b



  (29) 

Where crV is critical flutter velocity, s is shape 

coefficient of bridge deck cross section,  is frequency 

ratio between fundamental torsional and bending modes, 
r is radius of gyration of bridge deck cross section, m is 

mass per unit length of structure,   is air density, b is 

half width of bridge, h  is circular frequency of the first 

bending mode. 

A comparison of critical flutter velocity between finite 

element method and empirical formula is shown in Table 

15. The result obtained by empirical formula is reasonably 

close to that by finite element method. Also, the result by 

empirical formula tend to be conservative. So it can meet 

the needs of preliminary deterministic analysis of flutter 

response. However, the difference between finite element 

method and empirical formula may be magnified in terms 

of reliability analysis. 

 

4.4 Non-deterministic flutter analysis 
 

As is well known, the structure parameters such as 

damping ratios, geometric parameters and material 

properties of the suspension bridge cannot be exactly equal 

to design values during the process of erection of the bridge. 

In other words, they may fluctuate in the vicinity of the 

nominal values. Therefore, structure parameters should be 

treated as random instead of deterministic variables. 

Besides, flutter derivatives and extreme wind velocity at the 

bridge site are also random variables due to experimental or 

numerical calculation error and wind characteristics. All 

statistics of these input random variables are shown in Table 

16. 

The objective of this study is to propose an efficient and 

accurate method for complicated flutter reliability analysis 

of suspension bridges which includes of many uncertainties 

mentioned above. On the other hand, it is very difficult to 

determine the interrelation of the random variables. For the 

sake of simplicity, we assume that all these input random 

variables here are treated as independent from each other. 

The reliability of a system is always studied based on a 

limit state function. In previous studies, most limit state 

functions for flutter reliability analysis are explicit. And the 

explicit limit state function for flutter reliability analysis can 

be estimated by empirical formula which makes critical 

flutter velocity easy and simple to be solved. 

 However, some parameters such as damping ratio and 

structural properties cannot be directly considered in 

explicit limit state function. This may lead to greater error 

in process of reliability analysis. 

Table 16 Random variables for flutter reliability analysis of 

suspension bridge 

Variable Description distributio

n 

units mean cov Reference 

X1 Mass per  

unit length 

Normal Kg 14215 0.1 Assumed  

X2 Mass  

moment of  

inertia per  

unit  

length 

Normal Kg·m
2
 13728

40 

0.1 Assumed 

X3 Elastic  

modulus 

Normal - 2.1× 

10
11 

0.1 Assumed 

X4 Cross  

sectional  

area 

Normal m
2 

1.555 0.1 Assumed 

X5 Sectional  

moments 

 of  

inertia 

Normal m
4 

2.045 0.1 Assumed 

X6 Normal m
4 

153.4

93 

0.1 Assumed 

X7 Normal m
4 

6.05 0.1 Assumed 

X8 Damping  

ratio 

Lognorma

l 

- 0.005 0.4 Pourzeynail

 and  

Datta  

2002 

X9 Basic 

wind  

velocity 

Type I m/s 27.20 0.15 Xu et al. 2

006 

X10 Gust speed  

factor 

Normal - 1.24 0.07 Ge et al. 2

000 

X11 Flutter 

derivatives  

parameter 

Lognorma

l 

- 1 0.2 Pourzeynail

 and Datta

 2002 

 

 

For the sake of simplicity, a parameter X11 is introduced 

to consider the uncertainties arising from the insufficient 

knowledge of flutter derivatives. The implicit limit state 

function can be expressed as 

11 1 2 3 4 5 6 7 8

9 10

( , , , , , , , )crX V X X X X X X X X
R

X X





 (30) 

Such that the probability of failure can be computed as 

[ 1.0]F rP P R   

The flutter reliability analysis of suspension bridge can 

be conducted by the same solution procedures of two 

examples proposed above. The numerical integration grid of 

flutter reliability analysis is reported in Table 17. And the 

parameters of MaxEnt PDF of limit state function R  

derived from M-DRM are listed in Table 18. Thus, we can 

get the estimated PDF of R  which is shown in Fig. 7. It 

can be used to calculate the failure probability of flutter. 
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Fig. 7 Distribution of limit state function R 
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Table 18 Parameters of MaxEnt PDF of R derived from M-

DRM 

Entropy m 0 1 2 3 

0.7473 

m  32.7713 31.1664 -61.5712 6.8906 

m   -1.3567 -0.4203 -2.4513 

m

YM
   0.4576 0.7771 0.2606 

 

 

Table 19 Comparison of results for various methods 

Method Method I Method II 

Pf 5.24e-4 0.00244 

 

 

Two methods are used to calculate the failure 

probability of flutter of suspension bridge here. Method I is 

finite element method based on M-DRM; Method II is 

empirical formula based on MCS with 106 samples. The 

results are given in Table 19. From the Table 19, one can 

see that: (1) although the deterministic critical flutter 

velocities calculated by Method I and Method II are 

reasonably close (see Table 15), there are also significant  

 

 

differences in the failure probability of flutter (about 4.65 

times) between the two. This is because that the error 

existed in the two is magnified in process of flutter 

reliability analysis. Also, the numbers of system 

uncertainties considered in Method II are less than Method I. 

On the other hand, the result by Method II is only a too 

conservative estimate for flutter reliability analysis but is 

not accurate adequately. So Method II is not suitable for 

reliability analysis of bridge flutter. (2) Method I has higher 

computational efficiency than Method II for complicated 

flutter reliability analysis since method I is only based on 

the 56 (=1+11×5) deterministic model evaluations instead 

of 106 samples. 

 

 

5. Conclusions 
 

A reliability analysis method has been proposed based 

on the maximum entropy principle in which constraints are 

specified in terms of fractional moments in this paper. The 

fractional moments involved in the MaxEnt procedure are 

much more effective in modeling the distribution tail than 

the integer moments. 

Table 17 Numerical integration grid for computing the moments with M-DRM: suspension bridge 

Variable 
 

NO. 
Numerical integration grid 

R 
X1(Kg) X2(Kg·m2) 

… 

X10 X11 

X1 

1 1.015E+04 1.373E+06 1.240 1 1.823 

2 1.229E+04 1.373E+06 1.240 1 1.903 

3 1.422E+04 1.373E+06 1.240 1 1.966 

4 1.614E+04 1.373E+06 1.240 1 2.016 

5 1.828E+04 1.373E+06 1.240 1 2.064 

X2 

6 1.422E+04 9.806E+05 1.240 1 1.782 

7 1.422E+04 1.187E+06 1.240 1 1.886 

8 1.422E+04 1.373E+06 1.240 1 1.966 

9 1.422E+04 1.559E+06 1.240 1 2.034 

10 1.422E+04 1.765E+06 1.240 1 2.099 

 …
  …
 

  

…
  …
  …
   …
 

X10 

46 1.422E+04 1.373E+06 0.991 1 2.459 

47 1.422E+04 1.373E+06 1.122 1 2.172 

48 1.422E+04 1.373E+06 1.240 1 1.966 

49 1.422E+04 1.373E+06 1.358 1 1.795 

50 1.422E+04 1.373E+06 1.489 1 1.637 

X11 

51 1.422E+04 1.373E+06 1.240 0.584 1.148 

52 1.422E+04 1.373E+06 1.240 0.768 1.510 

53 1.422E+04 1.373E+06 1.240 0.984 1.933 

54 1.422E+04 1.373E+06 1.240 1.259 2.475 

55 1.422E+04 1.373E+06 1.240 1.656 3.255 

Mean value 56 1.422E+04 1.373E+06 1.240 1 1.966 
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Two examples have been presented to illustrate the 

numerical effective and accuracy of M-DRM method 

proposed in this paper. Compared with FORM and SORM 

methods, the M-DRM method is appreciate for both explicit 

and implicit limit state functions and has more higher 

numerical accuracy; Compared with MCS with 106 samples, 

the M-DRM method has the advantage of the high 

computational efficiency which is considerable improved 

by using the Gaussian quadrature for low dimensional 

integration. For most examples, highly accurate results only 

need a few deterministic model evaluations. Finally, the M-

DRM is used to analyze the flutter reliability of suspension 

bridge to verify the result obtained by empirical formula. 

One can see that empirical formula is not suitable for 

reliability analysis of bridge flutter. 

In summary, the proposed M-DRM and the adopting of 

fractional moments in this paper provide an alternate and 

efficient way to analyze a much more complicated flutter 

reliability of long span suspension bridge. Furthermore, 

wider application of the proposed method in other fields is 

being explored. 
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