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1. Introduction 
 

The dynamic response prediction for long-span bridges, 

exposed to wind loads, is a complex task. The study of 

bridge flutter has attracted the attention of the scientific 

community because of the susceptibility to flutter-induced 

catastrophic bridge failure. Over the years, analytical and 

numerical methods have been developed and successfully 

applied to the quantification of the loads and the simulation 

of the response (Scanlan and Tomko 1971, Huston et al. 

1988, Jain 1996, Jain et al. 1996, Katsuchi et al. 1999, Gu 

et al. 2001, Kim et al. 2004, Sharan et al. 2008, Starossek et 

al. 2009). However, it remains necessary to perform 

physical experiments to gain critical information for the 

analysis of the fluid-flow forces on bridge decks. Among 

the various studies, the use of probability-based analysis to 

study flutter occurrence has been considered (e.g., Cheng et 

al. 2005, Ge et al. 2000, Pourzeynali and Datta 2002, 

Dragomirescu et al. 2003, Mannini and Bartoli 2007). 

Probabilistic methods are necessary to investigate bridge 

stability and the ultimate limit state associated with flutter.  

These methods, often based on stochastic calculus 

(Grigoriu 2002), are also employed to examine the effects 

of atmospheric turbulence on flutter onset (e.g., Lin and  
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Ariaratnam 1980, Bucher and Lin 1988, Sarkar and Tsiatas 

2009, Bartoli et al. 1997, Cai and Albrecht 2000, Sepe and 

D’Asdia 2003, Sepe and Vasta 2014) and beyond flutter, 

i.e., in a post-critical state (e.g., Hračov et al. 2005, 

Náprstek and Pospíšil 2004, Pospíšil et al. 2006).  

In recent years, analysis models have also been 

proposed to investigate the effect of various sources of 

uncertainty (modeling simplifications, experimental errors, 

etc.) on flutter onset, either by using a collection of samples 

acquired in repeated wind tunnel tests on a section model of 

a bridge deck (e.g., Brito and Caracoglia 2009, Seo and 

Caracoglia 2012, Baldomir et al. 2013a, b) or by simulating 

the problem of uncertainty propagation through the addition 

of random error terms and suitable perturbation of the 

aeroelastic deck loads (e.g., Caracoglia 2013, Canor et al. 

2015). Further examination of recent experimental studies 

on aeroelastic loads for bridge decks (Sarkar et al. 2009, 

Kwon 2010, Argentini et al. 2014) confirms that uncertainty 

evaluation is necessary while conducting an experiment to 

determine the aeroelastic loads (flutter derivatives). 

Information about load variability, such as tolerance 

intervals of the flutter derivatives, should possibly be 

included in flutter predictions. The consideration of 

experimental uncertainty might in turn lead to more 

accurate estimation of flutter probability, for example 

through Monte Carlo sampling methods (e.g., Xu 2013). 

Specific experimental studies are consequently needed to 

analyze variability in the flutter derivatives, determined 

from wind tunnel tests and any effects on the prediction of 

the structural response. This topic is not only relevant to the 

wind engineering community but also to the more  
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general field of aeroelasticity (e.g., Khalil et al. 2016). 

This paper summarizes the results of an experimental 

study motivated by the need for “more accurate” 

measurement of self-excited forces for bridge decks in wind 

tunnel. 

 

 

The hypothesis is that, if a large sample of data is 

available (e.g., by repeating the experiments needed to 

extract the flutter derivatives), errors linked to the 

estimation of aeroelastic loads can be studied. For this 

purpose, a test rig for wind tunnel tests of bridge section 

 
(a) Wind tunnel test chamber schematic (lateral/longitudinal view) [(A) motor/fan (11.2 kW), (B) air cooling system, (C) 

settling chamber,(D) convergent, (E) test chamber (600 x 600 mm cross-section)] 

 

 
(b) Cross section details of the deck models [aeroelastic 

forces per unit length and degrees of freedom, according to 

Scanlan’s sign convention and notation, are also reported] 

(c) Schematic drawing of test chamber cross-section and 

experimental rig [measurements in millimeters] 

  
(d) Photograph of the test rig (leeward cross-section) (e) Longitudinal view of the test chamber and setup 

Fig. 1 Schematics of the test rig 
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Examination of experimental errors in Scanlan derivatives of a closed-box bridge deck 

models (Fig. 1(a)), using a two-DOF (degree of freedom) 

spring-supported apparatus and built at Northeastern 

University (NEU), is employed. As a first example, the 

flutter derivatives of one section model were determined. 

The model corresponds to an example of closed-box girder 

section. 

The paper investigates the variability of a set of repeated 

acquisitions and identifications of flutter derivatives by 

free-vibration method, attributed to the effects of 

measurement errors and imperfect laboratory conditions. 

The variability in the experimental values of the flutter 

derivatives is subsequently used to predict, in a probabilistic 

setting, the coupled flutter instability of the wind tunnel 

model. The critical flutter speed of the setup is evaluated 

according to standard flutter theory by accounting for 

variability in the flutter derivatives. Since the probability 

distribution of flutter derivatives and critical flutter speed 

does not seem to obey a standard theoretical model, 

Polynomial Chaos expansion (Ghanem and Spanos 1991, 

Xiu and Karniadakis 2002) is also proposed and employed 

to represent the experimental variability. Hermite 

polynomials are investigated to enable the stochastic 

analysis. Even though the nonlinear transformation of 

random variables, exploiting orthogonal Hermite 

polynomials, has been considered in wind engineering, for 

example for the study of unsteady pressure fields in wakes 

or turbulence regions of structures (e.g., Gurley and Kareem 

1997), this approach has seldom been examined in the 

context of bridge aeroelasticity. 

This type of investigation is also important for 

understanding the fidelity of the experimental data and to 

evaluate the dependence between the sample data, acquired 

experimentally, and the structural parameter used to design. 

Furthermore, even though relevance of variability in the 

experimental flutter derivatives is widely reported in the 

literature, no standard examination protocols are available. 

 

 

2. Background 
 

The dynamic response of a long-span bridge due to wind 

excitation can be modeled through the multi-mode approach 

in the frequency domain. The dynamic component of the 

wind loading, causing deck vibration, can be represented by 

superposition of turbulence-induced (buffeting) forces and 

motion-induced (aeroelastic) forces. Self-excited forces, 

acting on a unit-length section of the deck (Fig. 1(b)), are 

defined as lift (Lh), drag (Dp) and moment (Mα). These 

forces are commonly based on a first-order linear expansion 

of the h vertical displacement and α torsional rotation of the 

generic deck cross section, first introduced by Scanlan and 

Tomko (1971). The effects the lateral DOF and Dp, usually 

important in special cases only (e.g., Katsuchi et al. 1999), 

were not considered. Even though this model is strictly 

valid for simple-harmonic vibration of the deck, it is usually 

acceptable for small-amplitude random vibration. 

Consequently, the aeroelastic lift and moment forces of the 

generic cross section, per unit deck span (or longitudinal 

model length), were determined as reported in Eqs. (1). 

𝐿ℎ =
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗(𝐾)
ℎ̇

𝑈
+ 𝐾𝐻2

∗(𝐾)
𝐵𝛼̇

𝑈
+ 𝐾2𝐻3

∗(𝐾)𝛼 + 𝐾2𝐻4
∗

ℎ

𝑈
] (1a) 

 

𝑀𝛼 =
1

2
𝜌𝑈2𝐵2 [𝐾𝐴1

∗ (𝐾)
ℎ̇

𝑈
+ 𝐾𝐴2

∗ (𝐾)
𝐵𝛼̇

𝑈
+ 𝐾2𝐴3

∗ (𝐾)𝛼 + 𝐾2𝐴4
∗

ℎ

𝑈
] (1b) 

In the previous equations ρ is the air density, U the mean 

wind speed perpendicular to the bridge (or model) 

longitudinal axis, B is the deck width; the “over-dot” 

symbol denotes derivation with respect to time t. The 

quantities Hi
*
 and Ai

*
 (with i=1,…,4) are the “Scanlan or 

flutter derivatives” (Scanlan and Tomko 1971). These 

functions are experimentally found in wind tunnel by 

testing a section model of the full-scale girder at a reduced 

scale. The flutter derivatives depend on the reduced 

frequency K=ωB/U or, equivalently, reduced velocity 

Ur=U/(nB)=2π/K, with ω being the angular vibration 

frequency of the deck in rad/s and n=ω/(2π) the frequency 

in Hz. The dynamic equilibrium equations of the 2-DOF 

system (Fig. 1(b)), which is tested in the wind tunnel, 

reproduce the vertical (h) and torsional (α) aeroelastic 

vibration of a representative finite-length section of the full-

scale bridge deck. The lift force Lh and overturning moment 

Mα per unit length of the deck are measured over the span 

length ℓ of the experimental model. The dynamic equations 

[Eq. (2)] of the 2-DOF system, reproducing the vibration of 

the apparatus tested in wind tunnel, can be derived as 

shown below, following the original formulation by Scanlan 

and Tomko (1971), reported in Simiu and Scanlan (1986). 

𝑀 (ℎ̈ + 𝛼̈
𝑆

𝑀
+ 2𝜁ℎ𝜔ℎℎ̇+𝜔ℎ

2ℎ) = 𝐿ℎℓ, (2a) 

 

𝐼𝛼 (𝛼̈ + ℎ̈
𝑆

𝐼𝛼

+ 2𝜁𝛼𝜔𝛼𝛼̇ + 𝜔𝛼
2𝛼) = 𝑀𝛼ℓ (2b) 

In Eqs. (2) M is the total mass of the model over the 

length ℓ, which also accounts for the mass of the moving 

components of the experimental rig; Iα is the total mass 

moment of inertia; 𝑆 is the static mass unbalance about the 

elastic axis, equal to the product of mass M and the distance 

(with appropriate sign) between the elastic center (center of 

stiffness) and the center of mass; ℓ is the longitudinal length 

of the model; ωh and ωα are the angular frequencies of 

vibration corresponding to the two DOFs; ζh and ζα are the 

corresponding structural damping ratios. The damping ratio 

coefficients replicate unavoidable dissipation mechanisms 

in the wind tunnel setup, which cannot be eliminated. The 

careful selection of the model’s frequencies is also an 

important issue in the design of the experimental apparatus 

to ensure the successful measurement of the flutter 

derivatives.  

After the experimental measurement of the flutter 

derivatives, Eq. (2) was used to determine the critical flutter 

speed of the model, tested in the wind tunnel. The solution 

to the flutter problem was based on the original 2-DOF 

flutter theory, proposed by Scanlan. Calculation of the 

flutter speed was based on the iterative procedure described 

by Simiu and Scanlan (1986), simulating a 2DOF 

dynamical system with mass, inertia, damping ratios and 
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flutter derivatives corresponding to the actual setup. 

 

 

3. Description of the experiments 
 
3.1 Aeroelastic force balance 
 

Experimental tests were conducted in the closed-circuit 

small-scale wind tunnel of NEU. The tunnel has a test 

section with transverse dimensions of 559 mm × 559 mm 

(Fig. 1(a)). The motor/fan can produce steady airflow 

speeds up to about 20 m/s without turbulence. A newly-

designed aeroelastic balance was used for the aeroelastic 

tests. The design was based on a previous experimental 

apparatus, developed for a smaller test section (Brito and 

Caracoglia 2009, Seo and Caracoglia 2012). The 

experimental setup has two DOFs: vertical h, and torsional 

α. The design included an H-shaped rig for the suspension 

of the model (one on each side of the model), which can be 

vertically supported through a set of extension springs. The 

spring properties were selected to produce the desired 

stiffness (i.e., angular frequencies ωh and ωα). The distance 

between the two vertical supports and the springs, equal to 

139.7 mm, was found after calibration to maintain an 

adequate frequency ratio between the vertical and torsional 

modes (DOFs h and α). 

Fig. 1(b) illustrates the model cross-section, whereas Fig. 

1c shows the schematics of the setup. Figs. 1(d) and 1(e) 

show internal views of the wind tunnel during the execution 

of the tests. The first photograph is taken looking from the 

leeward side of the section model, also noticeable in its 

suspended position in the middle of the chamber. Fig. 1(e) 

shows a longitudinal view of the test chamber.  

Dimensions of the force balance components, H-shaped 

rig, suspension system with extensions springs and the 

optimal location of the section model can be seen in both 

Figs. 1(a) and 1(c). The lateral horizontal DOF and other 

undesired motions were restricted by means of pre-

tensioned piano-wires, connected to aluminum L-shaped 

profiles, anchored outside the test chamber in the proximity 

of the horizontal middle section. This configuration restricts 

all the horizontal DOFs, both in the direction of the drag 

force (Dp) and in the transverse direction corresponding to 

the longitudinal bridge model axis, but permits free 

vibration in the vertical direction and rotation about the 

center point of the rig. The system of cables and restrainers 

was initially tested to ensure that undesirable effects (e.g., 

nonlinearity induced by the pre-tensioned cables) were not 

significant. 

The free-vibration method (Scanlan and Tomko 1971) 

was employed for the extraction of the flutter derivatives. 

Experiments did not consider the use of the forced-vibration 

method (e.g., Matsumoto 1996, Matsumoto et al. 1996, 

Matsumoto et al. 1998, Sato et al. 2004). Description of 

both measurement methods may be found in Sarkar et al. 

(2009).  

The time histories of the free-decay displacements h and 

α were derived from the instantaneous force measurements 

recorded by three load cells, placed outside the test chamber 

at selected support anchorages (Fig. 1(c)). In the free-decay 

tests the repeatability of the initial motion conditions 

(normalized initial amplitudes h0/B and 0), imposed to the 

aeroelastic model, was an important issue. Initial motion 

conditions were selected to allow for both 1-DOF and 2-

DOF aeroelastic tests (h0 ≠ 0 with 0 = 0; h0 ≠ 0 and 0 ≠ 0). 

The forthcoming results are primarily derived from the 2-

DOF tests. 

 

3.2 Section model, wind tunnel setup and preliminary 
experiments 

 
The section model tested was designed for the specific 

purposes of this experiment as a typical example of closed-

box girder of a modern long-span bridge. The dimensions of 

the section model are reported in Table 1; the model 

features and the direction of the aeroelastic forces and 

DOFs are also schematically illustrated in Fig. 1(b).  

The model length ℓ was 533.4 mm. The model 

dimensions were also chosen to limit the blockage effect in 

the chamber. This effect was estimated as less than 1% and 

was therefore negligible. The mean flow speed was varied 

in the wind tunnel between 2 m/s and 9 m/s (Table 2); in the 

same table the reduced velocity Ur, based on the vibration 

frequency of the vertical DOF, is also shown. This reduced 

velocity (Ur) was found from U and B and later used to plot 

the experimental results after extraction of the flutter 

derivatives.  

At each speed 30 repeated experiments and free-decay 

motion acquisitions were performed to obtain a sufficiently 

large sample of data and to study the variations in the flutter 

derivatives. 

The number of tests was selected from previous 

experience (Brito and Caracoglia, 2009, Seo and Caracoglia, 

2012), keeping in mind that many repeated acquisitions 

were impractical and difficult to carry out in the laboratory.  

 

Table 1 Geometric properties and dimensions of the 

bridge section model 

d1 d2 d3 d4 B H  

[mm] [mm] [mm] [mm] [mm] [mm] [°] [°] 

12 12 32 32 148 20 30 23 

 

 

Table 2 Wind tunnel flow speeds and reduced velocities 

U [m/s] 1.90 2.64 3.38 4.25 5.30 6.26 7.43 8.40 

Ur 3.28 4.57 5.86 7.36 9.18 10.86 12.89 14.56 

 

 

Table 3 Physical properties of the bridge section models 

Quantity  Symbol Units Value assigned 

Mass per unit length m kg m−1 2.743 

Mass moment of inertia per 

unit length 
I kg m2 m−1 0.010 

Vertical-DOF frequency (h) h/2π Hz 3.89 

Torsional-DOF frequency (α) /2π Hz 6.78 

Frequency ratio, h ε - 1.74 
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For each acquisition, the flutter derivatives were 

independently evaluated and used for error analysis. 

Variations in the flutter derivatives were later investigated at 

each flow speed. 

 

3.3 Preliminary examination of the experimental data 
 

An example of the acquired time history is reported in 

Figs. 2(a) and 2(b), for a wind speed of about 5 m/s. The 

figures illustrate two typical experiments, conducted 

respectively using 1-DOF and 2-DOF free-decay tests; the 

vertical-DOF values are normalized as h/B. Time histories 

of the responses ℎ, 𝛼  were indirectly found from the 

measurements of the reaction forces in the load cells located 

in correspondence with the anchorages of the support 

springs in Fig. 1(c). Forces were converted to displacement 

and rotation by suitable calibration of the apparatus. Details 

are omitted but explanation may be found in Brito and 

Caracoglia (2009). 

In Figs. 2(b) and 2(d) the data of the torsional DOF are 

exclusively shown in the case of 2-DOF example 

experiment; coupling between the h and α motions is 

evident (Fig. 2(d)). In these figures, the original signal, 

acquired by the aeroelastic force balance and labeled as 

“raw data” in the graphs, is compared to the signal obtained 

after applying a band-pass digital filter, labeled as “filtered 

data”. A Butterworth digital filter was used to remove high 

frequency disturbances (instrumental noise above 12 Hz) 

without compromising the fidelity of the data at low 

frequencies. The same procedure of preliminary low-pass 

filtering is recommended by the developers of the flutter 

derivative identification algorithm (Chowdhury and Sarkar 

2003, 2004), which is later discussed in Section 4.1. In the 

graph of Fig. 2(d) the signal is also filtered to isolate the 

contribution of the torsional vibration from the vertical 

vibration. 

The graphs exclusively show the time histories of the 

free-vibration decay immediately after the system’s release. 

In this example, the time histories correspond to a typical 

experiment with the highest wind tunnel speed considered 

(Table 2). Due to a dominant “damping effect”, provided by 

the aeroelastic loads, the torsional motion rapidly fades, 

almost imperceptible by visual inspection of the time 

histories, whereas the vertical vibration persists for about 3 

s. For each acquisition, the Power Spectral Density (PSD) is 

also presented to identify the main frequency components 

of each signal. This type of graphs was employed to 

qualitatively confirm that, after post-processing the raw data 

by digital filter, important information was not removed 

from the original data. In the PSD graphs shown in Figs. 2(c) 

and 2(d), respectively for 1DOF and 2DOF tests, it is 

observed that, as reported in Table 3, the ratio between 

torsional and vertical frequency is about 1.7. Finally, the 

filtered data were analyzed to possibly detect irregular 

trends in the free-decay time histories and anomalies in the 

experimental procedure, such as small imperfections or 

misalignments in the setup. Vibration amplitude effects in 

the flutter derivatives, which are possible in the case of 

bluff deck sections (e.g., documented by Sarkar et al. 2009), 

were not directly considered; any influence was 

incorporated (i.e., interpreted) as experimental error or 

variability. Preliminary data records, for example presented 

in Figs. 2(a) and 2(b), revealed no unexpected large 

irregularity, potentially linked to a systematic error. 

It was also important to investigate the possible 

variability in the initial motion conditions, imposed before 

the release of the system. One of the main concerns of the 

investigation, which relied on the repetition of several 

similar experiments, was to retain the same initial 

conditions from one test to another. As an example, Fig. 3a 

and Fig. 3(b) examine the initial motion conditions before 

release of the model at various reduced velocities in 

dimensionless form, vertical (h/B) and torsional (); 

information was derived from the collection of the thirty 2-

DOF repeated experiments at each U. The initial values 

were indirectly found by inspection of the data sets and by 

using the results of the Shannon reconstruction formula, 

described in a later section. The figures are “box-and-

whisker” plots of h/B and ; it is shown that the median 

initial displacement is approximately preserved as U varies 

(approximately 0.05 for the normalized initial displacement 

and 0.15 for the rotation). The variability is, however, not 

insignificant since the inter-quantile range may on occasion 

be of the same order as the median value, especially for h/B 

(for example at Ur=4.57 in Fig. 3(a)). In general, repeated 

setting of initial conditions was better achieved with the 

rotational DOF, since more uniformity and smaller 

variations are noticeable in Fig. 3(b). Moreover, Fig. 3 also 

suggests that initial conditions do not strongly depend on 

wind speed and the various experiments. Therefore, the 

observed variability could be treated as part of the 

experimental procedure and examined in the context of 

error analysis. 

Finally, one important aspect during the experiments 

was the derivation of the reference damping ratios of the 

moving setup (ζh and ζα) in the absence of airflow; more 

discussion is presented in the next section.  

 

 

4. Analysis of experimental results 
 

4.1 Background: identification of flutter derivatives 
 

Flutter derivatives were derived from the measurement 

of the vertical- and torsional-DOF free decay time histories 

at various airflow speeds. Various methods can be used to 

identify the flutter derivatives. For example, Qin and Gu 

(2004) and Mishra et al. (2006) proposed the use of a 

covariance-driven Stochastic Subspace Identification 

technique (SSI). Recently, Zhu and Gu (2014) identified 

flutter derivatives using CFD-based discrete-time 

aerodynamic models. 

In this study, the identification method used is the 

Iterative Least Squares (ILS) method, developed by 

Chowdhury and Sarkar (2003 and 2004), which was later 

utilized by Chen et al. (2002, 2006). The ILS method relies 

on a state-space formulation of the 2-DOF dynamic 

problem, as concisely described in Eqs. 3(a) and 3(b) below. 
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(a) 1DOF raw and filtered signals (b) 2DOF raw and filtered signals (α only shown) 

  
(c) PSD of the 1DOF signals (d) PSD of the 2DOF signals (α only shown) 

Fig. 2 Example of wind tunnel signal analysis (1DOF and 2DOF free-decay experiments) 

  

  
(a) h/B (b) α 

Fig. 3 Examination of the initial motion conditions and their variability at the release of the model 
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A brief overview of the method is provided below for the 

sake of completeness. The ILS employs the state column 

vector of the motion variables 𝑍 = [ℎ, 𝛼, ℎ̇, 𝛼̇]
𝑇

 (with T 

denoting transpose operator) and transforms the dynamic 

equations of motion, which include the effect of the fluid-

structure interaction, into a linear dynamical system 

(Chowdhury and Sarkar 2003, 2004). 

𝑍̇ = 𝐴𝑍, (3a) 

 

𝐴 = [
0 𝐼

−𝐾𝑒𝑓𝑓 −𝐶𝑒𝑓𝑓]. (3b) 

In Eqs. (3), the vector 𝑍 contains displacement and 

velocity data for each DOF and 𝐴 is the state matrix. The 

sub-matrices Keff and Ceff are equivalent (i.e., generalized) 

stiffness and damping matrices, which can be directly 

related to flutter derivatives in Eq. (1). The contribution of 

the mass and inertia of the vibrating model/setup is 

accounted for in Eqs. (3). For more information on the ILS 

method, the reader is referred to Chowdhury and Sarkar 

(2003).  

Flutter derivatives, which are usually plotted as a 

function of the reduced velocity Ur=U/(nB), can be 

extracted from the identification of K
eff

 and C
eff

 during wind 

tunnel tests at a given speed U (“wind-on” test). The ILS 

method operates by iteratively finding the terms of K
eff

 and 

C
eff

 by using the measurement of ℎ, 𝛼 and the numerical 

estimation of ℎ̇, 𝛼̇ and ℎ̈, 𝛼̈.  

The flutter derivatives were found by direct comparison 

of the elements in K
eff

 and C
eff

 against the same elements 

obtained from a reference test in the absence of airflow 

(“wind-off” test). The latter experiments were also useful to 

determine the properties of the setup, such as ζh and ζα; 

estimation of the mass and moment of inertia of the moving 

setup is also needed for the calculation of the derivatives 

[refer to Eqs. (4) and (5) in Chowdhury and Sarkar (2003)]. 

The experimental sampling rate (200 samples/s) was 

selected to enable the measurement of ℎ, 𝛼  and the 

identification of the parameters from the elements of matrix 

𝐴 . Since the first and second derivatives of ℎ, 𝛼  with 

respect to time are not measured, they need to be 

numerically estimated to apply the ILS procedure; in this 

work and contrary to Chowdhury and Sarkar (2003, 2004) 

the quantities ℎ̇, 𝛼̇ and ℎ̈, 𝛼̈ were estimated by application 

of the Shannon reconstruction formula (Jerri 1977).  

The test procedure also requires the estimation of m and 

I (or M=mℓ and Iα=Iℓ), which are not known since they 

include the influence of the moving parts of the apparatus. 

These quantities can be determined by conducting a set of 

preliminary experiments and monitoring the changes in the 

vibration frequencies consequent to the addition of 

supplementary concentrated masses of known mass and 

moment of inertia on the support bars of the rig. This 

operation was derived by adaptation of the procedure 

described by Sarkar (1992); the values of m and I are also 

shown in Table 3 for the section model (Fig. 1(b)) under 

consideration. 

 

Figs. 4(a) and 4(b) illustrate the results of the initial 

wind-off tests used to determine the mechanical damping 

ratios of the vertical-DOF and torsional-DOF. Repetition of 

the tests was also employed in this case to further examine 

irregular dynamic behavior in the setup before investigating 

the aeroelastic loads. The values of ζh and ζα are plotted in 

each panel for each acquisition (experiment number, nE). 

The mean values, indicated by a dashed line in the figure, 

were estimated from the sample as equal to 0.36% and 

0.85%. As shown in Fig. 4, the variability in the damping 

ratios is relatively small compared to the mean values (less 

than one percent for both DOFs), suggesting that the 

experimental setup and procedure in the absence of wind 

flow in the chamber, was reliable and adequate for the 

subsequent measurement of the flutter derivatives.  

 

4.2 Examination of flutter derivatives – mean graphs 
 

In Figs. 5 and 6 the flutter derivatives are presented, 

respectively Hi
*
 and Ai

*
 with i=1,…,4. In each panel of the 

two figures the mean graph is plotted as a solid continuous 

line with markers; the mean graph is found by computing 

the sample average at each Ur. 

 

 

 
(a) Mechanical damping ratio ζh 

 
(b) Mechanical damping ratio ζ 

Fig. 4 Mechanical damping ratios ζh and ζ (percentage 

with respect to critical value) derived from the repeated 

experiments in the absence of airflow 
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Moreover, plots of each of the thirty independent 

realizations are also overlapped, reduced velocity by 

reduced velocity, which were obtained by repeatedly 

applying the ILS procedure to each acquisition and Ur. This 

operation resulted in a total of thirty curves, “scattered” 

around the mean graph, found by connecting two adjacent 

data points at various Ur. These curves are also shown in 

the figures as light-colored continuous thin lines. The mean 

graphs of the flutter derivatives, presented in Figs. 5 and 6, 

seem compatible with the geometry of the selected closed-

box girder (Fig. 1(b)) even in comparison with similar 

closed-box deck girders. Small negative values can be seen 

for A2
*
 at low Ur.  

 
4.3 Estimation of flutter speed by using the mean 

flutter derivatives 
 

Using the mean values of the derivatives at each reduced 

velocity, the mean flutter condition was determined. 

Calculation of the flutter speed in this section and 

subsequent ones was based on the iterative procedure 

described by Simiu and Scanlan (pages 231-234, 1986) for 

a 2DOF dynamical system, with mass, inertia, damping 

ratios and flutter derivatives corresponding to the actual 

setup. The flutter condition was iteratively found by varying 

the reduced frequency K=2nB/U=2Ur [with Ur=U/(nB)  

 

 

reduced velocity, previously defined] and by estimating the 

coupled-flutter angular frequency (ωc) until convergence of 

the method. The mean values of the critical wind speed (Uc) 

and the critical flutter angular frequency (c) were 

determined.  

The predicted mean value of c is equal to 37.82 rad, 

whereas the mean Uc is equal to 33.64 m/s for the 2DOF 

section model of this bridge. During the experiments the 

system was not driven to large flow speeds, closer to the 

flutter onset, to prevent damage to the setup. For this reason, 

increased oscillation was not observed in wind tunnel. 

Additional investigation on flutter speed viability is 

presented in a subsequent part of this paper. 

 

 

5. Examination of data variability and experimental 
errors 

 

Figs. 5 and 6 present the various graphs of the 

derivatives. 

It is possible to note in the figures that all the curves 

(continuous thin lines without markers) are fairly close to 

the mean graph, except for the high Ur where a larger 

deviation from the mean can be seen. This behavior is 

believed to be caused by a more problematic control of the 

regular free-decay vibration in the experimental chamber at  

  
(a) H1

*
 (b) H2

*
 

  
(c) H3

*
 (d) H4

*
 

Fig. 5 Variability in the flutter derivatives, derived by examining the results of the expected experiments (lift force) 
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high speeds, which becomes more susceptible to external 

disturbances (such as small turbulence or test 

imperfections). This limitation is typical of the free-

vibration method for the extraction of the flutter derivatives, 

as reported by several investigators (e.g., Sarkar et al. 2009). 

The variability in the flutter derivatives is one of the 

objectives of the study; it is well captured in Figs. 5 and 6. 

The fundamental proposition, used to explain the observed 

variations, is the experimental error in a general sense. 

Errors are due to several issues, for example some 

variability in initial motion conditions imposed during each 

repetition of the tests (Fig.3), the unavoidable imperfections 

in the test setup, “environmental conditions” of the 

laboratory, etc. Each experiment was considered as an 

independent realization of a stochastic process at each 

reduced velocity Ur. Therefore, it is relevant to document 

the statistical moments (standard deviation, etc.) and to 

possibly examine the probability distribution from the data 

in this investigation. 

 
5.1 Statistical moments of the error-contaminated 

flutter-derivatives 
 

In Figs. 7 and 8 the standard deviation ( and the 

coefficient of variation (), used to study the dispersion of 

the sample distribution, are plotted as function of the 

reduced velocity. The quantity is equal to 𝜎 |𝜇|⁄  with 

𝜇 equal to the mean value. 

It can be observed (Figs. 8 and 9) that the standard 

deviation of the error in the flutter derivatives increases  

 

 

with the flow speed. The reason is that the control of 

experimental conditions is less repeatable at higher speeds 

and the experimental setup is likely to be affected by 

secondary undesirable motion, as outlined earlier. A 

secondary undesirable (rotational) motion about an axis 

parallel to the longitudinal axis of the wind tunnel was on 

occasion observed, especially at high flow speeds during 

the free-vibration tests. Correction of this problem, for 

example by restricting the rotational degree of freedom, was 

not possible with the current experimental setup. Any effect 

was again considered in the present context as part of the 

investigation on experimental variability.  

Observing the variability of the coefficient of variation 

tends to confirm that the data are rather dispersed.  

This trend seems clear in correspondence with the 

lowest and highest values of Ur, where it is believed that 

imperfect setup conditions may have also contributed to the 

results. 

This conclusion was also noted in Figs. 5 and 6 at high 

reduced velocities. The range between 5 m/s and 10 m/s (Ur 

between 9 and 14, approximately) gives results less 

dependent on the reduced velocity, particularly for H1
*
, H2

*
, 

H3
*
 and H4

*
 (Figs. 7(a)-7(d)).  

The standard deviation is almost constant in the range of 

velocities between about 3 m/s and 10 m/s (Ur between 6 

and 14, approximately) for several of the derivatives; 

deviations start to appear in the proximity of the highest 

value of the reduced velocity.  

 

 

  
(a) A1

*
 (b) A2

*
 

  
(c) A3

*
 (d) A4

*
 

Fig. 6 Variability in the flutter derivatives, derived  by examining the results of the expected experiments (torsional moment) 
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Only the standard deviation of H4
*

 and A1
*
, respectively 

reported in Figs. 7(d) and 8(a), does not exhibit the same 

trend common to other derivatives.  

Generally, the coefficients of variation are high for the 

Hi
*
 flutter derivatives and smaller for the Ai

*
; in special 

cases, for example H4
*

 and A1
*
, they appear to be greater 

than 1 for H1
*
, and for H2

*
 they are larger than 0.5. This  

 

 

 

additional examination of the data suggests that the mean 

graphs of the flutter derivatives cannot be used as 

representative values, for example in a flutter analysis. The 

importance of a more detailed analysis of the data is 

necessary before selecting “an appropriate value” of each 

flutter derivative for structural design. 

 

  

 
 

(a) H1
*
 (b) H2

*
 

  

  
(c) H3

*
 (d) H4

*
 

Fig. 7 Standard deviation and (σ) and coefficient of variation (γ) of the flutter derivatives (lift force) 
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5.2 Inter-dependency among flutter-derivative errors 
 

In order to estimate the correlation between the different 

derivatives, the cross-correlation coefficients are also 

plotted for each couple of derivatives. In Fig. 9 examples of 

various combinations of cross-correlation coefficients are 

presented to investigate potential dependence. It may be  

 

 

noted that inter-dependence among some flutter derivatives 

is possible: a relationship holds at large Ur between H1
*
 and 

H3
*
, between A1

*
 and A3

*
, between A2

*
 and A4

*
 (Scanlan et 

al. 1997), and between H2
*
 and H4

*
 (Matsumoto et al. 1996, 

Matsumoto and Abern 1998, Scanlan et al. 1997).  

 

 

 
 

  

(a) A1
*
 (b) A2

*
 

 
 

  
(c) A3

*
 (d) A4

*
 

Fig. 8 Standard deviation and (σ) and coefficient of variation (γ) of the flutter derivatives (torsional moment) 
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It is therefore important to investigate the cross-

correlation among the various acquisitions and to determine 

whether the variability is the result of experimental errors 

and imperfections in the setup or whether the theoretical 

results are influencing the correlations. The derivatives, 

which should (at least theoretically) exhibit correlation, are 

plotted in Fig. 9(a) as a function of the reduced velocity. 

The other combinations of the derivatives, which should not 

be correlated, are illustrated in Fig. 9(b) to Fig. 9(f). 

 

 

 

 

 

Finally, in Table 4 the normalized variance-covariance  

matrix of a sub-set of the flutter derivatives is presented at 

selected reduced velocities. 

The variance-covariance matrix is obtained according to 

Eq. (4) below, which is constructed using exclusively the 

terms H1
*
, H3

*
 and A2

*
 with the notation “cov” indicating 

the covariance mathematical operator 

Σ = [

𝑐𝑜𝑣(𝐻1
∗, 𝐻1

∗) 𝑐𝑜𝑣(𝐻1
∗, 𝐴2

∗ ) 𝑐𝑜𝑣(𝐻1
∗, 𝐻3

∗)

𝑐𝑜𝑣(𝐴2
∗ , 𝐻1

∗) 𝑐𝑜𝑣(𝐴2
∗ , 𝐴2

∗ ) 𝑐𝑜𝑣(𝐴2
∗ , 𝐻3

∗)

𝑐𝑜𝑣(𝐻3
∗, 𝐻1

∗) 𝑐𝑜𝑣(𝐻3
∗, 𝐴2

∗ ) 𝑐𝑜𝑣(𝐻3
∗, 𝐻3

∗)
]. (4) 
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Fig. 9 Cross-correlation coefficient (r) of the flutter derivatives 
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Table 4 Normalized variance – covariance matrices at 

selected reduced velocities 

Ur=3.28 Ur=4.57 

[
1.00 0.40 −0.56
0.40 1.00 −0.98

−0.56 −0.98 1.00
] [

1.00 0.40 −0.56
0.40 1.00 −0.98

−0.56 −0.98 1.00
] 

Ur=5.86 Ur=7.36 

[
1.00 −0.98 −0.07

−0.98 1.00 −0.22
−0.07 −0.22 1.00

] [
1.00 0.48 0.11
0.48 1.00 0.92
0.11 0.92 1.00

] 

Ur=10.86 Ur=14.56 

[
1.00 −0.97 0.51

−0.97 1.00 −0.70
0.51 −0.70 1.00

] [
1.00 −0.90 −0.47

−0.90 1.00 0.79
−0.47 0.79 1.00

] 

 

 

Referring to Eq. (4), the diagonal values are the 

variances of the individual flutter derivatives; the off-

diagonal terms in the matrix are the co-variances between 

the specified two terms. In Table 4 the normalized elements 

are presented, i.e., normalized to obtain the correlation 

coefficients. 

The study of the Σ matrix in Table 4 confirms the trend 

noted in Fig. 9(a). A small cross-correlation coefficient can 

be noted between 𝐻1
∗  and 𝐻3

∗ at all reduced velocities, on 

occasion less than 0.5; this remark seems to contradict the 

theoretical hypothesis of dependence between 𝐻1
∗  and 𝐻3

∗. 

This result is perhaps unexpected. Nevertheless, it was 

interpreted that an imperfect correlation between derivatives, 

which are known to potentially be linked to one another (for 

example 𝐻1
∗  and 𝐻3

∗), is still plausible because of random 

error; it could be associated with imperfect setup or variable 

test conditions that are responsible for the deviations from 

the reference values. It is also observed that these variations 

are possibly not linked to a physical phenomenon, i.e., a 

clear functional dependence between 𝐻1
∗  and 𝐻3

∗, but are 

perhaps the result of a random test. Larger cross-correlation 

values are noted between 𝐻1
∗  and 𝐴2

∗  especially at high 

reduced velocities, although Fig. 9(b) indicates that it may, 

on occasion, become less than 0.5.  

Consequently, the use of non-correlated random flutter 

derivatives may also be accepted, at least as a first 

approximation, in the context of experimental uncertainty 

propagation for the prediction of the bridge model response. 

 

5.3 Experimental error quantification 
 

In order to provide a measure of the data set variability 

and examine experimental and simulation errors, the 

confidence (𝐶𝐼)  and tolerance (𝑇𝐼) intervals were also 

estimated. The reduced speed Ur = 4.57 is used as an 

example. 

The confidence interval measures the deviation from the 

true value of the mean of a random variable (unknown) and 

the sample mean estimator. In the present study, it was 

approximately estimated as follows 𝐶𝐼(95%) ≈ 𝑥̅𝜎 ±

1.96 𝜎 √𝑛p⁄ , where 1.96  is the extent of a Gaussian 

distribution for a degree of confidence equal to 95% and 𝑛p 

is the total number of sample realizations (𝑛p = 30 in this 

example). This definition of 𝐶𝐼(95%) is exact if the error is 

normally distributed. Notoriously, the standard confidence 

interval equation relies on the population standard deviation. 

However, since the latter is not known, it is replaced in with 

the sample standard deviation. The estimated 𝐶𝐼(95%) is a 

fairly accurate approximation of the confidence interval for 

large samples (i.e., 𝑛p ≥30; Walpole et al. 2002).  
The tolerance interval (𝑇𝐼)  was estimated by the 

algebraic sum  𝑥̅𝜎 ± 𝑘𝜎  (for data sets with distribution 

approximately symmetric about 𝑥̅𝜎). The quantity k is the 

tolerance factor. In this study, k is defined such that there is 

a 99% confidence that the calculated tolerance limits will 

contain at least 95% of the measurements. If the Gaussian 

distribution is employed to approximate the data variability, 

k=2.36 may be used. 

Fig. 10 presents examples of tolerance and confidence 

intervals of the experimental flutter derivatives, estimated 

by repeating experiments 30 times at each Ur. At Ur =4.57, 

all data points are inside the 𝑇𝐼, except for H1
*
 for which 

the number of experimental data points located outside this 

interval is equal to one. The absolute error can be defined as 

𝜀𝑇𝐼,𝐴 ≈ 2𝑘𝜎; it varies between 0.02 (for A2
*
, with mean 

value -0.03) and 1.32 (for A1
*
, with mean value 1.40) at 

Ur=4.57. The non-negligible variability in the flutter 

derivatives suggests that a modification of the experimental 

setup might be considered to decrease the TI and CI. 

However, results confirm the variability of the flutter 

derivatives that is reflected in the critical flutter speed 

estimation. 

 

5.4 Supplementary analysis of the random variability 
in the flutter derivatives 

 

The availability of repeated acquisitions (occurrences) 

of the various flutter derivatives suggested the possibility of 

conducting a more rigorous statistical analysis. In this sub-

section, an attempt was made to determine a set of suitable 

probability distributions, able to describe the variability 

observed in the wind tunnel experiments. To the authors’ 

knowledge, few examples have been reported in the 

literature due to the limited systematic examination on 

uncertainty (e.g., Baldomir et al. 2013a, b). In previous 

studies by this research team (e.g., Seo and Caracoglia 2012) 

the probability distributions, used for flutter reliability, were 

in fact assumed a priori due to insufficient data sets along 

with several other simplifying assumptions. 

This study was carried out by examining all flutter 

derivatives, Hi
*
 and Ai

*
 with i=1,…,4 at all reduced 

velocities. In the following, results for Hi
*
 and Ai

*
 with 

i=1,…,3  at four distinct Ur values equal to 4.57, 7.36, 

10.86 and 14.56 are shown. 

In each investigation the flutter derivative data, 30 

repetitions and acquisitions at each pre-selected Ur, were 

initially normalized as Hi
*
/Hi,m

*
 and Ai

*
/Ai,m

*
, in which Hi,m

*
 

and Ai,m
*
 are the mean values at the corresponding Ur (also 

visible in Figs. 5 and 6). This normalization was preferred 

to eliminate the dependence on the sign of the derivative, 

which enables the subsequent comparison of the empirical 

probability distributions with several models of random 

variables. 
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These models include the following distributions: 

Gaussian, Log-normal, Gamma and Weibull. It must be 

noted that the selection of the models was dictated in part 

by findings discussed in previous studies (Seo and 

Caracoglia 2012, Caracoglia 2013, Canor et al. 2015). 

The results of this investigation are presented in Fig. 11 

for H1
*
/ H1,m

*
 and

 
H1,3

*
/H1,3,m

*
, and in Fig. 12 for A1

*
/A1,m

* 

and
 
A2

*
/A2,m

*
.  

In each panel of the two figures the empirical 

cumulative distribution function (CDF), derived from each 

data set by “plotting position” (each data point indicated by 

a black marker), is plotted against the CDF functions 

corresponding to the four selected models. The parameters 

of each probability model were determined by maximum 

likelihood estimation using the actual data.  

 

 

 

From the various panels of the two figures it can be 

observed that each of the distribution models is capable of 

partially replicating the trends in the data. The probability 

distributions are not the same at various Ur; this remark is 

confirmed by the observations on the variable standard 

deviation in the previous sections. In general, the four 

selected probability models more closely follow the 

experimental data at larger Ur. 

A less accurate behavior is evident close to the tails of 

the distributions (for example the lower tail in H1
*
/H1,m

*
 at 

Ur=4.57 in Fig. 11(a)). On occasion, this trend is noted 

toward the median values of the CDF (Fig. 11(a) for 

H1
*
/H1,m

*
 at Ur=4.57) or the upper tails or quantiles (Fig. 

12(b) for A2
*
/A2,m

*
 at Ur=4.57). 

 

  
(a) H1

*
 (b) A1

*
 

  
(c) H2

*
 (d) A2

*
 

  
(e) H3

*
 (f) A3

*
 

Fig. 10 Analysis of experimental datasets, tolerance (TI) and confidence intervals (CI) of several derivatives at reduced 

velocity Ur=4.57 
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(a) Normalized derivative H1

*
/ H1,m

*
 at Ur=4.57 (b) Normalized derivative H1

*
/ H1,m

*
 at Ur=10.86 

  
(c) Normalized derivative H3

*
/ H3,m

*
 at Ur=4.57 (d) Normalized derivative H3

*
/ H3,m

*
 at Ur=10.86 

Fig. 11 Cumulative distribution function (CDF) of the lift-related derivatives 

  
(a) Normalized derivative A1

*
/ A1,m

*
 at Ur=4.57 (b) Normalized derivative A1

*
/ A1,m

*
 at Ur=10.86 

  
(c) Normalized derivative A2

*
/ A2,m

*
 at Ur=4.57 (D) Normalized derivative A2

*
/ A2,m

*
 at Ur=10.86 

Fig. 12 Cumulative distribution function (CDF) of the moment-related derivatives 
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A quantitative examination of the various probability 

models was also carried out by means of hypothesis testing, 

applied to all cases presented in Figs. 11 and 12. The one-

sample Kolmogorov-Smirnov (KS) test was employed to 

test the null hypothesis that the sample population was 

indeed derived from each of the four selected models. The 

main findings of the hypothesis testing are only presented, 

whereas the specific results of the analysis are not reported 

for the sake of brevity. 

For example, the examination of the p-values 

corresponding to the Kolmogorov-Smirnov test for 

H1
*
/H1,m

*
, indicated that representation of the variability 

through both Log-normal and Gamma distributions is 

dubious at the significance level of 0.20 (especially at 

Ur=4.57), thereby excluding these two candidates. In 

contrast, the test does not seem to provide indication on 

either Gaussian or Weibull distribution. Physically, a 

Gaussian distribution is representative of a random 

measurement error with equally probable positive/negative 

deviations from the mean value. On the contrary, a Weibull 

model has a non-symmetrical distribution, potentially 

related to a physical explanation, for example the fact that a 

random flutter derivative does not likely change its sign at a 

given value of Ur. Visual inspection of Fig. 11(a) tends to 

confirm these observations, for example suggesting that the 

Gaussian model could approximately fit the data points. 

Moreover, it might possibly be more applicable to simulate 

the effect of a random measurement error.  

In the case of A2
*
/A2,m

*
, which is another important 

derivative for the study of the aeroelastic behavior, the same 

observation was not found after null hypothesis testing. 

Exclusion of the candidates or selection of a unique 

probability distribution model appeared more difficult. For 

example, the four CDF functions are substantially 

overlapping at Ur=4.57 in Fig. 12(b). Besides, the Gaussian 

and Weibull distributions are practically coincident in Fig. 

12(d). 

 

5.5 Generalized representation of the random 
variability in the flutter derivatives by polynomial chaos 
expansion  

 

Despite indications provided in the previous sub-section, 

none of the probability models could consistently replicate 

the observations across all Ur. Therefore, a supplementary 

investigation was carried out. A more generalized model of 

a random variable was used to explain the collected data. 

The spectral representation of a random variable or 

polynomial chaos expansion (Ghanem and Spanos 1991) 

was employed. This approach is briefly introduced in this 

section.  

On a probability space (Θ, Σ, P), if one denotes by θ the 

random event belonging to the domain Θ, a generic 

realization of a random variable, for example Hi
*
 and Ai

*
at a 

given Ur, can be formally written as Hi
*
(Ur;θ) and Ai

*
(Ur;θ). 

The representation of the random Hi
*
 and Ai

* 
derivatives can 

be expressed as, with i=1,…,4: 

𝐻𝑖
∗(𝑈𝑟; 𝜃) = ∑ ℎ𝑖,𝑗

∗ 𝜓𝑗(𝜉(𝜃))
𝑃

𝑗=0
 (5a) 

 

𝐴𝑖
∗(𝑈𝑟; 𝜃) = ∑ 𝑎𝑖,𝑗

∗ 𝜓𝑗(𝜉(𝜃))
𝑃

𝑗=0
 (5b) 

In the previous equations, the truncation order of the 

expansion is denoted by P; the quantities 𝜓𝑗  are 

polynomials of degree j used by the expansion; 𝜉(𝜃) is a 

realization of a “seed” random variable; the quantities ℎ𝑖,𝑗
∗  

and 𝑎𝑖,𝑗
∗  are normalized scalar coefficients of the 

polynomial chaos expansion that need to be determined. 

This representation basically transforms a “seed” random 

variable 𝜉(𝜃) into a “more general” random variable by 

nonlinear translation process (Grigoriu 2002). The 

polynomials 𝜓𝑗 are selected as mutually orthogonal with 

respect to the probability density function of the seed 

variable. The seed is usually represented by a standard 

Gaussian variable recast in terms of normalized Hermite 

polynomials 𝜓𝑗 (or “Hermite chaos”), as in the original 

polynomial chaos decomposition (Ghanem and Spanos 

1991). More recently, Askey-Wilson polynomials were 

shown to be useful and employed to describe even more 

general distributions (Xiu and Karniadakis 2002).  

The representation in Eq. (5) has been successfully 

applied to the representation of the probabilities of several 

random variables (scalar or vectors) obtained from 

experimental data. Some examples are elastic properties of 

random media (Desceliers et al. 2007) and uncertain 

stiffness properties of instrumented structures (Schoefs et al. 

2011). In wind engineering, this representation and the 

concept of translation process based on the “Hermite model” 

were efficaciously employed to replicate non-Gaussian 

features of intermittent wind pressure fields (Gurley and 

Kareem 1997) and the non-Gaussian extreme values of the 

response in wind-excited structures (Ding and Chen 2014). 

Recently, the polynomial chaos expansion and the 

corresponding spectral methods were explored to study 

flutter probability, contaminated by errors in flutter 

derivatives (Canor et al. 2015).  

The polynomial chaos expansion requires the 

coefficients ℎ𝑖,𝑗
∗  and 𝑎𝑖,𝑗

∗  to be estimated. In this study, the 

numerical procedure proposed by Schoefs et al. (2011) was 

utilized to determine ℎ𝑖,𝑗
∗  and 𝑎𝑖,𝑗

∗ .  

These coefficients were found from the minimization of 

the negative log-likelihood function evaluated at the 

experimental points (30 acquisitions of the flutter derivative 

at each pre-selected value of Ur), using as PDF the function 

corresponding to the Hermite chaos at a given P-th degree 

of the polynomials.  

The procedure for finding ℎ𝑖,𝑗
∗  and 𝑎𝑖,𝑗

∗   coincides with 

a minimization problem that is solved by scansion of the 

parameter space. As first observed by Desceliers et al. 

(2007) this optimization must follow certain constraints. For 

example, since 𝜓0(𝜉) = 1 in the Hermite chaos, ℎ1,0
∗  and 

𝑎1,0
∗  are simply the mean values of the sample (denoted as 

Hi,m
*
 and Ai,m

*
 at a given Ur in the previous sub-section).  

Moreover, Desceliers et al. (2007) show that the 

normalized variance of the sample must be equal to the 

relationship ∑ (ℎ𝑖,𝑗
∗ )

2𝑃
𝑗=1  and ∑ (𝑎𝑖,𝑗

∗ )
2𝑃

𝑗=1 . Description of  
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(a) H1

*
 flutter derivative at Ur=4.57 (b) H3

*
 flutter derivative at Ur=4.57 

  
(c) H1

*
 flutter derivative at Ur=10.86 (d) H3

*
 flutter derivative at Ur=10.86 

Fig. 13 Probability density function (PDF) of H1
*
 and H3

*
 flutter derivatives 

  
(a) A1

*
 flutter derivative at Ur=4.57 (b) A2

*
 flutter derivative at Ur=4.57 

  
(c) A1

*
 flutter derivative at Ur=10.86 (d) A2

*
 flutter derivative at Ur=10.86 

Fig. 14 Probability density function (PDF) of A1
*
 and A2

*
 flutter derivatives  
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the numerical procedure, employed herein, is omitted for 

the sake of brevity but may be found in Schoefs et al. 

(2011). 

Various types of Hermite chaos [order of the expansions 

P in Eqs. (5)] were considered to identify non-linear and 

non-Gaussian features and to verify the observations in 

Section 5.4. The investigation was restricted to the “most 

important” derivatives, H1
*
 and H3

*
, and A1

*
 and A2

*
 at four 

representative reduced velocities. Contrary to the previous 

sub-section, no normalization of the experimental data was 

used prior to the estimation of polynomial chaos 

coefficients. 

Figs. 13 and 14 present the results. The graphs compare 

the empirical PDF functions (thirty repeated acquisitions) 

with the PDF curves found by applying the procedure 

described above and Eq. (5). The empirical histogram of 

occurrences (empirical PDF) is compared against various 

probability functions determined through Hermite-chaos 

polynomial expansion of various orders. 

Figs. 13 and 14 also report the skewness (“Skewn”) and 

kurtosis (“Kurt”) determined from the experimental sample. 

The skewness ranges from -0.27 (i.e. for A2
*
 with Ur=10.86, 

Fig.14d) to 1.19 (i.e., for H1
*
 with Ur=4.57, Fig. 13(a)); the 

kurtosis is between 1.68 (i.e., for H3
*
 with Ur=10.86, Fig. 

13(d)) and 4.10 (i.e., for H1
*
 with Ur=4.57, Fig. 13(a)). In 

all cases it can be noted that the empirical PDFs (histograms) 

are sharper than the Gaussian distribution, corresponding to 

a Hermite model with order P=1 in the figures (“Hermite 

ord. 1”), and that long tails are possible (for example for 

H1
*
). For all derivatives and reduced velocities, the first-

order expansion (i.e., a Gaussian distribution) appears to be 

unsuitable since is not capable of replicating some features 

of the empirical data sets. Higher order chaos expansion 

was more adequate. Similar observations were 

approximately found for other derivatives and other values 

of the reduced velocity. 

 

 

6. Examining flutter speed of the 2DOF setup, 
accounting for experimental variability 
 

As previously described, the evaluation of the critical 

flutter speed can be carried out by independently examining 

each realization (or identification) of the experiments, i.e., 

by using a combination of thin light-colored lines in Figs. 5 

and 6 instead of the mean graphs. This operation can be 

repeated 30 times by assuming independence among the 

experiments at various U. For each set of derivatives, the 

critical flutter speed of the wind-tunnel section model was 

found in accordance with the procedure by Simiu and 

Scanlan (1986) and previously outlined (Section 4.3). Each 

solution represents one possible critical flutter solution 

contaminated by measurement variability.  

The results of this examination are presented in Figs. 

15(a) and 15(b). Each solution, experiment by experiment, 

was converted to critical flutter speed (Uc) and critical 

angular flutter frequency (c). In Fig. 15(a) the sample 

mean of Uc is reported using a dashed line; the mean value 

is equal to 32.50 m/s, whereas the median is equal to 33.98 

m/s. The critical speed Uc of the wind-tunnel section model 

(Fig. 15(a)) varies (stochastically) between about 24.4 m/s 

and 41.5 m/s. Relative variations with respect to the mean 

value are, respectively, between -20% and +20% (i.e., the 

standard deviation is equal to 4.53). Results indicate non-

negligible variability in a range of wind speeds larger than 

the one examined experimentally and compatible with the 

observations.  

Results also suggest that variability in the flutter 

threshold of this section model may not be insignificant and 

confirms the need for probabilistic analysis of the flutter 

condition, accounting for experimental aeroelastic-load 

variability.  

According to the method described in Section 5.5, 

Hermite polynomials of various orders using the standard 

Gaussian “seed” can also be used to enable the stochastic 

analysis of the sample of Uc (thirty experimental values).  

Fig. 15(b) illustrates the results of the stochastic 

analyses. The figure shows a comparison between the 

empirical PDF of the critical speed Uc evaluated from the 

histogram of the data, and the PDF estimated by Hermite 

chaos using the procedure described in Section 5.5. The 

empirical PDF of the critical speed Uc exhibits a positive 

skewness whereas; the 1
st
 order of polynomial chaos results 

in a shifted normal distribution (as expected); the 2
nd

 order 

expansion results in a negative skewness. Finally, the PDF 

obtained with a 3
rd

-order Hermite polynomial has a positive 

skewness; it shows a peak around 30 m/s, close to the 

empirical histogram of Uc.  

 

 
(a) Variation of critical flutter speed Uc compared to its 

mean value (dashed line) 

 
(b) Probability density function (PDF) of Uc 

Fig. 15 Critical flutter speed Uc calculated using 30 sets 

of flutter derivatives, measured in wind tunnel 
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Nevertheless, the behavior in the tails of the distribution 

is dissimilar from the empirical data of Uc. These 

discrepancies are possibly attributed to the limited number 

of experimental realizations, which were used to determine 

the Hermite expansion coefficients of the Uc model, and 

possibly affected by the numerical solution of the flutter 

equation. The sample size (30) is small in comparison with 

literature recommendations (e.g., Schoefs et al. 2011); this 

limitation was unfortunately controlled by the number of 

experiments. Even though the polynomial chaos expansion 

suggested promising results for representation of flutter 

derivatives (Section 5.5), the same remark cannot be made 

for the critical speed. Using a different set of polynomials 

may be needed (Xiu and Karniadakis 2002). This additional 

study is beyond the scope of this paper and may possibly be 

considered in the future.  

 

 

7. Conclusions 
 
The purpose of this paper was to examine the variability 

of the Scanlan (flutter) derivatives, evaluated in wind tunnel, 

for a typical section model of a closed-box bridge girder. 

This objective was achieved by investigating the statistical 

properties and the probability distributions of the 

experimentally-determined flutter derivatives at various 

reduced velocities. Properties included: standard deviations, 

cross-correlation coefficients, variance-covariance matrix. 

Analysis was also expanded to identify a suitable model for 

describing the probability distribution of the derivatives. 

Significant experimental data variability was found. 

Consequently, using the mean value of the flutter 

derivatives, is not a representative quantity that can be used 

for bridge design. Error analysis is therefore desirable to 

verify variability in the structural bridge response.  

Results also indicated a non-negligible variability in the 

flutter critical speed of the wind-tunnel section model, in a 

range variable between about 25 and 40 m/s.  

The Gaussian distribution may be used, as a first 

approximation only, to describe variability in the flutter 

derivatives. No distribution model appears to suitably 

describe experimental variability at all reduced velocities 

and, consequent variability in the flutter speed of the section 

model. The study suggests that non-parametric methods, 

such as the polynomial chaos expansion, are very helpful 

and can be used to more accurately represent the data 

variability, to replicate skewness and long tails in the 

empirical distributions of both flutter derivatives and flutter 

speed.  

In any case, the present study is an initial investigation; 

further studies are necessary to confirm the results for other 

deck geometries and laboratory conditions. Observed 

experimental variability is also associated with the specific 

experimental setup and unavoidable laboratory constraints. 

A better design of the “release system” and experimental 

setup might have further reduced variability in the initial 

conditions of the free-decay tests and, consequently, 

partially eliminated the experimental variability. An 

enhanced setup design should possibly be considered in the 

future. 
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