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1. Introduction 
 

So far, a lot of empirical research has been done to 

model various structures. These modeling are divided into 

two categories: atomic modeling and continuous 

environmental mechanistic modeling. The most important 

techniques for atomic modeling are molecular dynamics, 

solid bond molecular dynamics and basic density theory. 

These modeling are highly time consuming and have 

complex calculations for systems containing many atoms, 

and, moreover, practical applications of this modeling are 

very limited. On the other hand, with the advancement of 

continuous mechanics, it is possible to overcome the 

limitations of atomic modeling. Today, continuous 

mechanical models are widely used to model structures. A 

comparison of the results of atomic modeling and 

continuous environment mechanics indicates that 

continuous mechanical modeling has acceptable results in 

predicting the dynamic behavior of systems. Therefore, 

most researchers use continuous mechanical modeling to 

study the dynamic and static behavior of different 

structures, referred to in the later paragraphs. 

In recent years, theoretical and laboratory studies on 

nanocomposites have been carried out. In this context, 

Wuite and Adali (2005) performed a stress-strain analysis of 

reinforced carbon nanotubes. They concluded that the 

presence of carbon nanotubes as a booster phase can 

increase the stability and rigidity of the system. Matsuna 

(2007) examined the stability of composite cylindrical 

shells with the help of third-order shear theory. Formica  
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(2010) studied the vibrations of reinforced carbon 

nanotubes sheets and used the Mori-Tanaka model to match 

the composite-equivalent properties. Liew et al. (2014) 

analyzed buckling nanocomposite layers. In this study, the 

mixing rule was used to obtain the equivalent properties of 

nanocomposites. A non-mesh method was also used to 

analyze and calculate the buckling load of a nanosized 

composite structure. In another similar work, Lei et al. 

(2014) analyzed the dynamic stability of panels reinforced 

with carbon nanotubes. They used the Mori-Tanaka model 

to simulate nanocomposite properties and obtained the 

system instability with the help of Ritz's method. The 

buckling analysis of polymer plates reinforced with carbon 

nanotubes was carried out by Kolahchi et al. (2013). In this 

work, the mixing rule was used to compute the equivalent 

properties of the composite. They used the square difference 

method to obtain the buckling load of the structure. In 

another work by Kolahchi et al. (2016), the dynamic 

buckling of reinforced carbon nanotube plates was 

investigated in a functionalized form. The plate properties 

were considered as temperature dependent and the elastic 

environment surrounding the structure was simulated using 

the orthotropic Pasternak model. 

In the field of mathematical modeling of concrete 

structures, very limited work has been done. As a buckling 

example, reinforced concrete columns reinforced with 

carbon nanoparticles polymerized by Zamanian  et al. 

(2017) along with Safari Bilouei et al. (2017). Jafarian 

Arani et al. (2016) studied buckling of reinforced concrete 

columns with carbon nanotubes, concluding that an increase 

in the volume of nanotubes resulted in increased buckling 

load. Analysis of the stresses of concrete pipes reinforced 

with iron oxide nanoparticles reinforced by iron oxide 

nanoparticles by Heidarzadeh et al. (2017). Arbabi et al. 

(2017) analyzed the buckling of reinforced concrete beams  
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reinforced with zinc oxide nanoparticles under the electric 

field. 

According to the search of scientific databases in the 

world, no scholar has investigated the effect of titanium 

dioxide nanoparticles on the seismic response of concrete 

beams. This topic is important in the specialty engineering 

and nanocomposites. Therefore, in this project, the 

dynamical response of concrete columns reinforced with 

titanium dioxide nanoparticles under earthquake load is 

investigated. With the help of the Mori-Tanaka model, the 

properties of the concrete are equilibrated and the 

nanoparticles agglomerations are considered. The motion 

equations are based on the volume percentage of TiO2 

nanoparticles, which can change the effect of 

nanotechnology on the seismic response. The structure is 

also mathematically modeled using SSDT and the DQ 

numerical method is used to obtain the dynamic deflection 

of the structure. 

 

 

2. Motion equations 
 

2.1 Stress and strain relations 
 

Fig. 1 shows a concrete column with the length of L, 

thickness of h and width of b. This column has been 

reinforced with TiO2 nanoparticles considering 

agglomeration effects. 

Using the theory of sine wave shear displacement field is as 

follows (Thai and Vo 2012) 
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where u  and w  are displacements at the middle plane in 

the longitudinal and transverse directions, respectively. Also
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also indicates the rotation of the 

cross section around the y axis. 

Using Eqs. (1)-(3), the strain-displacement equations are 

written as follows 
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The stress-strain relations of the structure are simplified 

as follows 

11 ,xx xxC   (6) 

 

55 ,xz xzC   (7) 

 

2.2 Mori-Tanaka model 
 

In this section, the properties and coefficients of 

concrete beam reinforced with TiO2 nanoparticles are 

examined from a micro-mechanical viewpoint. It is 

assumed that the concrete beam is isotropic, and the Young 

modulus and its Poisson ratio coefficient are Em and νm 

respectively. The stress-strain relation in the local 

coordinates of an elementary element in this case is 

expressed as follows (Mori and Tanaka 1973) 
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(8) 

 

Fig. 1 Concrete column reinforced with titanium dioxide nanoparticles under earthquake load 
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In the above equation, k, l, m, n, p are elastic modules of 

Hill which are 

2
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(9) 

In the above relations kr, lr, nr, pr, mr are the elasticity 

modulus of the Hill for the reinforced phase (TiO2 

nanoparticles). Experimental results show that most 

nanoparticles are irregular (Shi and Feng 2004). A large 

amount of nanoparticles inside the composite are 

concentrated in a region (Shi and Feng 2004). This region is 

supposed to be spherical and we call it the so-called "space" 

which has different properties with the surrounding 

material. Vr is the final volume of nanoparticles and we will 

have 
inclusion m

r r rV V V   (10) 

In which 
inclusion

rV
 and 

Vr
m

 are the volume of 

nanoparticles in the capacity and the concrete, respectively. 

The following two parameters are used to show the 

agglomeration effect in a micromechanical model
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Cr is the volume fraction of the nanoparticles in the 

concrete beam as follows 

.r
r
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C

V
  (13) 

Assuming that the isotropic nanoparticles are transverse 

and are completely randomly located in the capacity, the 

isotropic capacity is assumed, and using the Mori-Tanaka 

method for the isotropic materials, the volume modulus K 

and the shear modulus G are as follows 
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In the above relations, Kin and Kout, respectively, have a 

volumetric capacitance and composite capacity minus, 

respectively, and Gin and Gout respectively have a 

volumetric capacitance and composite capacity minus, 

respectively, obtained from the following relationships 
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where , , ,r r r r    are 
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Also, Km and Gm are the volumetric and shear modulus 

of the base phase, respectively which are 
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In addition ,  , are 
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By obtaining the K modulus and the shear modulus G of 

the nanocomposite using the above relations, E and υ are 

obtained from the following equation 
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2.3 Energy method  
 

One of the most comprehensive ways to get the 

governing equations of the system is to write energy and 

apply the principle of Hamilton. The potential energy of the 

structure is given by 
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By substituting Eqs. (4) and (5) into Eq. (31), the 

potential energy is as follows: 
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By defining the forces and moments resultants in the 

page as follows 
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the potential energy can be simplified as follows 
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The Kinetic energy is written in the general form as 

follows 
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where 
 

is the density of the structure. Substituting Eqs. 

(1)-(3) in the above relation yields 

2 2

0

22
2

2 3 3 2

( ) ( )

.
24 24 6

( )

u w
I

t t
K dx

w w w
I

x t x t t x t

  

  

   
     

        
                 


 
(37) 

The external work of earthquake forces is as follows 
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are the mass and acceleration of the 

earth, respectively. Hamilton's principle is expressed as 

follows 

0
( ) 0,

t

U K W dt      (39) 

By inserting Eqs. (35), (37) and (38) into Eq. (39) and 

using the integral of the component and arranging the 

relations in the direction of mechanical displacement, the 

three motion equations are as follows 
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By inserting Eqs. (4)-(7) into Eqs. (33) and (34), the 

internal forces and moments of the column can be 

calculated as follows 
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where
 

    ,,1, 2

 A
dAzIA  (47) 

Now, with substituting Eqs. (43) to (46) into Eqs. (40) to 

(42), the relations are obtained in terms of mechanical 

displacements as
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The boundary conditions in this project are considered 

as follows 
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3. Numerical method 
 

3.1 DQ method 
 

The DQ method is one of the numerical methods in 

which the weighting coefficients of the governing 

differential equations are converted into a set of first-order 

algebraic equations. In this way, at each point, the 

derivative is expressed as a linear sum of the weight 

coefficients and the function values at that point and other 

points of the domain in the direction of the coordinate axes. 

The main relation of these methods for a one-dimensional 

state is expressed as follows (Kolahchi et al. 2016) 







N

j

jij

xx

fC
dx

df i

1

 (54) 

where )(xf
 

is desired function, N  is number of sample 

points
 
and

 ijC  is the weighting coefficients to obtain the 

derivative of the function at the sample point. Chebyshev's 

polynomial roots are used to solve engineering problems 

and bring good results. This transition distance is expressed 

as follows 

1
1 cos 1,...,

2 1
i x

x

L i
X i N

N


  
    

  
 (55) 

The weighting coefficients are 

Njijifor
xLxx

xL
C

jji

i
ij ,...,2,1,,

)()(

)(

1

1)1( 


  
(56) 

 

.,...,2,1,
,1

1)1( NijiforCC
ijj

ijii  


 (57) 

According to the above-mentioned relations for solving 

the governing equations that were calculated in the previous 

chapter, the structures along the length are divided to N 

section. As a result, the points relating to the boundary 

condition and the field must be separated from each other. 

Consequently, the governing equations and boundary 

conditions in the matrix form are written as follows 

 
 

 
 

 

 
 

 

 
 0

,
( )

b bb

d d d

d dd
K C M

d Ma td d

                      
              

 (58) 

In the above [ ]K , ][C  and 
 

][M are respectively, 

the matrix of stiffness, the matrix of the damp and the 

matrix of the mass. Also, in the order of the dynamic range 

vector, the boundary condition }{ bd  and }{ dd
 

field 

conditions are considered. 

 

3.2 Newmark method 
 

In this section, Newmark's numerical method (Simsek, 

2010) has been used in the time domain to obtain the time 

response of a structure under earthquake load. Based on this 

method, Eq. (58) is written in the following general form 

,)( 11

*

  ii QdK  (59) 

where the i + 1 subtitle indicates time (t = ti + 1),
 

)( 1

*

idK  is the effective matrix and 1iQ is the effective 

force vector which are written as follows 

,)()( 1011

* CMdKKdK iNLLi     (60) 

 

   ,5413201

*

1 iiiiiiii dddCdddMQQ    
 (61) 

where (Simsek 2010) 
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(62) 
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In the above relations 50.
 

and 250. . Based on 

the iterative method, Eq. (59) is solved at each time interval 

and the acceleration and the modified speed are calculated 

from the following relationships 

,)( 32101 iiiii ddddd      (63) 

 

,1761   iiii dddd    (64) 

Then, for the next time interval, the acceleration and 

speed corrected in relations (63) and 64) are used and the 

mentioned steps should be repeated again. 

 

4. Results and discussion 
 

In this chapter, we examine the numerical results for the 

dynamic response of concrete column reinforced with 

titanium dioxide nanoparticles under earthquake load. For 

this purpose, a concrete column with length 3L m and 

thickness 15h cm , elastic modulus 20mE GPa and 

Poisson's ratio 0.3m 
 

is considered, which is 

strengthened with TiO2 nanoparticles with elastic modulus 

160rE GPa and Poisson's ratio
 

0.2r   .It should be 

noted that for the acceleration of the earthquake, the Cape 

Mendocino region is considered that its acceleration 

distribution in 30 seconds is shown in Fig. 2. 

 

4.1 Validation of results 
 

Given the fact that this project was first defined globally, 

there is no reference to measuring the results. Therefore, in 

this section, we try to examine the linear dynamic response 

of the structure by two methods and compare the results 

with each other. 

 The first method 

In this method, which is found in most references, the 

response is calculated using vibrational modes. Also, in this 

section the simply supported boundary condition is used as 

 

 

 

Fig. 2 Acceleration of the Cape Mendocino earthquake 
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(65) 

In the above relation ( 1,...3)iA i   and m  

respectively, are the dynamic amplitude and the longitudinal 

half-wave number. By inserting Eq. (65) into linear motion 

equations and writing them in the form of a matrix, we have 

        ,)(tMadMdK    (66) 

where [ ] ( , 1,...3)ijM i j   and
 

[ ] ( , 1,...3)ijK i j  , 

respectively, are mass and stiffness matrixes. Finally, using 

the Newmark method, the dynamic response can be 

obtained. 

 

 The second method 

In this method, DQM is used. In this way, the governing 

equations are derived from the description of Chapters 2 

and 3 in the form of Eq. (66) and using the Newmark 

method, the dynamic response can be calculated. 

The results of the analytical method and the DQ 

numerical method are shown in Fig. 3. It is observed that 

the error of the DQM numerical method is insignificant and 

acceptable with respect to the analytical method, which is a 

sign of the accuracy for the results of this work. 

 

4.2 Numerical method convergence 
 

Fig. 4 shows the convergence of the DQ numerical 

method on the maximum dynamic deflection of the 

structure in terms of the number of grid points. As can be 

seen, with increasing the number of grid points, the 

maximum dynamic deflection of the structure decreases to 

the extent that it converges in both positions. Therefore, in 

the calculations performed in this project, the number of 

grid points for the DQ method is 13. 

 

 

Fig. 3 Comparison of numerical and analytical results 
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Fig. 4 Convergence of the numerical method 

 

 

 

4.3 The effect of different parameters 
 
 Effect of TiO2 nanoparticles 

 

Fig. 5 shows the effect of the volume percentage of the 

TiO2 nanoparticles on the dynamic deflection of the 

structure in terms of time. With regard to the figure, it is 

clear that the larger the volume percentage of TiO2 

nanoparticles, the dynamic deflection of the system 

decreases since the structure rigidity rises. 

Fig. 6 shows the agglomeration effect of TiO2 

nanoparticles in a particular region on the dynamic 

deflection of the structure. As can be seen, considering the 

agglomeration of TiO2 nanoparticles decreases the stiffness 

of the structure and increases the displacement. Since in the 

nano-composite columns, nanoparticles cannot be 

uniformly distributed, the results of this graph can be very 

important.  

 

 

 

Fig. 5 The effect of volume percent of TiO2 nanoparticles 

on the dynamics deflection of the structure 

 

 

 

Fig. 6 The effect of TiO2 nanoparticles agglomeration on 

the dynamics deflection of the structure 

 

 

 

Fig. 7 The effect of boundary conditions on the dynamics 

deflection of the structure 

 

 

 The effect of boundary conditions 
 

Fig. 7 illustrates the effect of different boundary 

conditions on dynamic displacement. As it is seen, 

boundary conditions have a significant effect on the 

dynamic displacement of the system so that the column 

with the clamped boundary conditions at the two ends will 

have a lower dynamic displacement. The reason for this is 

that the structure is less tight and therefore more rigid. Also, 

in the boundary conditions, the simple boundary condition 

has more dynamic displacement. 

 

 The effect of geometrical parameters 

 

The effect of the thickness of the column on the 

dynamic displacement is shown in Fig. 8. It can be seen that 

as the column thickness increases, the dynamic 

displacement of the system decreases, due to the rigidity of 

the structure with increasing thickness. Fig. 9 presents the 

effect of column length on the dynamic displacement of the  
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Fig. 8 The effect of column thickness on the dynamics 

deflection of the structure 

 

 

 

Fig. 9 The effect of column length on the dynamics 

deflection of the structure 

 

 

structure in terms of time. The increase in the length leads 

to an increase in the displacement of the structure. The 

reason for this is reduce the rigidity of the system by 

increasing the length of the column. 

 

 

5. Conclusions 
 

In this research, the dynamic response of a nano-

composite concrete column under earthquake load was 

investigated using the DQ and Newmark methods. The 

column was reinforced by titanium dioxide nanoparticles 

which the effective material properties were obtained by 

Mori-Tanaka model taking into account the agglomeration 

of nanoparticles. Using nonlinear strain-displacement 

equations of SSDT, stress-strain relations, the total energy 

equations are obtained and using Hamilton's method, the 

motion equations were derived. The purpose of this study 

was to investigate the effects of the volume percentages of 

TiO2 nanoparticles, the agglomeration of TiO2 nanoparticles, 

boundary conditions and column geometric parameters on 

the dynamic displacement of the structure. According to the 

graphs drawn, the following results are obtained: 

 The error of the DQ numerical method is 

negligible in comparison with the analytical 

method, which is a sign of the accuracy for the 

results of this work. 

 As the volume percentage of TiO2 nanoparticles 

increases, the dynamic deflection of the system 

decreases. 

 Consideration of the agglomeration of TiO2 

nanoparticles reduces the stiffness of the structure 

and increases the displacement of the structure. 

 Boundary conditions have a significant effect on 

the dynamic displacement of the system so that the 

column with the clamped boundary conditions at 

the two ends will have a lower dynamic 

displacement. 

 By increasing the thickness of the column, the 

dynamic displacement of the system decreases, due 

to the rigidity of the structure with increasing 

thickness. 

 The increase in length of column leads to an 

increase in the displacement of the structure.  
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