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1. Introduction 
 

Energy consumption is increasing parallel to global 

population growth and technological mprovements (Akgul 

et al. 2016). Fossil fuels are widely-used energy resources, 

but they will run out one day. Therefore, alternative 

renewable energy resources will play an increasingly vital 

role in the future of energy production. In recent decades, 

wind energy, a renewable energy resource, is 

environmentally friendly and has become more popular 

throughout the world. Thus, wind speed distribution is a 

most important factor in evaluating the wind energy 

potential needed to design wind farms.  

Gumbel distribution, which is a special case of 

generalized extreme value distribution, has a wide 

application area, especially in hydrology; see Gumbel 

(1941), Jenkinson (1955). It plays an important role in 

modelling extreme events data; see also Simiua et al. 

(2001), Koutsoyiannis (2004), Graybeal and Leathers 

(2006), Ercelebi and Toros (2009), Lee et al. (2012), Hong 

and Mara (2013), Aydin and Senoglu (2015) and Aydin 

(2018). Furthermore, this distribution has been used to 

evaluate wind energy potential for the determination of 

wind turbine class in the wind power industry (Kang et al. 

2015). However, this study proposes that Gumbel 

distribution can be used in modelling mean wind speed. 
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Much research has considered the problem of estimation  

of the parameters of Gumbel distribution. Traditional 

estimation methods, such as method of moments, method of 

maximum likelihood (ML), and method of least squares 

(LS) are commonly-used in estimates of the parameters of 

Gumbel distribution. Landwehr et al. (1979) proposed a 

method of probability weighted moment (PWM) which is 

unbiased even for a small sample. Its efficiency is compared 

with efficiencies of certain classical estimation methods. 

Raynal and Salas (1986) and Phien (1987) showed that 

PWM is the best of estimation methods in terms of bias and 

mean square error. Corsini et al. (1995) considered the ML 

and Cramer-Rao bounds for parameters of the Gumbel 

distribution. Mousa et al. (2002) obtained bayesian 

estimators for the two parameters of the Gumbel 

distribution, based on records. Rasmussen and Gautam 

(2003) described the estimator alternative PWM, and show 

that the new estimator is slightly better than the classical 

PWM method. Aydin and Senoglu (2015) analysed the 

performances of different estimators, such as modified 

maximum likelihood, percentile and probability weighted 

moments of parameters with numerical simulations. Aydin 

(2018) obtained the various estimators of the lower and the 

upper quantiles of the Gumbel distribution and then 

analysed wind speed data modelled by Gumbel distribution 

to show the performances of them. 

However, in practice, it has been observed that data 

including outliers is quite prevalent. It is well-known that 

commonly-used estimation techniques such as ML and LS 

are not resistant to outliers. In other words, efficiencies of 

non-robust estimators significantly change in the presence 
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of outliers. Therefore, in the literature, many robust 

estimation methods have been suggested to deal with the 

problem. In this context, robust estimation methods have 

not been used as often as traditional estimation methods to 

estimate Gumbel parameters. However, Trzpiot (2009) 

analysed a number of methodological aspects to show how 

robust methods can improve the quality of extreme value 

theory data analysis by providing information on influential 

observations. Fischer et al. (2015) compared efficiencies of 

the maximum-likelihood estimator and l-moments with 

robust estimators, trimmed l-moments and minimum 

distances via a simulation study. 

The purpose of this study is to consider certain 

alternative robust estimators of location and scale 

parameters of Gumbel distribution. These are least absolute 

deviations (LAD), weighted least absolute deviations 

(WLAD), Median/MAD and least median of squares (LMS). 

We provide a simulation study to compare the performances 

of these methods with the widely-used estimation 

techniques (the least squares based on percentile and ML) 

for a data set with and without outliers. Furthermore, bias, 

mean square deviation (MSD) and total mean square 

deviation (TMSD) criteria are used to evaluate the 

performances of proposed estimators. 

The remainder of the paper is organized as follows: 

Section 2 presents Gumbel distribution and its properties. In 

Section 3, we briefly introduce estimation methods. The 

best estimation method has been determined with respect to 

different comparison criteria using a Monte-Carlo 

simulation in Section 4. A wind speed data set is analysed as 

an example in Section 5. We present conclusions in Section 

6. 

 

 

2. Gumbel distribution 
 

Let random variable 𝑋 has Gumbel distribution with a 

location parameter 𝜙 ∈ ℝ and a scale parameter 𝜓 > 0. 

The corresponding probability density function (pdf) and 

cumulative distribution function (cdf) are given by 

𝑓(𝑥; 𝜙, 𝜓 ) =
1

𝜓
𝑒𝑥𝑝 (−

𝑥−𝜙

𝜓
− 𝑒𝑥𝑝 (−

𝑥−𝜙

𝜓
)),𝑥 ∈ ℝ (1) 

and 

𝐹(𝑥; 𝜙, 𝜓) = 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
𝑥 − 𝜙

𝜓
)) (2) 

respectively. The mean, variance, skewness (√ 1 ) and 

kurtosis ( 2) values of Gumbel distribution are given by 

𝐸(𝑋) = 𝜙 + 𝜓𝛾, 𝑉𝑎𝑟(𝑋) =
𝜋2

6
𝜓2,  

√ 1 =
12√6

𝜋3
𝜍(3) and  2 =

27

5
, 

 

where  𝛾 is Euler’s constant defined by 

𝛾 = −∫ ln 𝑥 𝑒𝑥𝑝(−𝑥)𝑑𝑥

∞

0

 (3) 

 

 

Fig. 1 Different density functions of Gumbel distribution  

for certain selected values of 𝜙 and 𝜓 

 

 

and  𝜍(3)  is Apéry's constant (Apéry 1979). Before 

introducing a few of its characteristics, let us first look at 

the density function of Gumbel distribution for different 

values of the location parameter 𝜙 and scale parameter 𝜓 

in Fig. 1. As can be seen in Fig. 1, the Gumbel distribution 

is unimodal and positively skewed.  

Now, we present a number of the characteristics of 

Gumbel distribution. From Eq. (1), the moment generating 

function is obtained as 

𝑀(𝑡) = 𝑒𝑥𝑝(𝜙𝑡)𝛤(1 − 𝜓𝑡), 𝑡 < 1 𝜓⁄  (4) 

The corresponding reliability function and hazard 

function have the following forms 

𝑅(𝑡) = 1 − 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
𝑡−𝜙

𝜓
)), −∞ ≤ 𝑡 ≤ ∞ (5) 

and 

(𝑡) =
1

𝜓

𝑒𝑥𝑝(−
𝑡−𝜙

𝜓
−𝑒𝑥𝑝(−

𝑡−𝜙

𝜓
))

1−𝑒𝑥𝑝(−𝑒𝑥𝑝(−
𝑡−𝜙

𝜓
))

, −∞ ≤ 𝑡 ≤ ∞ (6) 

respectively; see Wolstenholme (1999). 

A doubly truncated cdf is defined by 

𝐺(𝑥) =
𝐹(𝑥)−𝐹(𝑡)

𝐹(𝑇)−𝐹(𝑡)
, 𝑡 ≤ 𝑥 ≤ 𝑇 (7) 

Here, 𝐹(𝑥) is cdf of the random variable 𝑋, 𝑡 is the 

lower truncation point and 𝑇 is the upper truncation point. 

𝐺(𝑥) in Eq. (7) contains the same location parameter 𝜙 

and scale parameter 𝜓 based on the characteristics of the 

usual Gumbel distribution. If 𝐹(𝑥) is taken as the Gumbel 

distribution given in Eq. (2), the cdf of a doubly-truncated 

Gumbel distribution can be obtained. When 𝑡  −∞ and 

𝑇  ∞, the doubly-truncated distribution becomes a two 

parameter Gumbel distribution. When 𝑡  −∞, it is the 

upper truncated Gumbel distribution and when 𝑇  ∞, it is 

the lower truncated Gumbel distribution. 

If X has a Gumbel distribution with location parameter 

𝜙  and scale parameter 𝜓 , then the transformation  =
𝑒𝑥𝑝(−𝑋) has Weibull distribution with pdf 
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𝑓(𝑦; 𝛼, 𝛿 ) =
𝛼

𝛿
(
𝑦

𝛿
)
𝛼−1

𝑒𝑥𝑝 (− (
𝑦

𝛿
)
𝛼

), 𝑦 > 0 (8) 

where the shape parameter 𝛼 = 1 𝜓⁄  and scale parameter 

𝛿 = 𝑒𝑥𝑝(−𝜙).  

 

 

3. Estimation methods for   and  
 

 

In this section, the estimation techniques used in this 

study are briefly described for Gumbel distribution. We also 

show how to obtain estimates of unknown parameters using 

each of the mentioned techniques. 

 

3.1 Least absolute deviation method for 𝜙 and 𝜓 
 

Let *𝑋1, 𝑋2,  , 𝑋 + be a random sample of size   from 

the two parameter Gumbel distribution and 𝑋( ) be the i-th 

order statistic obtained by arranging 𝑋  (𝑖 = 1,2, ,  ) in 

ascending order of magnitude, i.e., 𝑋(1) < 𝑋(2) <  <

𝑋( ). The cdf given in Eq. (2) will be transformed to a linear 

function by taking the logarithm twice on both sides. Then 

we obtain the following 

ln(− ln𝐹(𝑥( ))) = −
𝑥( ) − 𝜙

𝜓
 (9) 

The least absolute deviation (LAD) estimators of 𝜙 and 

𝜓 are obtained by minimizing the following function with 

respect to the parameters of interest 

𝐺𝐿𝐴𝐷(𝜙, 𝜓 ) =∑|
𝑥( ) − 𝜙

𝜓
+ ln(− ln �̂�(𝑥( )))|

 

 =1

 (10) 

Here, �̂�(𝑥( )), the empirical estimate of 𝐹(𝑥( )), is called a 

rank estimator. In the literature, several rank estimators 

have been proposed to estimate 𝐹(𝑥( )); for example, the 

Herd-Johnson mean rank estimator (Herd 1960, Johnson 

1964), the Bernard median rank estimator (Bernard and 

Bosi-Levenbach 1953) and the Blom median rank estimator 

(Blom 1958) 

�̂�(𝑥( )) =
 

 +1
, �̂�(𝑥( )) =

 −0.3

 +0.4
 and �̂�(𝑥( )) =

 −0.375

 +0.25
  

respectively. 

In this study, we use the Bernard median rank 

estimator, �̂�(𝑥( )) =
 −0.3

 +0.4
, as an estimator of 𝐹(𝑥( )) since 

it shows good performance on a complete data set 

(Tiryakioglu and Hudak 2007, Yavuz 2012, Zyl and Schall 

2012). 

Least absolute deviation (LAD) estimators are less 

sensitive to outliers than ordinary least square estimators in 

the case of heavy-tailed distributions or outliers (Bai 1995); 

however, they are sensitive to leverage points (Croux et al. 

2003). Furthermore, LAD is an asymptotically normal 

distribution without assuming the distribution of errors; see 

Pollard (1991), Dunsmuir and Spencer (1991) and Davis 

and Dunsmuir (1997). 

 

 

 

3.2 Weighted least absolute deviation method for 𝜙 

and 𝜓 
 

Using the weighted least absolute deviation (WLAD) 

method, estimates of 𝜙 and 𝜓 are found by minimizing the 

following function with respect to the parameters 𝜙 and 𝜓: 

𝐺𝑊𝐿𝐴𝐷(𝜙, 𝜓 ) =∑𝑤 |
𝑥( ) − 𝜙

𝜓
+ ln(− ln �̂�(𝑥( )))|

 

 =1

 (11) 

Here, the major difficulty in applying the WLAD method is 

the determination of weight function 𝑤  in the 

𝐺𝑊𝐿𝐴𝐷(𝜙, 𝜓 ) function. Zyl and Schall (2012) report that 

the weighted least square, which has a weight function 

obtained by the delta method, shows a performance almost 

as well as the maximum likelihood estimation does. 

Therefore, we use 

𝑤 =
 �̂�(𝑥( ))(ln �̂�(𝑥( )))

2

1 − �̂�(𝑥( ))
 (12) 

as a weight function in this study.  

WLAD is also a robust method, and has asymptotically 

normal distribution if the density and its derivative are 

uniformly bound; see Ling (2005) and Pan et al. (2007). 

 

3.3 Median/MAD method for 𝜙 and 𝜓 
 

The Median/MAD estimates of 𝜙 and 𝜓 are given by: 

�̂� = 𝑀𝑒𝑑 (𝑥 ) − ln(ln 2)�̂� (13) 

and 

�̂� = 1.3037𝑀𝐴𝐷(𝑋) (14) 

where
 

𝑀𝐴𝐷(𝑋) = 𝑀𝑒𝑑𝑗(|𝑥𝑗 −𝑀𝑒𝑑 (𝑥 )|)  

The median/MAD is an explicit estimator, and was 

considered by Olive (2006) for transformed location scale 

families. Boudt et al. (2011) also examine its robustness 

properties of shape and scale parameters for Weibull 

distribution.  

 

3.4 Least median of squares method for 𝜙 and 𝜓 
 

The least median of squares (LMS) estimates for 

location and scale parameters are obtained by minimizing 

the following function with respect to the unknown 

parameters 

𝐺𝐿𝑀𝑆(𝜙, 𝜓 ) = 𝑀𝑒𝑑 (
𝑥( ) − 𝜙

𝜓
+ ln(− ln �̂�(𝑥( ))))

2

 (15) 

The LMS method proposed by Rousseeuw (1984) is robust, 

which signifies that it is insensitive to outliers or deviations 

from the model assumptions; see Rousseeuw and Leroy 

(1987).  
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3.5 Least squares method based on percentile for 𝜙 

and 𝜓 
 

Using the least squares method based on percentile, 

estimates of ϕ and ψ are found by minimizing the following 

function with respect to the parameters of interest 

𝐺𝐿𝑆(𝜙, 𝜓 ) =∑(
𝑥( ) − 𝜙

𝜓
+ ln(− ln �̂�(𝑥( ))))

2 

 =1

 (16) 

These estimators are known as percentile estimators 

(PE). This was originally explored by Kao (1958, 1959) to 

estimate the parameters of Weibull distributions. In addition, 

the PE is not robust, even to a single outlier, as an ordinary 

least squares estimator.  

 

3.6 Maximum likelihood method for 𝜙 and 𝜓 
 

Suppose that *𝑋1, 𝑋2,  , 𝑋 + is a random sample of 

size   from two parameter Gumbel distribution. The ML 

estimates of the unknown parameters are the solutions of 

the following likelihood equations: 

𝜕 ln 𝐿(𝜙,𝜓)

𝜕𝜙
= ∑

1

𝜓
−
1

𝜓
∑ 𝑔(𝑧 )
 
 =1

 
 =1 = 0  (17) 

and 

𝜕 ln 𝐿(𝜙, 𝜓)

𝜕𝜓
= −

 

𝜓
+
1

𝜓
∑𝑧 −

1

𝜓
∑𝑧 𝑔(𝑧 )

 

 =1

 

 =1

= 0 (18) 

where 

ln 𝐿(𝜙, 𝜓) = − ln𝜓 − ∑ 𝑧 
 
 =1 −∑ 𝑔(𝑧 )

 
 =1 , 𝑔(𝑧 ) = 𝑒

−𝑧𝑖 

and 𝑧 = (𝑥 −𝜙) 𝜓⁄  
 

It is obvious that likelihood Eqs. (17) and (18) do not 

have explicit analytical solutions since g(.) is a nonlinear 

function. 
 

 

4. Simulation study 
 

In this section, for data with and without outliers, 

efficiencies of the different estimators proposed in the 

previous sections are compared via a Monte Carlo 

simulation study. To compare their efficiencies, we use 

bias, MSD and TMSD comparison criteria. The TMSD is a 

measure of the joint efficiency of the pair (�̂�, �̂�). It is 

calculated by the formula 

𝑇𝑀𝑆𝐷(�̂�, �̂�) = 𝑀𝑆𝐷(�̂�) + 𝑀𝑆𝐷(�̂�)  

where 

𝑀𝑆𝐷(�̂�) =
1

 
∑(𝜙 − �̂� )

2
𝑟

 =1

  

Here, �̂�  is an estimate of 𝜙  in the i-th replication. To 

generate random numbers from Gumbel distribution, we use 

the inverse transformation method 

𝑧 = 𝐹𝑍
−1(𝑢) = − ln(− ln 𝑢) , 0 < 𝑢 < 1  

Without any loss of generality, we can assume that 

𝜙 = 0 and 𝜓 = 1 because all the estimators are invariant 

under the linear transformations of the data (Aydin and 

Senoglu 2015). In the literature, several models for outliers 

have been proposed; see Barnett and Lewis (1994). 

However, the most commonly-used outlier model is the one 

given by Dixon (1950). In this study, to examine the 

robustness of estimators, we generate our data with outliers 

using the Dixon outlier model. In this model, ( − 𝑟) 
observations come from 𝐺(𝜙, 𝜓 ) and 𝑟  of them come 

from 𝐺(𝜙, 4𝜓 ) for 𝑟 = 1, 2. 

The bias, MSD and TMSD values of the estimates are 

computed by generating 5000 replications of samples of 

size  = 10, 20, 30, 40, 50 and 100. Next, the results of 

numerical experiments are separately reported in Tables 1-3 

for different sample sizes and the data with and without 

outliers. 

In Table 1, simulated bias, MSD and TMSD values of 

location parameter 𝜙 and scale parameter 𝜓 are given for 

different sample sizes in the case without outliers. The 

results shown in Table 1 indicate that the following 

conclusions can be reached: (i) All estimators of 𝜙 are 

unbiased; however, we realize that the bias of MMAD 

increases when the sample size   increases; (ii) For 

location parameter 𝜙, the LMS estimator shows the best 

performance among the others for all sample sizes in terms 

of MSD; (iii) All considered estimators of scale parameter 

𝜓 have small bias for  = 5, but their biases decrease 

when the sample size   increases; (iv) For scale parameter 

𝜓, the ML with the smallest MSD is the best estimator of all 

the considered estimators; (v) In terms of the TMSD 

criterion, ML outperforms other estimation methods for all 

sample sizes as expected.  

When the data set contains one outlier, Table 2 presents 

the simulation results of Gumbel parameters for different 

sample sizes. We can obtain the following conclusions from 

the results in Table 2: (i) In terms of bias, the WLAD 

estimate of 𝜙 shows better performance than other robust 

estimation methods apart from  = 5. Additionally, the 

MMAD estimator shows poor performance as sample size 

increases; (ii) Since the LMS estimator of parameter 𝜙 has 

the smallest MSD, the LMS is the most efficient estimator 

among the others for all sample sizes. Moreover, we 

observe that ML shows the worst performance with the 

greatest MSD value for  = 5; (iii) For parameter  𝜓, the 

MMAD estimate has the smallest bias value for all sample 

sizes; (iv) In terms of MSD, the WLAD estimator of 

parameter 𝜓  shows worse performance than the PE 

estimator of parameter 𝜓  for  = 5 . However, its 

performance dramatically increases as sample size n gets 

larger and it shows the best result with the smallest MSD 

values of all considered estimation methods for   30; (v) 

The LMS outperforms other estimation methods, except for 

 = 5, based on the TMSD comparison criterion. 

Table 3 shows the Bias, MSD and TMSD values of the 

estimates of     𝜙 and 𝜓 parameters for different sample 

sizes in the presence of the two outliers in the data set. The 

following conclusions can be made based on the results 

given in Table 3: (i) For parameter 𝜙, the bias of the 

WLAD estimate is smaller than the others for almost all 

sample sizes; (ii) The LMS estimation of parameter 𝜙 has  
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Table 1 Bias, MSD and TMSD values of estimates for data 

without outliers 

  �̂� �̂�  

n  Bias MSD Bias MSD TMSD 

5 PE 0.0151 0.3522 -0.2082 0.6751 1.0273 

 ML -0.0829 0.2409 0.1574 0.1414 0.3823 

 LAD 0.0370 0.3249 -0.2925 1.3632 1.6881 

 WLAD -0.0508 0.2508 -0.3295 1.7045 1.9552 

 MMAD -0.0279 0.3578 0.1618 0.2878 0.6456 

 LMS 0.0351 0.0940 -0.2060 0.4049 0.4989 

10 PE 0.0164 0.1214 -0.1342 0.6751 1.0273 

 ML -0.0411 0.1202 0.0795 0.1414 0.3823 

 LAD 0.0130 0.1163 -0.1656 1.3632 1.6881 

 WLAD -0.0286 0.1239 -0.1512 1.7045 1.9552 

 MMAD 0.0327 0.1747 0.0798 0.2878 0.6456 

 LMS 0.0140 0.0656 -0.1077 0.4049 0.4989 

20 PE 0.0184 0.0571 -0.0983 0.1472 0.2686 

 ML -0.0217 0.0554 0.0401 0.0646 0.1849 

 LAD 0.0043 0.0574 -0.0828 0.1785 0.2948 

 WLAD -0.0158 0.0593 -0.0728 0.1449 0.2688 

 MMAD 0.0757 0.0902 0.0431 0.1336 0.3083 

 LMS 0.0101 0.0295 -0.0763 0.1334 0.1990 

30 PE 0.0203 0.0385 -0.0764 0.0786 0.1357 

 ML -0.0111 0.0359 0.0270 0.0319 0.0873 

 LAD 0.0058 0.0375 -0.0543 0.0629 0.1203 

 WLAD -0.0077 0.0386 -0.0476 0.0560 0.1153 

 MMAD 0.0899 0.0634 0.0280 0.0723 0.1625 

 LMS 0.0116 0.0185 -0.0623 0.0599 0.0894 

40 PE 0.0176 0.0294 -0.0657 0.0476 0.0861 

 ML -0.0092 0.0273 0.0200 0.0204 0.0563 

 LAD 0.0040 0.0289 -0.0422 0.0339 0.0714 

 WLAD -0.0059 0.0292 -0.0356 0.0334 0.0719 

 MMAD 0.0968 0.0527 0.0225 0.0474 0.1108 

 LMS 0.0120 0.0136 -0.0556 0.0401 0.0586 

50 PE 0.0101 0.0234 -0.0538 0.0366 0.0660 

 ML -0.0115 0.0223 0.0151 0.0159 0.0432 

 LAD -0.0018 0.0238 -0.0344 0.0249 0.0538 

 WLAD -0.0100 0.0245 -0.0313 0.0246 0.0539 

 MMAD 0.0919 0.0449 0.0165 0.0364 0.0891 

 LMS 0.0062 0.0108 -0.0473 0.0318 0.0454 

100 PE 0.0093 0.0118 -0.0334 0.0279 0.0513 

 ML -0.0043 0.0110 0.0078 0.0124 0.0347 

 LAD 0.0006 0.0117 -0.0181 0.0190 0.0428 

 WLAD -0.0032 0.0119 -0.0165 0.0190 0.0435 

 MMAD 0.1038 0.0289 0.0058 0.0291 0.0740 

 LMS 0.0049 0.0052 -0.0294 0.0252 0.0360 

 

 

 

 

Table 2 Bias, MSD and TMSD values of estimates for data 

with one outlier 

  �̂� �̂�  

n  Bias MSD Bias MSD TMSD 

5 PE 0.1976 0.7658 -1.3327 4.8560 5.6218 

 ML -0.0452 0.8196 -0.4785 0.8637 1.6833 

 LAD 0.2370 0.7541 -1.5423 5.9031 6.6571 

 WLAD -0.0457 0.5735 -1.6038 6.8717 7.4452 

 MMAD -0.0034 0.5143 -0.0910 0.4692 0.9834 

 LMS 0.0352 0.1593 -0.5858 1.6005 1.7598 

10 PE 0.2141 0.3453 -0.7895 1.7910 2.1363 

 ML 0.0417 0.2999 -0.3046 0.3736 0.6735 

 LAD 0.1134 0.2220 -0.8206 2.1811 2.4031 

 WLAD 0.0226 0.1970 -0.6112 1.2822 1.4792 

 MMAD 0.0671 0.1949 -0.0245 0.1620 0.3569 

 LMS 0.0286 0.0769 -0.2335 0.2757 0.3526 

20 PE 0.1478 0.1585 -0.4892 0.8014 0.9599 

 ML 0.0202 0.1139 -0.1966 0.1802 0.2940 

 LAD 0.0429 0.0970 -0.3132 0.6108 0.7079 

 WLAD -0.0123 0.0718 -0.1668 0.0954 0.1672 

 MMAD 0.0843 0.1020 -0.0140 0.0790 0.1810 

 LMS 0.0137 0.0346 -0.1341 0.0906 0.1252 

30 PE 0.1121 0.0958 -0.3532 0.4356 0.5315 

 ML 0.0154 0.0634 -0.1554 0.1287 0.1921 

 LAD 0.0159 0.0497 -0.1559 0.1316 0.1813 

 WLAD -0.0100 0.0424 -0.1024 0.0452 0.0877 

 MMAD 0.0936 0.0684 -0.0096 0.0515 0.1199 

 LMS 0.0111 0.0198 -0.0980 0.0541 0.0739 

40 PE 0.0951 0.0692 -0.2850 0.2914 0.3606 

 ML 0.0148 0.0447 -0.1376 0.1068 0.1515 

 LAD 0.0085 0.0322 -0.1035 0.0410 0.0733 

 WLAD -0.0078 0.0320 -0.0739 0.0312 0.0631 

 MMAD 0.0968 0.0541 -0.0064 0.0392 0.0932 

 LMS 0.0119 0.0143 -0.0836 0.0408 0.0551 

50 PE 0.0823 0.0575 -0.2325 0.2188 0.2763 

 ML 0.0157 0.0337 -0.1200 0.0842 0.1180 

 LAD 0.0084 0.0251 -0.0789 0.0272 0.0524 

 WLAD -0.0041 0.0250 -0.0580 0.0231 0.0481 

 MMAD 0.1011 0.0462 -0.0034 0.0306 0.0768 

 LMS 0.0103 0.0116 -0.0689 0.0296 0.0412 

100 PE 0.0514 0.0264 -0.1357 0.0873 0.1137 

 ML 0.0088 0.0141 -0.0777 0.0435 0.0576 

 LAD 0.0055 0.0122 -0.0383 0.0100 0.0221 

 WLAD -0.0004 0.0123 -0.0266 0.0096 0.0219 

 MMAD 0.1082 0.0295 -0.0025 0.0145 0.0440 

 LMS 0.0075 0.0054 -0.0384 0.0138 0.0192 
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Table 3 Bias, MSD and TMSD values of estimates for data 

with two outliers 

  �̂� �̂�  

n  Bias MSD Bias MSD TMSD 

5 PE 0.2895 1.3540 -2.1091 8.3666 9.7206 

 ML -0.0131 1.4248 -1.0137 2.0175 3.4423 

 LAD 0.3255 1.1998 -2.3403 9.8704 11.0701 

 WLAD -0.0053 1.0128 -2.4441 12.8286 13.8413 

 MMAD 0.0699 0.8701 -0.4837 1.1146 1.9847 

 LMS 0.0518 0.2844 -1.1407 4.0658 4.3502 

10 PE 0.3006 0.5107 -1.3035 3.4342 3.9449 

 ML 0.0653 0.4546 -0.6498 0.8440 1.2986 

 LAD 0.1816 0.3414 -1.3735 4.1329 4.4743 

 WLAD 0.0290 0.2680 -1.0483 2.4273 2.6953 

 MMAD 0.0644 0.2376 -0.1589 0.2429 0.4805 

 LMS 0.0257 0.0969 -0.4031 0.5596 0.6565 

20 PE 0.2447 0.2443 -0.8315 1.5456 1.7899 

 ML 0.0548 0.1623 -0.4167 0.3915 0.5539 

 LAD 0.0884 0.1288 -0.5739 1.1349 1.2637 

 WLAD -0.0031 0.0815 -0.2933 0.2068 0.2883 

 MMAD 0.0964 0.1088 -0.0693 0.0903 0.1991 

 LMS 0.0242 0.0354 -0.1999 0.1405 0.1759 

30 PE 0.1839 0.1512 -0.5908 0.8686 1.0197 

 ML 0.0393 0.0908 -0.3211 0.2649 0.3557 

 LAD 0.0328 0.0606 -0.2804 0.2935 0.3541 

 WLAD -0.0104 0.0491 -0.1610 0.0663 0.1154 

 MMAD 0.0971 0.0749 -0.0444 0.0558 0.1307 

 LMS 0.0145 0.0221 -0.1396 0.0768 0.0989 

40 PE 0.1573 0.1047 -0.4784 0.5596 0.6642 

 ML 0.0341 0.0585 -0.2694 0.1953 0.2538 

 LAD 0.0192 0.0352 -0.1776 0.0755 0.1107 

 WLAD -0.0062 0.0333 -0.1129 0.0405 0.0738 

 MMAD 0.1011 0.0567 -0.0298 0.0425 0.0992 

 LMS 0.0122 0.0143 -0.1078 0.0496 0.0640 

50 PE 0.1396 0.0888 -0.4055 0.4396 0.5284 

 ML 0.0313 0.0452 -0.2404 0.1685 0.2137 

 LAD 0.0137 0.0271 -0.1341 0.0454 0.0724 

 WLAD -0.0049 0.0262 -0.0868 0.0278 0.0540 

 MMAD 0.1037 0.0477 -0.0233 0.0316 0.0793 

 LMS 0.0098 0.0121 -0.0880 0.0352 0.0473 

100 PE 0.0829 0.0381 -0.2270 0.1607 0.1987 

 ML 0.0166 0.0170 -0.1552 0.0841 0.1012 

 LAD 0.0045 0.0123 -0.0614 0.0135 0.0258 

 WLAD -0.0030 0.0123 -0.0419 0.0111 0.0234 

 MMAD 0.1070 0.0296 -0.0132 0.0151 0.0448 

 LMS 0.0054 0.0056 -0.0504 0.0160 0.0216 

 

the smallest MSD values, and it also shows a large 

difference compared to performances of the other 

estimation methods; (iii) For parameter 𝜙, although the 

performance of WLAD is not good for  = 5, it can be seen 

that its performance is quite close to the performance of 

LMS as the sample size   increases; (iv) For parameter 𝜓, 

MMAD shows better performance than the others do with 

the smallest bias of all for all sample sizes. However, 

almost all of these estimators are asymptotically unbiased 

when n is large; (v) In terms of the MSD for parameter 𝜓, 

the MMAD performs the best of all the estimation methods 

for  < 40 . When   40 , the WLAD shows better 

performance than the others do; (vi) The MMAD and LMS 

outperform the other estimation methods in terms of the 

TMSD for  ≤ 10 and for  > 10, respectively.  

Additionally, we observe that the bias values of the 

MMAD estimator of 𝜙  increases, but its MSD values 

decreases as sample size n increases for data with and 

without outliers. For  = 5, WLAD and LAD estimators 

demonstrate even poorer performance in terms of both MSD 

of 𝜓  and TMSD for all cases (i.e., the data with and 

without outliers ) than PE estimator does. 

The simulation results presented in Tables 1-3 have 

been given graphically for ease of interpretation; see Figs. 

2-4. From Fig. 2, we can easily see that the MMAD 

estimator is not consistent for location parameter 𝜙 in all 

situations, but it is consistent for scale parameter 𝜓. For the 

location parameter, the performance of LMS is the best of 

all the estimation methods in terms of the MSD for three 

cases; see Fig. 3. For the scale parameter, the ML is the 

most efficient estimator for data that does not include 

outliers, and the MMAD outperforms the other estimation 

methods for the same data, and contains one outlier or two 

outliers, in terms of the MSD; see Fig. 3. However, the 

performance of the considered robust estimators remains 

almost the same as the sample size gets larger in terms of 

the MSD of 𝜓. From Fig. 4, similar comments can also be 

stated for the TMSD terms. 

 

 

5. An example: daily mean wind speed data 
 

In this section, we analyse the daily mean wind speed 

data for October, taken from the Turkish Meteorological 

Services for Sinop, Turkey, in 2015. The data is presented 

in Table 4.  

Gumbel distribution is frequently used to model extreme 

events. In contrast to the literature, we assume that the daily 

mean wind speed data has Gumbel distribution. On the 

other hand, the most widely-used statistical distribution to 

model wind speed data is Weibull in relation to studies of 

wind energy estimation. However, Weibull distribution may 

not be suitable for modelling the all wind regimes, such as 

those having high frequencies of null winds and for short 

time horizons (Sohoni et al. 2016). Therefore, different 

distributions are used for modelling the wind speed data. In 

recent years, some studies of other distributions applied to 

wind speed data contain gamma (Morgan et al. 2011), 

generalized extreme value (Kollu et al. 2012), Johnson SB 

(Soukissian 2013), Rayleigh (Pishgar-Komleh et al. 2015), 
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Fig. 2 Plots of the estimates of 𝜙 = 0 and 𝜓 = 1 for  = 5, 10, 20, 30, 40, 50, 100 and the cases of (a) non-outlier, (b) 

one outlier and (c) two outliers 

 

 

 
Fig. 3 Plots of the MSDs of estimates of  𝜙 = 0 and 𝜓 = 1 for  = 5, 10, 20, 30, 40, 50, 100 and the cases of (a) non- 

outlier, (b) one outlier and (c) two outliers 

 

 
Fig. 4 Plots of the TMSD values of estimators for  = 5, 10, 20, 30, 40, 50, 100 and the cases of (a) non-outlier, (b) one  

outlier and (c) two outliers 
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inverse Weibull (Akgul et al. 2016), generalized Lindley 

and power Lindley (Arslan et al. 2017), Birnbaum-Saunders 

(Mohammadi et al. 2017), extended generalized Lindley 

(Kantar et al. 2018). 

In this study, we compare the fitting performances of 

Gumbel and Weibull distributions to the wind speed data 

set obtained from the Sinop station in Turkey. For this aim, 

we evaluate the conformity of Gumbel and Weibull (having 

two parameters, Weibull distribution with shape parameter 

c and scale parameter  ) to fit the wind speed data by using 

the Kolmogorov–Smirnov (KS) test. The results of the KS 

test (where theoretical value is  𝑆0.05,30 = 0.24) in Table 5 

show that Gumbel and Weibull distributions provide a 

suitable model for wind speed data since the computed 

values of the KS test for Gumbel and Weibull distributions 

are less than theoretical value of the KS test. 

Next, we determine which distribution provides a better 

fit to the wind speed data by using the root mean square 

error (RMSE) and coefficient of determination (R
2
) criteria. 

The following formulas are used to calculate them 

𝑅𝑀𝑆𝐸 = √
1

 
∑(�̂� − 𝐹 )

2
 

 =1

  

and 

𝑅2 = 1 −
∑ (�̂�𝑖−𝐹𝑖)

2𝑛
𝑖=1

∑ (�̂�𝑖−�̂̅� )
2𝑛

𝑖=1

.  

Here, �̂�  is the estimated cumulative probability of the 

corresponding to the distribution,  �̅̂� is the mean of �̂�  and 

𝐹  is the observed cumulative probability. 

Table 5 shows that Gumbel distribution provides better 

modelling than Weibull distribution for wind speed data 

because the lower value of 𝑅𝑀𝑆𝐸 and the higher value of 

𝑅2  indicate better fit. Furthermore, to identify which 

distribution provides better fit to the wind speed data 

visually, Q-Q plots showing fits of the data to Gumbel and 

Weibull and histograms with fitted Gumbel and Weibull 

probability plots for the data are obtained, see Figs. 5 and 6. 

From Fig. 5, it can be seen that Gumbel distribution 

provides better fitting to the data than Weibull distribution 

because the data points in the Q-Q plot for Weibull 

distribution indicate more deviation from a straight line 

compared to the data points in the Q-Q plot for Gumbel 

distribution. 

 

Table 4 Daily mean wind speed data for October 

3.8 3.2 2.0 1.7 3.2 1.7 2.8 4.6 2.6 2.4 5.0 

2.9 2.0 2.7 3.3 2.1 1.1 1.8 3.6 2.4 2.8 4.1 

1.7 2.5 2.4 1.9 1.4 1.4 1.5 2.4 5.1   

 

 

Table 5 Estimates of the parameters and computed values of 

R
2
 and RMSE based the ML of Gumbel and Weibull 

distributions for the wind speed data 

Model  ML estimate KS RMSE R2 

Gumbel �̂� = 2.1765 �̂� = 0.7947 0.0679 0.0319 0.9886 

Weibull �̂� = 2.7289  ̂ = 2.9833 0.1087 0.0464 0.9721 

 

 
 

Fig. 5 Q–Q plots showing fits of the data to Gumbel 

and Weibull obtained from ML estimates 

 

 

 

Fig. 6 Histogram with fitted densities for the wind speed 

data 

 

 

Additionally, Fig. 6 shows that Gumbel distribution 

gives better fitting to the wind speed data compared to 

Weibull distribution since Gumbel fitted density is more 

compatible throughout the whole histogram of the wind 

speed data than Weibull fitted density. 

Now, we compare the performances of mentioned the 

estimation methods for the wind speed data with and 

without outliers having Gumbel distribution using 

numerical and graphical methods. The data is modified as a 

generated large outlier according to 𝑈(𝑋( ) + 5𝑆, 𝑋( ) +

10𝑆), where 𝑋( ) is the maximum value observed in the 

data set and 𝑆  is a sample standard deviation of the data 

set. Next, we replace 𝑋( ) with the generated outlier. In 

order to compare graphically, since the probability density 

plot and the Q–Q plot use the sample data to show how 

close a data sample is to a specified distribution, we use 

them to determine how a model fails to fit due to outliers 

(Cox 2005). Therefore, Q-Q plots and fitted Gumbel 

densities superimposed onto a histogram obtained from all 

considered estimators for the original data and modified 

data (with one outlier or two outliers) are given in Figs. 7  
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 (a) Non-outlier  

   

   
 (b) One outlier  

   

   
 (c) Two outliers  

 

Fig. 7 Q–Q plots showing fits of the data to Gumbel distribution obtained from the PE, ML, LAD, WLAD, MMAD and 

LMS in the cases of (a) non-outlier, (b) one outlier and (c) two outliers 
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 (a) Non-outlier  

   

   
 (b) One outlier  

   

   

 (c) Two outliers  

 

Fig. 8 Histograms with pdf plots showing fits of the data to Gumbel distribution obtained from the PE, ML, LAD, WLAD,  

MMAD and LMS in the cases of (a) non-outlier, (b) one outlier and (c) two outliers 
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and 8, respectively. Because the outlier pulls the line toward 

itself, Fig. 7 shows that the Q–Q plot based on PE provides 

a very poor model fit for modelling the wind speed 

probability distribution in the case of one outlier or two 

outliers and the Q–Q plot based on LAD gives a very poor 

model fit to model the data including two outliers when 

compared with the other models (which are based on the 

ML, MMAD, LMS and WLS). On the other hand, Q–Q plots 

based on the MMAD, LMS and WLS offer a very good 

performance to model the wind speed in the case of one 

outlier or two outliers. From Fig. 8, in the case of one 

outlier or two outliers, the fitted densities obtained from the 

MMAD and LMS are better than the other fitted densities in 

terms of modelling the data, and the WLAD follows them. A 

density probability plot obtained from the PE provides a 

very poor model fit to the distribution of wind speeds for 

the presence of one outlier or two outliers. Furthermore, the 

fitted density obtained from the LAD is similar to the fitted 

density obtained from the PE in terms of modelling the data 

in the case of two outliers. Fitting of the Gumbel 

distribution obtained from the ML decreases slowly 

compared to the PE and LAD as the number of outlier 

increases; see Fig. 8. 

After this, we obtain estimates of the 𝜙  and 𝜓 

parameters of Gumbel distribution using the methodologies 

of the PE, ML, LAD, WLAD, MMAD and LMS for the 

original data and the modified data, i.e., data including 

outliers. The results are presented in Table 6: (i) Almost all 

of the considered estimators of 𝜙  are not affected by 

outliers as the estimators of 𝜓  are; (ii) For the scale 

parameter, the most affected estimator by one outlier is the 

PE among the others; the next is the ML. The LAD 

estimator is slightly affected in the case of one outlier; 

however, in the case of two outliers, it is affected as much 

as PE is. These results are confirmed by the fitted Gumbel 

pdf plot for LAD in Fig. 8.  

 

 
Table 6 Estimates of parameters for wind speed data with 

and without outliers 

 PE ML LAD 

Cases �̂� �̂� �̂� �̂� �̂� �̂� 

Non-

outlier
 

2.1594 0.8831 2.1765 0.7947 2.1456 0.9045 

One 

outlier
 

1.6084 2.4258 2.2502 1.0029 2.1255 0.9951 

Two 

outliers
 

1.5651 2.9137 2.3006 1.1758 1.8025 3.1946 

       

 WLAD MMAD LMS 

 �̂� �̂� �̂� �̂� �̂� �̂� 

Non-

outlier
 

2.1085 0.9061 1.9640 0.9126 2.1035 0.9386 

One 

outlier
 

2.1046 0.9301 1.9640 0.9126 2.1035 0.9386 

Two 

outliers
 

2.1051 0.9316 1.9640 0.9126 2.1035 0.9386 

 
 
 

It should be noted that the MMAD and LMS are robust 

against outliers since their estimates do not change for both 

the location parameter 𝜙 and the scale parameter 𝜓 with 

the WLAD following them, since it is slightly affected by 

outliers; see Table 6. The results of the study show a 

parallelism with numerical results obtained by Kantar and 

Yıldırım (2015) for certain robust estimators of the 

parameters of the extended Burr type III distribution. 

 
 

6. Conclusions 
 

In this paper, alternative robust estimation methods are 

considered to obtain unknown parameters of Gumbel 

distribution. The performances of the estimators are 

compared with respect to bias, mean square deviation and 

total mean square deviation comparison criteria using a 

Monte-Carlo simulation with the different cases, i.e., the 

data with and without outliers. Simulation results have 

shown that the LMS estimator is the most efficient in 

estimating the location parameter of Gumbel distribution 

for data with and without outliers in terms of the MSD. The 

MMAD estimator of the scale parameter has the smallest 

MSD values for small ( ≤ 10) and moderate ( = 20) 

sample sizes in the cases of one outlier or two outliers. 

Furthermore, the LAD is a robust estimator, however it has 

larger MSD of scale parameter and TMSD values compared 

to PE estimator for  ≤ 10 in all cases. 

In application, it is shown that Gumbel distribution 

provides better fitting to daily mean wind speed data than 

Weibull distribution. Finally, the data set modified by 

outliers is analysed to demonstrate the suitability of the 

robust estimators. Consequently, the results obtained from 

the simulations and real data example show that the 

considered robust estimators for Gumbel distribution may 

be preferred as plausible alternative estimators to deal with 

outliers. 
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