
 

 

 

 

 

 

 

 

Wind and Structures, Vol. 25, No. 4 (2017) 381-395 

DOI: https://doi.org/10.12989/was.2017.25.4.381                                                  381 

Copyright ©  2017 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=was&subpage=7         ISSN: 1226-6116 (Print), 1598-6225 (Online) 
 
  

 

 
 
 
 

Vibration and stability of embedded cylindrical shell  
conveying fluid mixed by nanoparticles  

subjected to harmonic temperature distribution 
 

Maryam Shokravi
1 and Nader Jalili2 
 

1
Buein Zahra Technical University, Buein Zahra, Qazvin, Iran 

2
Piezoactive Systems Laboratory, Department of Mechanical and Industrial Engineering,  

Northeastern University, Boston, Massachusetts 02115, USA 

 
(Received May 20, 2017, Revised September 11, 2017, Accepted September 17, 2017) 

 
Abstract.  Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture 
flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. 
Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. 
The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. 
Employing first order shear deformation theory (FSDT), the motion equations are derived using energy 
method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency 
and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, 
boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and 
fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with 
increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be 
increases. 
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1. Introduction 
 

The mix of fluid and nanoparticles produces a nanofluid. In nanofluids, common base 

nanoparticles include metals, oxides, carbides, or carbon nanotubes. The main advantage of 

nanofluids is heat resistances which have many applications in fuel cells, hybrid-powered engines, 

chiller, heat exchanger, boiler and etc. Knowledge of the instability behaviour of nanofluids on the 

structures is found to be very critical in deciding their suitability for convective heat transfer 

applications. 

There are many works in the literature for instability induced by fluid flow on different 

structures. Ryu et al. (2004) studied vibration and dynamic stability of cantilevered pipes 

conveying fluid on elastic foundations. Amabili (2008) studied vibration and stability of 

cylindrical shell conveying fluid using different theories. The instability of simply supported pipes 
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conveying fluid under thermal loads was studied by Qian et al. (2009). A relatively new 

semi-analytical method, called differential transformation method (DTM), was generalized by Ni 

et al. (2011) to analyze the free vibration problem of pipes conveying fluid with several typical 

boundary conditions. Instability of supported pipes conveying fluid subjected to distributed 

follower forces was investigated by Wang (2012) based on the Pflüger column model. Marzani et 

al. (2012) investigated the effect of a non-uniform Winkler-type elastic foundation on the stability 

of pipes conveying fluid fixed at the upstream end only. The dynamics of fluid-conveying 

cantilevered pipe consisting of two segments made of different materials was studied by Dai and 

Ni (2013), focusing on the effects induced by different length ratios between the two segments. An 

analytical study of the velocity profile effects for a straight pipe was presented by Kutin and Bajsić 

(2014). A numerical simultaneous solution involving a linear elastic model was applied by Sun and 

Gu (2014) to study the fluid-structure interaction (FSI) of membrane structures under wind actions. 

Based on Euler- Bernoulli beam theory, Dai et al. (2014) studied instability of tubes conveying 

fluid. The unsteady fluid-structure interaction (FSI) problems with large structural displacement 

were solved by He (2015) using partitioned solution approaches in the arbitrary 

Lagrangian-Eulerian finite element framework. Rivero-Rodriguez and Pérez-Saborid (2015) 

carried out a numerical investigation of the three dimensional nonlinear dynamics of a cantilevered 

pipe conveying fluid in the presence of gravity. Texier and Dorbolo (2015) described the 

deformation of an elastic pipe submitted to gravity and to an internal fluid flow. Maalawi et al. 

(2016) enhanced the pipe overall stability level and avoid the occurrence of flow. Ghaitani and 

Majidian (2017) addressed vibration and instability of embedded functionally graded (FG)-carbon 

nanotubes (CNTs)-reinforced pipes conveying viscous fluid. Structural model for a slender and 

uniform pipe conveying fluid, with axially moving supports on both ends, immersed in an 

incompressible fluid, was formulated by Ni et al. (2017). A hybrid method which combines 

reverberation-ray matrix method and wave propagation method was developed by Deng et al. 

(2017) to investigate the stability of multi-span viscoelastic functionally graded material (FGM) 

pipes conveying fluid. 

Based on author knowledge, no report has been found on the instability of pipes conveying 

fluid-nanoparticles mixture. However, in this paper, vibration and instability of embedded 

cylindrical shell conveying fluid-nanoparticles mixture are studied. The material properties of 

cylindrical shell and elastic foundation are assumed temperature-dependent. Based on FSDT, 

energy method and Hamilton's principle, the motion equations are derived. Using DQM, the 

frequency and critical fluid velocity of the structure are obtained. The effects of volume percent of 

nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature 

change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity 

of the structure. 

 

 

2. Formulation 
 

Fig. 1 shows a cylindrical shell conveying fluid mixed by nanoparticles with the radius of R , 

thickness of h  , length of  L , density of
 
 . The elastic medium is modeled by the spring 

coefficient
 wk   and shear layer gk  . 
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Fig. 1 Scheme of cylindrical shell conveying fluid mixed by nanoparticles surrounded by elastic medium 

 

 

2.1 Strain-displacement relations 
 

Based on FSDT shell theory, the displacement field can be expressed as (Reddy 2004) 

     , , , , , , , ,xu x z t u x t z x t      (1) 

     , , , , , , , ,v x z t v x t z x t      (2) 

   , , , , , ,w x z t w x t   (3) 

where ( ),,,(),,,,(),,,,( tzxwtzxvtzxu  ) denote the displacement components at an arbitrary 

point ( zx ,, ) in the shell, and ( ),,(),,,(),,,( txwtxvtxu  ) are the displacement of a material 

point at ( ,x ) on the mid-plane (i.e., 0z ) of the shell along the x-,  -, and z-directions, 

respectively;
 x and  are the rotations of the normal to the mid-plane about x- and  - 

directions, respectively. Based on above relations, the strain-displacement equations may be 

written as 

,x
xx

u
z

x x





 
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 (4) 
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v z
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1 1
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

 


 

     
      
        

(6) 
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,xz x

w

x
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
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  
(7) 

1
.z

w
v

R
  



 
   

   
(8) 

where
 

),(  xx are the normal strain components and ),,(   xxzz are the shear strain 

components. 

 

2.2 Stress-strain relations 
 
The stress-strain relation can be written as 

(9) 
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where
 

(i, j 1,2,..,6)ijC   denotes elastic coefficients;  ,xx
 are thermal expansion and T  

is temperature rise which follows from a sinusoidal law as 

1
(z) 1 cos , .

2 2
i o i

z
T T T T T T

h

   
          

     
(10) 

 
2.3 Energy method 
 
2.3.1 Potential energy 
The potential energy of the structure is 

(11) 
 

1

2
xx xx xz xz z z x xU dV                    

Replacing the strain-displacement equations in the above relationships, we have 
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 
 

where the stress resultant-displacement relations are as below 
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2
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In which k is shear correction coefficient. 

 
2.3.2 Kinetic energy 
The kinetic energy of the structure can be written as 
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where  is the density of the structure. Defining the moments of inertia as below  
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the kinetic energy may be written as 
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2.3.3 External work 
The external work is due to the elastic foundation and fluid. 

 Elastic medium 

The external work due to the elastic medium is (Shokravi 2017a) 

 2 ,e w gW k w k w wdA                          (18) 

in which wk  and gk are the spring and shear constants, respectively.   

 Fluid 

The external work caused by the fluid pressure is written as (Wang 2012) 
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2 2 2
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 
 

(19) 

where  , E  and xv  are viscosity, density and velocity of the fluid-nanoparticles, 

respectively. The fluid density and viscosity can be obtained by Mixture rule considering 

nanoparticles in the fluid as follows 

 1 ,f np f                               (20) 

 21 7.3 123 ,f                             (21) 

where f  and  np are respectively the density of the fluid and nanoparticles, np and f    

are respectively the viscosity of the fluid and nanoparticles and    is the volume percent of the 

nanoparticles in the fluid. 

 
2.4 Hamilton's principle 
 
Applying Hamilton principle, the motion equations can be written as  
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By integrating Eqs. (13) and (14) in the direction of thickness and using Eq. (8), the 

relationships of the forces and interior moments of the structure can be calculated as  
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where 

   
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In this paper, three types of boundary conditions are used which are: 

 Simple-Simple (SS) 

0, 0,xx L u v w M                          (37) 

 Clamped- Clamped (CC) 

0, 0,xx L u v w                             (38) 

 Clamped- Simple (CS) 
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3. DQ method 
 

DQ is a numerical method which converts a differential equation to algebraic one using 

weighting coefficient. The main relationships of this method are expressed as the following 

(Madani et al. 2017, Shokravi 2017b) 
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So, it is observed that Selection of the sample points and weighting coefficient are two very 

important factors in the DQ method. Chebyshev polynomial is widely used for solving the 

engineering problems as 
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The weighting coefficient are generalized as below 
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a) for the first order derivative 
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Using the following time modes, the terms with the time derivative are omitted and the 

differential equations will be entirely based on the local derivatives 

0( , , ) ( , ) ,td x y t d x y e                         (51) 

where   refers to frequency and d shows the dynamic vector. Hence, the governing equations 

can be written as below in a matrix for 
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d
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MCKK
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in which 11/ /h C   refers the dimensionless frequency. ][ LK , ][ NLK , 

][C and ][M show the linear part of the stiffness matrix, the nonlinear part of the stiffness matrix, 

damper matrix and mass matrix, respectively. }{ bd  and }{ dd  are the dynamic range vectors in 

points of the boundary and domain. Based on eigenvalue problem, Eq. (52) can be written as 

   
   

1 1

0
,

I
Z Z

M K M C 

 
  

         

                (53)
 

in which  I  shows the identity matrix and [0]  is the zero matrix.  

 

 

4. Numerical results 
 

In this section, the numerical results of the pipe conveying fluid-nanoparticles are presented. 

The pipe is made of Poly methyl methacrylate (PMMA) for the matrix which have constant 

Poisson’s ratios of 34.0m , temperature-dependent thermal coefficient of 

  KTm /100005.01 6 , and temperature-dependent Young moduli of 

 GPaTEm 0034.052.3   in which TTT  0  and KT 3000   (room temperature).  

The density of the fluid (water) is 3998.2 /f Kg m  and its viscosity is 31 10 .f Pa s   . 

The nanoparticles in the fluid is iron oxide with the density of 3/3970 mKgnp   . Since the 

surrounding medium is relatively soft, the foundation stiffness wk  may be expressed by (Shen 

and Zhang 2011) 

   20
1 1 12 2

0 1

5 2 6 5 exp 2 ,
4 (1 )(2 )

w

E
k

L c
  


     
  

           (54) 

where 

   ,exp2 111  c                          (55) 

,1
L

H s                               (56) 

 
,

1 20

s

sE
E


                             (57) 

 
,

1
0

s

s







                             (58) 

where sE , s , sH  are Young’s modulus, Poisson’s ratio and depth of the foundation, 

respectively. In this paper, sE  is assumed to be temperature-dependent while s  is assumed to  
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Fig. 2 Validation of present work (a) frequency and (b) damping 

 

 

 

be a constant. The elastomeric medium is made of Poly dimethylsiloxane (PDMS) which the 

temperature-dependent material properties of which are assumed to be 48.0s  and 

 GPaTEs 0034.022.3   in which TTT  0
 and KT 3000   (room temperature) (Shen 

and Zhang 2011). 

 

4.1 Validation 
 

In order to show the accuracy of the present work, neglecting the elastic medium and 

nanoparticles in the fluid, the results are compared with the work of Amabili (2008). However, 

considering a pipe with elastic mudulus of GPaE 206 , Poisson's ratio of 3.0 , 

density 3/7850 mKg , length to radius ration of 2/ RL  and thickness to radius ration of 

01.0/ Rh , the dimensionless frequency (   
0.5

2 2/ / /L D h    ) is plotted versus 

dimensionless fluid velocity (   
0.5

2/ / /xV v L D h  ) in Fig. 2. As can be seen, present results are 

agree well with the results of Amabili (2008). 

 

4.2 Convergence of DQM 
 

Fig. 3 shows the variation of dimensionless frequency (   
0.5

2 2/ / /m mL E    ) versus 

grid point number for different dimensionless fluid velocity (   
0.5

2/ / /x m mVx v L E  ). It can be 

seen that the dimensionless frequency is decreased with increasing the grid point number and for 

N=15, the results become converge. 
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Fig. 3 Convergence and accuracy of DQM 

 

 

4.3 The effect of the different parameters 
 
In general, in all of the following figures, with increasing the fluid velocity, the frequency of 

the structure reduces until reaches to zero. In this state, the critical fluid velocity is happened. After 

the critical fluid velocity, the real part of frequency has two values of positive and negative which 

the positive one makes the structure divergence instable.  

Fig. 4 illustrates the effect of nanoparticles volume percent on the dimensionless frequency and 

damping of the structure. A direct relationship can be fine between nanoparticles volume percent 

and frequency of the structure so that with increasing the nanoparticles volume percent, the 

dimensionless frequency and critical fluid velocity is increased. It is because with increasing the 

nanoparticles volume percent, the fluid velocity which leads to instability reduces.  
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Fig. 4 The effect of volume percent of nanoparticles on the (a) frequency and (b) damping 
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Fig. 5 The effect of elastic foundation on the (a) frequency and (b) damping 
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Fig. 6 The effect of different boundary conditions on the (a) frequency and (b) damping 

 

 

The effect of the elastic medium on the dimensionless frequency and damping of the pipe 

versus the dimensionless fluid velocity is shown in Fig. 5. Three cases of without elastic medium, 

Winkler medium and Pasternak medium are considered. It can be find that considering elastic 

medium rises the dimensionless frequency and critical fluid velocity of the structure due to 

increase in the stiffness of the system. In addition, the dimensionless frequency and critical fluid 

velocity of cylindrical shell located in Pasternak medium are higher than that surrounded by 

Winkler foundation. It is due to this point that the Pasternak medium considers two elements of 

normal and shear forces.   

Fig. 6 presents the effect of different boundary condition on the dimensionless frequency and 

damping of the pipe versus the dimensionless fluid velocity. It can be observed that the 

clamped-clamped (CC) boundary condition leads to higher dimensionless frequency and critical 
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fluid velocity with respect to other considered boundary conditions. It is due to the fact that the 

cylindrical shell with CC boundary condition has higher bending rigidity. 

The temperature change effect on the dimensionless frequency and damping of the pipe versus 

the dimensionless fluid velocity is shown in Fig. 7. It can be concluded that with increasing the 

temperature change, the stiffness of cylindrical shell reduces and consequently, the dimensionless 

frequency and critical fluid velocity are decreased. 

Fig. 8 demonstrates the effect of length to thickness ratio of the cylindrical shell on the 

dimensionless frequency and damping of the pipe against the dimensionless fluid velocity. As can 

be seen, with increasing the length to thickness ratio of the cylindrical shell, the dimensionless 

frequency and critical fluid velocity are decreased due to reduction in teh stiffness of the structure. 
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Fig. 7 The effect of temperature change on the (a) frequency and (b) damping 
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Fig. 8 The effect of length to thickness ratio of the cylindrical shell on the (a) frequency and (b) damping 
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5. Conclusions 
 

In this work, vibration and instability of cylindrical shell conveying fluid mixed by 

nanoparticles were presented. The structure was surrounded by elastic foundation. The thermal 

load was considered and the structure was modeled by FSDT. Based on energy method and 

Hamilton's principle, the motion equations were derived and the effect of different parameters such 

as volume percent of nanoparticles, geometrical parameters of cylindrical shell, boundary 

condition, elastic medium and temperature change were considered. The most important findings 

of this paper were: 

 With increasing the nanoparticles volume percent, the dimensionless frequency and critical 

fluid velocity was increased. 

 It can be find that considering elastic medium rises the dimensionless frequency and critical 

fluid velocity of the structure due to increase in the stiffness of the system. 

 The clamped-clamped (CC) boundary condition leads to higher dimensionless frequency and 

critical fluid velocity with respect to other considered boundary conditions. 

 With increasing the temperature change, the stiffness of cylindrical shell reduces and 

consequently, the dimensionless frequency and critical fluid velocity were decreased. 

 With increasing the length to thickness ratio of the cylindrical shell, the dimensionless 

frequency and critical fluid velocity were decreased. 
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