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1. Introduction 
 

Structural elements such as beams, plates, and 

membranes in micro or nanolength scale are commonly 

used as components in micro/nano electromechanical 

systems (MEMS/NEMS). Therefore understanding the 

mechanical and physical properties of nanostructures is 

necessary for its practical applications. Nanoscale 

engineering materials have attracted great interest in 

modern science and technology after the invention of 

carbon nanotubes (CNTs) by Iijima, (1991). They have 

significant mechanical, thermal and electrical performances 

that are superior to the conventional structural materials. In 

recent years, nanobeams and CNTs hold a wide variety of 

potential applications (Zhang et al. 2004, Wang 2005, Wang 

and Varadan 2006) such as sensors, actuators, transistors, 

probes, and resonators in NEMSs. For instance, in 

MEMS/NEMS; nanostructures have been used in many 

areas including communications, machinery, information 

technology and biotechnology technologies.  

Moreover functionally graded materials (FGMs) are 

composite materials with inhomogeneous micromechanical 

structure. They are generally composed of two different 

parts such as ceramic with excellent characteristics in heat 

and corrosive resistances and metal with toughness. The 

material properties of FGMs change smoothly between two  
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surfaces and the advantages of this combination lead to 

novel structures which can withstand in large mechanical 

loadings under high temperature environments (Ebrahimi 

and Rastgoo 2008). Presenting novel properties, FGMs 

have also attracted intensive research interests, which were 

mainly focused on their static, dynamic and vibration 

characteristics of FG structures (Ebrahimi et al. 2009, 

Aghelinejad et al. 2011, Ebrahimi and Rastgoo 2008a, b, 

2009, 2011). 

Since conducting experiments at the nanoscale is a 

daunting task, and atomistic modeling is restricted to small-

scale systems owing to computer resource limitations, 

continuum mechanics offers an easy and useful tool for the 

analysis of CNTs. However the classical continuum models 

need to be extended to consider the nanoscale effects and 

this can be achieved through the nonlocal elasticity theory 

proposed by Eringen (1972) which consider the size-

dependent effect. According to this theory, the stress state at 

a reference point is considered as a function of strain states 

of all points in the body.  This nonlocal theory is proved to 

be in accordance with atomic model of lattice dynamics and 

with experimental observations on phonon dispersion 

(Eringen 1983).  

Moreover, in recent years the application of nonlocal 

elasticity theory, in micro and nanomaterials has received a 

considerable attention within the nanotechnology 

community. Peddieson et al. (2003) proposed a version of 

nonlocal elasticity theory which is employed to develop a 

nonlocal Euler beam model. Wang and Liew (2007) carried 

out the static analysis of micro- and nano-structures based 

on nonlocal continuum mechanics using Euler-Bernoulli 
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beam theory and Timoshenko beam theory. Aydogdu (2009) 

proposed a generalized nonlocal beam theory to study 

bending, buckling, and free vibration of nanobeams based 

on Eringen model using different beam theories. Phadikar 

and Pradhan (2010) reported finite element formulations for 

nonlocal elastic Euler–Bernoulli beam and Kirchhoff plate 

theory. Civalek and Demir (2011) developed a nonlocal 

beam model for the bending analysis of microtubules based 

on the Euler–Bernoulli beam theory. The size effect is taken 

into consideration using the Eringen’s nonlocal elasticity 

theory and the analysis of mechanical characteristics of 

nanostructures is one of the interesting research topics. 

(Ebrahimi and Barati 2016f, g, h, Ebrahimi and Barati 

2017). 

Furthermore, with the development of the material 

technology, FGMs have also been employed in 

MEMS/NEMS (Witvrouw and Mehta 2005, Lee et al. 

2006). Because of high sensitivity of MEMS/ NEMS to 

external stimulations, understanding mechanical properties 

and vibration behavior of them are of significant importance 

to the design and manufacture of FG MEMS/NEMS. Thus, 

establishing an accurate model of FG nanobeams is a key 

issue for successful NEMS design. Kiani et al. (2011) 

proposed the critical buckling temperature of Timoshenko 

FGM beams with surface-bonded piezoelectric layers 

subjected to both thermal loading and constant electric 

voltage. It was shown that increasing the thickness of 

piezoelectric FGM beam, the critical buckling temperature 

difference increases. The nonlinear static response of FGM 

beams under in-plane thermal loading is studied by Ma and 

Lee (2012). Ke and Wang (2011) exploited the size effect 

on dynamic stability of functionally graded Timoshenko 

microbeams. Employing modified couple stress theory the 

nonlinear free vibration of FG microbeams based on von-

Karman geometric nonlinearity was presented by Ke et al. 

(2012). It was revealed that both the linear and nonlinear 

frequencies increase significantly when the thickness of the 

FGM microbeam was comparable to the material length 

scale parameter. Eltaher et al. (2013) applied a finite 

element formulation for static-buckling analysis of FG 

nanobeams based on nonlocal Euler beam theory. Using 

nonlocal Timoshenko and Euler–Bernoulli beam theory, 

Simsek and Yurtcu (2013) investigated bending and 

buckling of FG nanobeam by analytical method. Recently, 

Ebrahimi and Salari (2015) studied thermal buckling and  

free vibration of functionally graded nanobeam within the 

framework of Timoshenko beam model subjected to linear 

temperature rise. Thermal buckling and free vibration 

analysis of FG nanobeams subjected to temperature 

distribution have been exactly investigated by Ebrahimi and 

Salari (2015a, b, c) and Ebrahimi et al. (2015a, b). Ebrahimi 

and Barati (2016o, p, q) investigated buckling behavior of 

smart piezoelectrically actuated higher-order size-dependent 

graded nanoscale beams and plates in thermal environment. 

As the common use of FGM beams in high temperature 

environment leads to considerable changes in material 

properties. Consequently, thermal effects become important 

when the FG nanodevice has to operate in either extremely 

hot or cold temperature environments. Therefore, there is 

strong scientific need to understand the thermal buckling 

behavior of graded nanobeams under thermal loading. 

According to this fact, in this study, thermal buckling 

characteristics of FG nanobeams considering the effect of 

uniform temperature rise across the thickness is analyzed. 

An analytical method called Navier solution is employed 

for thermal buckling analysis of FG nanobeams for the first 

time. The thermo-mechanical material properties of the 

beam is assumed to be graded in the thickness direction 

according to the power law distribution. Non-classical 

Timoshenko beam model and Eringen’s nonlocal elasticity 

theory can capture size effect are employed. Governing 

equations and boundary conditions for the thermal buckling 

of a nonlocal FG nanobeam have been derived via 

Hamilton’s principle. These equations are solved using 

Navier type method and numerical solutions are obtained. 

The detailed mathematical derivations are presented while 

the emphasis is placed on investigating the effect of several 

parameters such as power-law index, aspect ratio and length 

scale parameter on buckling characteristics of size-

dependent FG nanobeams. Comparison between results of 

the present study and those available data in literature 

shows the accuracy of this model. Due to lack of similar 

results on the buckling response of FG nanostructure, this 

study is likely to fill a gap in the state of the art of this 

problem. 

 

 

2. Theory and formulation 
 
2.1 Nonlocal power-law FG nanobeam equations 
 

Consider a FG nanobeam of length L, width b and 

uniform thickness h in the unstressed reference configuration. 

The coordinate system for FG nanobeam is shown in Fig. 1. 

The nanobeam is made of elastic and isotropic functionally 

graded material with properties varying smoothly in the z 

thickness direction only. The effective material properties of 

the FG beam such as Young’s modulus 
fE and shear 

modulus 
fG  are assumed to vary continuously in the 

thickness direction (z-axis direction) according to a power 

function of the volume fractions of the constituents. 

According to the rule of mixture, the effective material 

properties, 
fP , can be expressed as (Simsek and Yurtcu, 

2013) 

f c c m mV VP P P   (1) 

 

 

 

Fig. 1 Geometry and coordinates of FG nanobeam  
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where 
mP ,

cP ,
mV and 

cV are the material properties and 

the volume fractions of the metal and the ceramic 

constituents related by 

1c mV V   (2a) 

The volume fraction of the ceramic constituent of the 

beam is assumed to be given by 

1
( )

2

p

c

z
V

h
   (2b) 

Here p is the non-negative variable parameter (power-

law exponent) which determines the material distribution 

through the thickness of the beam and z is the distance from 

the mid-plane of the FG beam. The FG beam becomes a 

fully ceramic beam when p is set to be zero. Therefore, 

from Eqs. (1) and (2), the effective material properties of the 

FG nanobeam such as Young’s modulus ( E ), thermal 

expansion ( ) and Poisson’s ratio ( ) can be expressed as 

follows 

 
1

( )
2

p

c m m

z
z P

h
P PP   

 
 
 

 (3) 

To predict the behavior of FGMs under high 

temperature more accurately, it is necessary to consider the 

temperature dependency on material properties. The 

nonlinear equation of thermo-elastic material properties in 

function of temperature ( )T K can be expressed as 

(Touloukian 1967) 

1 2 3
0 1 1 2 3( 1 )P P P T P T P T P T

      (4) 

where 
0

T T T   and 
0

300KT  (ambient or free 

stress temperature), T is the temperature change, 

0 1 1 2
, , ,P P P P


and 

3
P  are the temperature dependent 

coefficients which can be seen in the table of materials 

properties (Table 1) for 3 4Si N and SUS304 . The bottom 

surface (z = -h/2) of FG nanobeam is pure metal ( SUS304 ), 

whereas the top surface (z = h/2) is pure ceramics ( 3 4Si N ). 

 

2.2 Kinematic relations 
 

The equations of motion is derived based on the 

Timoshenko beam theory according to which the 

displacement field at any point of the beam can be written 

as 

   , , , ( , ),

( , , ) ( , )

 



x

z

u x z t u x t z x t

u x z t w x t
 (5) 

where t  is time, 
 

is the total bending rotation of the 

cross-section, u  and w are displacement components of 

the mid-plane along x  and z directions, respectively. 

Therefore, according to the Timoshenko beam theory, the 

nonzero strains are obtained as 

xx

u

x
z

x










 
 (6) 

 

xz

w

x
 


 


 (7) 

where 
xx  and xy  are the normal strain and shear 

strain, respectively. Based on the Hamilton’s principle, 

which states that the motion of an elastic structure during 

the time interval 1t  < t  < 2t  is such that the time 

integral of the total dynamics potential is extremum 

0
( ) 0

t

U V dt    
(8) 

Here U is strain energy and V is work done by external 

forces. The virtual strain energy can be calculated as 

( )

   

     

 

 





ij ij
v

xx xx xz xz
v

U dV

dV
 (9) 

Substituting Eqs. (6) and (7) into Eq. (9) yields 

 U

0
( ( ) ( ) ( ))


   
  

  
  

L u w
N M Q dx

x x x
 

(10) 

In which N is the axial force, M is the bending 

moment and Q is the shear force. These stress resultants 

used in Eq. (10) are defined as 

, , 



 



 



xx xx
A A

s xz
A

N dA M z dA

Q K dA
 (11) 

where 5 / 6
s

K   is the shear correction factor. For a 

typical FG nanobeam which has been in high temperature 

environment for a long period of time, it is assumed that the 

temperature can be distributed uniformly across its 

thickness, so that the case of uniform temperature rise is 

taken into consideration. In this investigation, initial 

uniform temperature (
0

300T K ), which is a stress free 

state, changes to final temperature with T . Hence, the 

first variation of the work done corresponding to 

temperature change can be written in the form (Kim 2005, 

Mahi et al. 2010) 

0
( )

L
T w w

V N dx
x x

 
 


   (12) 

where 
TN is thermal resultant can be expressed as 

/2

/2
( , ) ( , )

h
T

h
N E z T z T T dz


   (13) 
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By Substituting Eqs. (10) and (12) into Eq. (8) and 

setting the coefficients of ,u w  and  to zero, the 

following Euler–Lagrange equation can be obtained 

0
N

x





 (14a) 

 

2

2
0TQ w

N
x x

 
 

 
 (14b) 

 

0
M

Q
x


 


 (14c) 

Under the following boundary conditions 

0N   or  0u    at 0x    and x L  (15a) 

 

0Q   or  0w    at 0x   and x L  (15b) 

 

0M   or 0    at 0x   and x L  (15c) 

 

2.3 The nonlocal elasticity model for FG 
nanobeam 

 

According on Eringen nonlocal elasticity model 

(Eringen and Edelen 1972), for a homogeneous and 

isotropic elastic solid the nonlocal stress-tensor components

ij at any point x  in the body may be obtained as 

( ) ( , ) ( ) ( )ij ijx x x t x d x  


      (16a) 

 

ij ijkl klt C   (16b) 

where ijt
 

are the components of the classical stress tensor 

at point x  which are related to the components of the 

linear strain tensor kl  by the conventional constitutive 

relations. The kernel function ( , )x x  
 

is nonlocal 

modulus, xx 
 

is the Euclidean distance and   is a 

material constant. According to (Eringen 1983) for a class 

of physically admissible kernel ),(  xx 
 

it is possible 

to represent the integral constitutive relations given by Eq. 

(16) in an equivalent differential form as 

2 2
0(1 ( ) ) kl kle a t    (17) 

where 
2 is the Laplacian operator. 

2
0( )e a  is the 

nonlocal parameter, in which, 0e  is a constant appropriate 

to each material and a  is an internal characteristics 

length. For an elastic material in the one dimensional case, 

the nonlocal constitutive relations may be simplified as 

2
2

0 2
( ) xx

xx xxe a E
x


 


 


 (18) 

 
2

2

0 2
( ) xz

xz xze a G
x


 


 


 (19) 

where  and   are the nonlocal stress and strain, 

respectively. E is the Young’s modulus, / 2(1 )G E   is 

the shear modulus (where  is the poisson’s ratio). For 

Timoshenko nonlocal FG beam, Eqs. (18) and (19) can be 

rewritten as 

2

2
( )xx

xx xxE z
x


  


 


 (20) 

 
2

2
( )xz

xz xzG z
x


  


 


 (21) 

where (
2

0( )e a  ). Integrating Eqs. (20) and (21) over the 

beam’s cross-section area, the force-strain and the moment-

strain of the nonlocal Timoshenko FG beam theory can be 

obtained as follows 
2

2 xx xx

N u
N A B

x x x



  

  
  

 (22) 

 
2

2 xx xx

M u
M B D

x x x



  

  
  

 (23) 

 
2

2
( )xz

Q w
Q C

x x
 
 

  
 

 (24) 

in which the cross-sectional rigidities are defined as 

2( , , ) ( , ) (1, , )xx xx xx
A

A B D E z T z z dA   (25) 

 

( )xz s
A

C K G z dA   (26) 

The explicit relation of the nonlocal normal force can be 

derived by substituting for the second derivative of N from 

Eq. (14(a)) into Eq. (22) as follows 

xx xx

u
N A B

x x

 
 

 
 (27) 

Also the explicit relation of the nonlocal bending 

moment can be derived by substituting for the second 

derivative of M from Eq. (14(c)) into Eq. (23) as follows 

2

2
( )T

xx xx

u w
M B D N

x x x




  
  

  
 (28) 
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By substituting for the second derivative of Q from Eq. 

(14(b)) into Eq. (24), the following expression for the 

nonlocal shear force is derived 

3

3
( ) ( )T

xz

w w
Q C N

x x
 

 
  

 
 (29) 

The nonlocal governing equations of Timoshenko FG 

nanobeam in terms of the displacement can be dreived by 

substituting for N, M and Q from Eqs. (27)-(29), 

respectively, into Eq. (14) as follows 

2

xx xx2

2

2
0

u
A B

x x

 
 

 
 (30a) 

 
2 4 2

2 4 2
( ) ( ) 0T T

xz

w w w
C N N

x x x x




   
   

   
 (30b) 

 
2 2

2xx xx 2
( ) 0xz

u w
B D C

x x x




  
   

  
 (30c) 

 

 

3. Solution procedures 
 

In this section, the analytical solutions of the governing 

equations for thermal buckling of FG nanobeam with 

simply supported (S-S) boundary conditions are derived by 

using Navier method. The displacement functions are 

expressed as product of undetermined coefficients and 

known trigonometric functions to satisfy the governing 

equations and the conditions at x  = 0, L . The following 

displacement fields are assumed to be of the form 

1

( , ) cos ( ) ni t

n

n

n
u x t U x e

L





  (31) 

 

1

( , ) sin ( ) ni t

n

n

n
w x t W x e

L





  (32) 

 

1

( , ) cos ( ) ni t

n

n

n
x t x e

L


 





  (33) 

where ( , ,n n nU W  ) are the unknown Fourier coefficients 

to be determined for each n value. Substituting Eqs. (31)-

(33) into Eqs. (30(a))-(30(c)) respectively, and setting the 

determinant of the coefficient matrix, the analytical 

solutions can be obtained from the following equations 

 ([ ] [ ]) 0

n

T n

n

U

K T K W



 
 

   
 
 

 (34) 

where [ ]K and [ ]TK are stiffness matrix and the coefficient 

matrix of temperature change, respectively. By setting this 

polynomial to zero, we can find critical buckling 

temperature crT . 

 

 

4. Numerical results and discussions  
 

In this section, the thermal buckling of an FGM 

nanobeam under uniform thermal loading is investigated 

through some numerical examples and some comparisons 

are made between the results obtained from Navier solution 

method and other numerical technique so that the accuracy 

of present work is verified. Also, to demonstrate the length-

to-thickness ratio and nonlocal parameter effects on the 

thermal buckling analysis of FG nanobeams, variations of 

the critical buckling temperatures versus nonlocal 

parameter, power law index, and aspect ratios of the FG 

nanobeam, are presented in this section. To this end, the 

nonlocal FG beam made of SUS304
 

and 3 4Si N , with 

thermo-mechanical material properties listed in Table 1, is 

considered. The bottom surface of the graded nanobeam is 

SUS304  rich, whereas the top surface of the beam is 

3 4Si N  rich. Also, the beam geometry has the following 

dimensions: L (length) = 10 nm and h (thickness) = varied.  

The numerical or analytical results for the thermal 

buckling behavior of FG nanobeam based on the nonlocal 

elasticity theory are not available in the literature. As part of 

the validation of the present method, a comparison study is 

performed to check the reliability of the present method and 

formulation. For this purpose, the FG nanobeam consists of 

SUS304  and 3 4Si N
 

is considered. Thus to check the 

accuracy of the developed model, in Table 2, the critical 

buckling temperatures of S-S FG nanobeams under linear 

thermal loading are compared with those of Ebrahimi and 

Salari (2015) which has been obtained by analytical 

solution for various values of the gradient index and 

nonlocality parameter. It is obvious from Table 2 that there 

is good agreement between the two results.  

After extensive validation of the present formulation for 

S-S FG nanobeams, the effects of different parameters such 

as aspect ratio, nonlocality parameter and gradient index on 

the thermal buckling of FG nanobeam are investigated. In 

Table 3 critical buckling temperature of the simply 

supported FG nanobeams are presented for various values 

of the gradient index ( p =0,0.2,0.5,1,2,5), nonlocal 

parameters (  =0,1,2,3,4) and three different values of 

aspect ratio ( /L h =40, 50, 60) based on analytical Navier 

solution method. It is evident from the results of the table 

that increasing the nonlocality parameter yields the 

reduction in buckling temperature for every material 

graduation and aspect ratio parameters, which these 

observations mean that the small scale effects in the 

nonlocal model make FG nanobeams more flexible. So that 

by fixing other parameters and increasing nonlocal 

parameter from 0 to 4 the crT decreases about 28%. In 

addition, it is indicated that increase the power indexes and 

aspect ratio parameter lead to a decrease of the crT . 
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This is because that as increasing the value of gradient 

index the percentage of SUS304  phase will rise, thus 

making such FG nanobeams more flexible. At the same 

time, there is no available data for the critical buckling 

temperature of FG nanobeams as far as the author knows. 

Therefore, it is believed that the tabulated results can be 

useful reference for future studies. Effects of changing 

length-to-thickness ratio (L/h) on the thermal buckling 

behavior of FG nanobeam for different values of power 

index and nonlocal parameter are investigated in Fig. 2. 

Observing this figure, it can be pointed that the values of 

critical temperature difference decrease with the increasing 

value of the aspect ratio at a constant material distribution.  

 

 

 

 

 

 

 

That is because a higher length-to-thickness ratio 

indicates that the FGM nanobeam is thinner with a lower 

stiffness. In addition, it is deduced that the buckling 

temperature decreases by increasing nonlocality parameters. 

Finally, in order to clarify the effect of the small scale 

parameter and power indexes on the buckling analysis, Fig. 

3 intuitively exhibits the variations of the critical 

temperature difference of nonlocal FG beam with respect to 

volume fraction indexes for different values of nonlocal 

parameter and slenderness ratio. It is easily deduced for 

every cases of aspect ratio that, the buckling temperature 

reduce with high rate where the power exponent in range 

from 0 to 2 than that where power exponent in range  

Table 1 Physical and mechanical properties of 3 4Si N and SUS304
 

Material Properties 
0

P  
1

P


 
1

P  
2

P  
3

P  

3 4Si N  (Pa)E  348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

 -1(K )  5.8723e-6 0 9.095e-4 0 0 

   0.24 0 0 0 0 

       

SUS304  (Pa)E  201.04e+9 0 3.079e-4 -6.534e-7 0 

 -1(K )  12.330e-6 0 8.086e-4 0 0 

   0.3262 0 -2.002e-4 3.797e-7 0 

Table 2 Comparison of the critical buckling temperature for a S-S FG nanobeam under linear thermal loading with 

various volume fraction index ( h =0.25 nm, L =10 nm)
 

2(nm)  

p = 0 p = 0.5 p = 1 p = 5 

Ebrahimi 

and Salari 

(2015b) 

Present  

Ebrahimi and 

Salari 

(2015b) 

Present  

Ebrahimi 

and Salari 

(2015b) 

Present  

Ebrahimi and 

Salari 

(2015b) 

Present  

0 127.3340 127.334297 95.5739 95.573949 84.6229 84.622945 69.4307 69.430660 

1 114.9980 114.997534 86.0456 86.045625 76.0818 76.081774 62.2798 62.279780 

2 104.6950 104.694508 78.0881 78.088061 68.9486 68.948630 56.3077 56.307734 

3 95.9606 95.960616 71.3424 71.342420 62.9019 62.901852 51.2452 51.245221 

4 88.4628 88.462758 65.5514 65.551434 57.7108 57.710823 46.8992 46.899162 

Table 3 Material graduation and aspect ratio effect on the critical buckling temperature of a S-S FG nanobeam with 

different nonlocality parameters 

2(nm)  /L h  
Gradient index 

0 0.2 0.5 1 2 5 

0 40 68.6671 57.8509 50.5266 45.4570 41.9905 39.1223 

 50 43.9712 37.0448 32.3547 29.1086 26.8894 25.0534 

 60 30.5447 25.7331 22.4752 20.2204 18.6790 17.4039 

1 40 62.4988 52.6542 45.9878 41.3736 38.2185 35.6080 

 50 40.0212 33.7170 29.4482 26.4938 24.4739 22.8029 

 60 27.8008 23.4215 20.4562 18.4040 17.0011 15.8405 

2 40 57.3473 48.3141 42.1972 37.9634 35.0683 32.6729 

 50 36.7224 30.9379 27.0209 24.3100 22.4566 20.9233 

 60 25.5093 21.4910 18.7701 16.8870 15.5998 14.5349 

3 40 52.9803 44.6350 38.9840 35.0725 32.3979 30.1849 

 50 33.9261 28.5820 24.9633 22.4588 20.7466 19.3300 

 60 23.5668 19.8545 17.3408 15.6011 14.4119 13.4280 

4 40 49.2314 41.4766 36.2254 32.5907 30.1054 28.0490 

 50 31.5254 26.5595 23.1969 20.8696 19.2785 17.9622 

 60 21.8992 18.4496 16.1137 14.4972 13.3921 12.4779 
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between 2 and 10. However, the above results obtained also 

show that the critical temperature of the nonlocal FG model 

are always smaller than those of the classical graded beam 

model. With the increase the nonlocal parameter  from 0 to  

 

 

 

4
2(nm) , the crT decrease significantly. The results 

indicate that the nonlocal effect is tending to weaken the 

stiffnes of nanostructures and hence decreases the buckling 

temperatures. 

 

  

(a) 20 (nm)   (b) 21(nm)   

  

(c) 
22 (nm)   (d) 23 (nm)   

 

(e) 24 (nm)   

Fig. 2 The variation of the critical buckling temperature of S-S FG nanobeam with aspect ratios and material graduations 

for different nonlocality parameters. 
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5. Conclusions 
 
This study focuses on the thermal buckling of a size-

dependent FG nanobeam by using Timoshenko beam theory 

and Eringen’s nonlocal elasticity theory. The governing 

differential equations and related boundary conditions are 

derived by implementing Hamilton’s principle. The Navier 

solution method is adopted to obtain the analytical solutions 

of the stability equations. Thermo-mechanical properties of 

the FG nanobeams are assumed to be function of thickness 

and based on power-law model. Accuracy of the results is 

examined using available data in the literature. Finally, 

through some parametric study and numerical examples, the 

effect of different parameters are investigated for graded 

nanobeams. As shown in several numerical exercises, it is 

revealed that many parameters such as small scale 

parameter, power-law gradient index and aspect ratio have 

significant impact on critical buckling temperature of FG 

nanobeams. As previously specified, increasing the nonlocal 

parameter yields the decrease in critical temperatures for 

every graduation index parameter. However, the FG 

nanobeam model produces smaller buckling temperature  

 

 

than the classical beam model. Therefore, the small scale 

effects should be considered in the analysis of mechanical 

behavior of nanostructures. Also, it was observed that the 

dramatic reduction in critical temperature differences of the 

nonlocal FG beam is detected as the increase of the power-

law index and aspect ratio. 
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