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Abstract.  The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear 
aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh 
technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 
2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter 
derivatives were introduced into the traditional direct flutter calculation method, and the original program 
was improved to the “post-flutter state analysis program” so that it can predict not only the critical flutter 
velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to 
verify the method proposed in this paper. The results show that the effect of vertical amplitude on the 
nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, 
the post-flutter state of streamlined steel box girder includes four stages, namely, “little amplitude zone”, 
“step amplitude zone”, “linearly growing amplitude zone” and “divergence zone”; damping ratio has limited 
effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, 
the vibration form is a single frequency vibration coupled with torsional and vertical DOF. 
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1. Introduction 
 

Recently, as the span of bridge is longer and longer, the modern bridge becomes more slender 

and flexible, and its damping ratio is getting lower. Therefore, the modern bridge is more and more 

sensitive to wind, and wind load has become one of the key factors in long-span bridge 

construction and operation. Flutter is a very dangerous divergence movement among all kinds of 

wind-induced vibration. Appropriate measures should be taken in the bridge design to avoid 

flutter.  

At present, the bridge flutter analysis (Han et al. 2015, Zhang et al. 2011) is still based on the 

linear self-excited forces model established by Scanlan (Scanlan and Tomko 1971). The model is 

developed by linear vibration theory and the linear self-excited aerodynamic forces expression, 

and it can be used before the flutter occurs to predict the critical flutter velocity. However, it 

cannot describe the post-flutter movement.  
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Many scholars have observed girder movements in post-flutter state. Zhu and Gao (2015) 

observed some movements of several typical bridge deck cross sections after the flutter occurs by 

wind tunnel tests, and some scholars called these movements soft flutter. Other scholars, such as 

Naprstek et al. (2007), Amandolese et al. (2013), thought them as the phenomenon of nonlinear 

post-flutter and called them “post critical LCO”. Daito et al. (2002) also had some findings in 

wind tunnel tests. For some blunt bridge sections, when the linear aerodynamic negative damping 

is greater than the structural damping, the “hard flutter” predicted by classic linear theory does not 

occur. Instead, the flutter is stabilized to a finite amplitude because of the nonlinear effect of 

self-excited force. Traditional Scanlan’s theory cannot fit these recent findings.  

Similar phenomenon has been found in the field of aeronautical engineering. For example, 

Cunningham (2003), Majid and Basri (2008), Tang et al. (2003) and Wang and Zha (2011) studied 

the post-flutter state of aircraft by wind tunnel tests and numerical simulation. Currently, the LCO 

phenomenon of wings has been well studied. However, in the field of bridge, the phenomenon of 

soft flutter is less concerned, and the research on it has just risen. The study of the post-flutter state 

of bridges is of great significance to the more accurate bridge flutter theory and the criterion of 

bridge flutter stability. 

Since the Tacoma bridge accident, some scholars began to try to analyze the large amplitude 

vibration phenomenon of the bridge. Piccardo (1993) studied the large amplitude phenomenon 

based on the aerodynamic expression proposed by predecessors, and proposed that the vibration 

form is a typical limit cycle oscillation. Scanlan (1997) pointed out in his literature that the flutter 

derivatives are related to the motion amplitude of the bridge deck section, and it told us the linear 

self-excited model couldn’t account for the post-flutter state. Xu and Cao (2001) deduced the 

nonlinear aerodynamic forces model and got the critical flutter velocity of the Tacoma bridge. In 

wind tunnel tests, Chen et al. (2005), Falco et al. (1992), Larose et al. (1993), Noda et al. (2003) 

and Wu and Kareem (2013b) studied the aerodynamic self-excited forces by forced vibration 

method, and the results showed that the self-excited forces acting on bluff bodies are nonlinear and 

contain obvious higher harmonics. Naprestek (Naprestek et al. 2008, Naprestek and Pospíšil 2011) 

proposed Vanderbilt-Duffen type 2 DOF coupling nonlinear self-excited forces model. Wu and 

Kareem (2013a) described the nonlinear self-excited forces by Volteria convolution model. Diana 

et al. (2008) proposed the aerodynamic hysteresis of the bridge deck section in his paper, and 

discussed the aerodynamic hysteresis effect in detail in his subsequent study. In 2010, he studied 

the nonlinear flutter of the bridge deck section from the energy point of view (Diana et al. 2010). 

Chen and Ma (2011) proposed the application of the Vanderbilt equation to solve the nonlinear 

aerodynamic forces and explained the soft flutter phenomenon. Wu et al. (2013) introduced two 

advanced nonlinear models, i.e., artificial neural network- (ANN-) and Volterra series-based 

models to improve the linear and nonlinear aeroelastic analysis frameworks for cable-supported 

bridges. 

Some approaches proposed in above studies (Diana’s approach and Wu’s approach) can be used 

in time domain to obtain the post-flutter response, but it is not straightforward or quite complicated 

to obtain the post-flutter response using those nonlinear approaches. In this paper, the nonlinear 

self-excited aerodynamic forces and nonlinear flutter derivatives are identified by dynamic mesh 

technology based on CFD, then they are applied based on the 2 DOF coupling flutter theory so that 

the traditional linear theory is extended to the nonlinear range, which cannot only calculate the 

critical state of flutter but also predict the motion state after the flutter occurs. 
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2. Numerical simulation of bridge aerodynamic self-excited forces 
 

2.1 Description of bridge  
 

A long span suspension bridge with a 1160 m central span length was selected as the research 

object, and the type of bridge deck is streamlined steel box girder. The span distribution and the 

bridge deck cross section are shown in Fig. 1. The basic parameters of the streamlined steel box 

girder in construction state (completely assembled) are shown in Table 1 

 

2.2 Dynamic mesh technology 
 
A computational domain was set, as shown in Fig. 2. The left boundary was the inlet of velocity. 

The right boundary was the outlet of pressure. The upper and lower boundaries were set as 

symmetrical boundary conditions. The boundary of the bridge deck cross section was wall. The 

whole 2D (two-dimensional) wind field was divided into rigid area, deformation area and fixed 

area from inside to outside. Among them, the rigid area and the bridge deck cross section moved 

synchronously, the deformation area was refreshed by spring smoothing method, and the fixed area 

was filled with rigid grid and didn’t participate in motion. The numerical wind tunnel simulation 

was conducted with the FLUENT software in this paper. The calculation parameters were set as 

follows: velocity of wind flow was U=20 m/s; the SST k   turbulence model was adopted; the 

turbulence intensity was 0.5%; the turbulence viscosity ratio was 2. 

 

 
Table 1 Basic parameters of streamlined steel box girder in construction state 

Torsional fundamental 

frequency (Hz) 

Vertical fundamental 

frequency (Hz) 

Generalized mass 

(kg/m) 

Generalized mass 

moment of inertia 

(kg·m
2
/m) 

0.3594 0.1686 14215 1372840 

 

 

 

 

Fig. 1 Arrangement of the bridge span and the bridge deck cross section (unit: m) 
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Fig. 2 Computational domain settings 

 

 

  
(a) Local mesh deformation under 15

o
 torsional 

amplitude 

(b) Local mesh deformation under 30
o
 torsional 

amplitude 

Fig. 3 Local mesh deformation under large amplitude 

 

 

The mesh movement can be achieved through self-made user-defined functions (UDF), then it 

was used in the forced vibration method to identify the aerodynamic self-excited forces. The 

multi-deformed sub-region dynamic mesh method (The mesh in the deformation area of this 

method has the control effect of nonlinear spring, which is more suitable for the grid quality in 

large amplitude motion) would be used because of the large amplitude motion involved in this 

paper. The deformation area was divided into 10 rings, and the inner side of each ring was 

prepared with the corresponding UDF to control movement precisely. The rings are of the same 

frequency vibration with the rigid region form inside to outside, and the ratios of amplitudes of 

inner sides of rings in deformation area (10 rings from inside to outside) to amplitude of bridge 

deck model in rigid area are: 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1, respectively. Fig. 3 

shows the deformation of local mesh in torsional amplitudes 15
o
 and 30

o
 respectively. 

 

2.3 Identification of nonlinear aerodynamic self-excited forces 
 
According to the CFD method described in section 2.2, a 1:50 model of the bridge deck cross 

section was built and forced to do single DOF harmonic movement to check the characteristics of 

the aerodynamic self-excited forces. It should be noted that all of the following analyses are only 
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for the 0
o
 initial wind attack angle condition of the bridge deck in construction state, and other 

conditions have the same principle so that they were not listed one by one. Fig. 4 shows the 

spectrum characteristics of the aerodynamic self-excited forces with different torsional amplitudes 

when the initial wind attack angle was 0
o
 and the reduced wind speed was 5. In the following 

figures, Ar represents the torsional amplitude. 

As seen in the Fig. 4, when the reduced wind speed is 5, each harmonic of the aerodynamic 

self-excited force spectrums (lift spectrum and moment spectrum) is 4.62 Hz, 9.22 Hz and 13.84 

Hz respectively. Ri = amplitude of higher harmonic / amplitude of fundamental frequency (i=L, M. 

RL, is the proportion of lift higher harmonics and RM is the proportion of moment higher harmonics) 

was defined to study the variation of higher harmonics with torsional amplitude. Each harmonic 

can be extracted from Fig.4, then the Ri was calculated and the results were plotted in Fig. 5. Fig. 5 

shows that: the proportion of second harmonic increases as the torsional amplitude increases when 

the torsional amplitude is lower than 15
o
, but when the torsional amplitude is higher than 15

o
, it 

decreases. However the proportion of third harmonic always increases with the torsional amplitude 

increases. When the torsional amplitude is higher than 19
o
, the proportion of third harmonic is 

greater than that of second harmonic, and it is consistent with the conclusions obtained by Tang 

(2015). 

In classical linear self-excited force theory, the fundamental frequency amplitude of 

aerodynamic self-excited forces increases as the torsional amplitude increases, and the two should 

be linear. But when the reduced wind speed is high or the torsional amplitude is large, the two may 

be nonlinear. To explain the phenomenon, the fundamental frequency amplitudes of aerodynamic 

self-excited forces of streamlined steel box girder were plotted in Fig. 6 when the reduced wind 

speed was 16. The dotted straight line in this figure was determined by the coordinate origin and 

the fundamental frequency amplitude of 2
o
 torsional amplitude. So all the points in this dotted 

straight line indicate the linear aerodynamic self-excited forces fundamental frequency amplitude 

(referred as theoretical linear value in the following sections) in classical linear self-excited force 

theory. The discrete black dots in the graph represent the actual fundamental frequency amplitudes 

corresponding to different torsional amplitudes based on the CFD, and a curve was fitted by these 

dots so that all the points in this curve represent the actual fundamental frequency amplitude 

(referred as actual value in the following sections). 
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(a) Lift spectrum (b) Moment spectrum 

Fig. 4 Aerodynamic self-excited force spectrum of streamlined steel box girder 
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Fig. 5 The relationship between proportion of aerodynamic self-excited force higher harmonic and 

torsional amplitude 
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(a) The relationship between lift fundamental 

frequency amplitude and torsional amplitude 

(b) The relationship between moment 

fundamental frequency amplitude and torsional 

amplitude 

Fig. 6 The relationship between aerodynamic self-excited forces fundamental frequency amplitude and 

torsional amplitude 

 

 

It is worth noting that, for simplicity, only four points are used to fit curve in Fig. 6. Thus, the 

critical values between linear curve and nonlinear curve (7
o
, 13

o
 and 16

o
 proposed below) are 

approximate values rather than exactly accurate values. But they can still be used to explain the 

nonlinear effect adequately under the large torsional amplitude. As can be seen from Fig. 6, when 

the torsional amplitude was less than 13
o
, the actual value of aerodynamic lift overlapped with the 

theoretical linear value. But when the torsional amplitude was greater than 13
o
, the actual value is 

smaller than the theoretical linear value. Meanwhile the distance between actual value and 

theoretical linear value is greater as the torsional amplitude increased, and at this point the 

relationship between aerodynamic lift and torsional amplitude was not linear. For the aerodynamic 
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moment, the actual value almost overlapped with the theoretical linear value when the torsional 

amplitude was less than 7
o
 and the relationship between aerodynamic moment and torsional 

amplitude was linear; the actual value started to deviate upward from the theoretical linear value 

when the torsional amplitude was in the range of 7
o
 to 16

o
 and the actual value started to deviate 

downward from the theoretical linear value when the torsional amplitude was greater than 16
o
. In 

general, the aerodynamic lift amplitude of fundamental frequency and the aerodynamic moment 

amplitude of fundamental frequency were only linearly related to the torsional amplitude at a small 

amplitude (13
o
 and 7

o)
; If the actual value is replaced by the theoretical linear value under the large 

torsional amplitude, it would result errors in computation. 

Flutter occurs when the torsional damping of the bending and torsional coupling motion 

changes from positive to negative in linear aerodynamic self-excited forces theory. But in fact, the 

aerodynamic self-excited forces do not change linearly as the torsional amplitude increases. The 

decrease of the aerodynamic lift and the increase of the aerodynamic moment may cause the 

torsional damping ratio of the bending and torsional coupling motion changes from negative to 

positive. So the linear aerodynamic self-excited forces theory is not suitable at this point. 

 

 

3. Identification of nonlinear flutter derivatives 
 

3.1 Basic assumption 
 

At present, most scholars think that the motion form of girder section in the post flutter state is 

a single frequency vibration coupled with torsional and vertical DOF. Some scholars have 

observed this phenomenon in wind tunnel tests and numerical wind tunnels. Zhu and Gao (2015) 

observed that the soft flutter response of four typical girder sections has this feature. Ying et al. 

(2016) and Zhang et al. (2016) set a fluid-structure interaction model with FLUENT to study soft 

flutter characteristics of girder section and found the same feature too. They also found that the 

frequency decreases as the wind speed increases. Therefore, it was assumed that the motion pattern 

of the streamlined steel box girder in post flutter state is also the bending and torsion coupling 

single-frequency vibration. The assumption would be verified by wind tunnel tests in section 5. 

Under this assumption, only the fundamental frequency component of movement is considered. 

The aerodynamic forces with high frequency got in section 2.3 did no work on the fundamental 

frequency component of girder movement (Tang 2015). So only the fundamental frequency part of 

aerodynamic self-excited forces need to be considered in the identifications of nonlinear flutter 

derivatives. This method has the same form with the traditional linear flutter derivatives 

identification method, but the nonlinear flutter derivatives are related to the reduced wind speed 

and they are the nonlinear function of torsional amplitude. We can also call them 3D flutter 

derivatives. 

 

3.2 Nonlinear flutter derivatives 
 

As can be seen from the previous section, forced vibration method can be used in the 

identification of the nonlinear flutter derivatives similar to the linear flutter derivatives. But the 

difference is that the nonlinear flutter derivatives are not only related to reduced wind speed, but 

also torsional and vertical amplitudes. In order to be distinguished from the traditional linear 

flutter derivatives, eight symbols of nonlinear flutter derivatives were defined ( #

iH , #

iA , i=1，2，3，
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4）.    # #, , ,i r r i r rH f V A A f V H   Vr is reduced wind speed，Ar is torsional amplitude，Hr=vertical 

amplitude/B. B is width of bridge deck model. (the geometric ratio of model is 1/40). The test 

parameters on CFD are listed in Table 2. The number of mesh is about 440000. And the tested 

motion amplitudes as follow: 

(1) For vertical motion: 

The tested vertical amplitudes are: 0.001B, 0.003B, 0.007B, 0.01B, 0.012B, 0.015B, 0.02B, 

0.03B, 0.04B, 0.05B, 0.06B, 0.07B, 0.08B, 0.09B, 0.1B, 0.11B, 0.12B, 0.13B, 0.14B, 0.15B, 

0.18B, 0.20B. 

(2) For torsional motion: 

The tested torsional amplitudes are: 0.1°, 0.3°, 0.7°, 1.2°, 1.6°, 2°, 3°, 4°, 5°, 7°, 10°, 13°, 15°, 

18°, 20°, 23°, 25°, 27°, 30°. 
“Least-squares method” is used to obtain the flutter derivatives from self-excited forces in this 

paper. Then the nonlinear flutter derivatives had been identified and displayed in Figs. 7 and 8. 

It can be seen from Figs. 7 and 8 that the sensitivity of the different 3D flutter derivative 

surface is different for amplitude. Changes in the nonlinear flutter 

derivatives, #

1H , #

4H , #

1A and #

4A ,which are related to the vertical vibration, are small with the 

amplitude. Their 3D surfaces can be seen as 2D flutter derivatives curve sweep along the 

amplitude direction evenly. So the influence of the vertical motion amplitude on the nonlinear 

flutter derivatives can be neglected. Changes in the nonlinear flutter derivatives, #

2H , #

3H , #

2A and #

3A , 

which are related to the torsional vibration, are large with the amplitude. Their 3D surfaces have 

significant changes in 15
o
-20

o
. So the torsional amplitude has a great influence on the nonlinear 

flutter derivatives. Therefore, the following analysis of the post-flutter state should take the effect 

of the motion amplitudes (torsional and vertical amplitudes) into account. 
 

 

 
Table 2 The test parameters on CFD 

The reduced wind speed 
The frequencies of the imposed 

motion (Hz) 

The corresponding dimensionless 

time-step 

2 11.5327 0.0008671 

3 7.6885 0.00130065 

4 5.7663 0.0017342 

5 4.6131 0.00216775 

6 3.8442 0.0026013 

7 3.2951 0.00303485 

8 2.8832 0.0034684 

9 2.5628 0.00390195 

10 2.3065 0.0043355 
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(a) #

1H  (b) #

1A  

  
(c) #

4H  (d) #

4A  

Fig. 7 3D flutter derivative surface of streamlined steel box girder (vertical motion) 

 

 

  
(a) #

2H  (b) #

2A  

  
(c) #

3H  (d) #

3A  

Fig. 8 3D flutter derivative surface of streamlined steel box girder (torsional motion) 
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4. Post-flutter state analysis method based on 2D flutter frequency domain iteration 
method 

 
4.1 Improved 2D direct calculation method for bridge flutter 
 

In the classical flutter theory, flutter is a divergent self-excited vibration with the interaction of 

wind and structure. Long span bridges are long and slender structures whose geometric scales tend 

to be large in one direction and small in the other two directions. The effect of wind on the 

structure can be expressed in terms of strip theory. Therefore, the 2D direct analysis method and 

the section model wind tunnel tests are common research methods in bridge flutter analysis. 

However, the traditional 2D direct calculation method is developed by linear flutter theory, 

which does not consider the changes of flutter derivatives with amplitude. In particular, the effect 

of torsional amplitude on the 3D flutter derivatives is large, and this effect cannot be neglected. 

Therefore, the 3D flutter derivatives identified in Section 3.2 were introduced into the traditional 

2D direct calculation method and the nonlinear changes of the flutter derivatives with amplitude 

were considered in the linear flutter theory. The flutter derivatives were regarded as the binary 

function of the reduced wind speed and amplitude. So they can not only calculate the critical state 

of flutter, but also predict the movement in post-flutter state by modifying the 2D direct method. 

Specific derivation is as follows. 

Generally, torsional DOF   and vertical DOF h are considered in 2D flutter analysis model, 

the equation of motion is 

2

2

2

2

h h h

t t t t t t

mh mh m h L

I I I M

  

     

   


  

                         (1) 

Where m, It are mass and moment of inertia per meter of section model, respectively; 
h , 

t  

are circle frequency of bending and torsion vibration, respectively; 
h , 

t  are the damping ratio 

of bending and torsion, respectively; L, M are lift and moment of lift per meter of section model, 

respectively. 

Scanlan's aerodynamic self-excited forces expression in frequency domain were introduced 

2 # # 2 # 2 #

1 2 3 4

2 2 # # 2 # 2 #

1 2 3 4

1
(2 )[ ]

2

1
(2 )[ ]

2

h B h
L U B KH KH K H K H

U U B

h B h
M U B KA KA K A K A

U U B


 


 


   



    


              (2) 

Where  is air density; U is average wind speed; B is bridge width; h, are vertical 

displacement and torsional displacement, respectively; # #,i iH A are nonlinear flutter derivatives of 

bending and torsion, respectively. 

To simplify the formula, self-excited forces were simplified as follows 

1 2 3 4

1 2 3 4

L H h H H H h

M A h A A A h

 

 

    


   

                        (3) 

Where ,i iH A (i=1, 2, 3, 4) are dimensional nonlinear flutter derivatives. They are the 
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combi-nation of factors and nonlinear flutter derivatives. The difference from the traditional 

solut-ion is that 
iH  and 

iA  are not only related to the reduced wind speed, but also to the 

a-mplitude. They are nonlinear functions of motion amplitude. 

Substituting Eq. (3) into Eq. (1), the next equation was got 

2 31 2 4

21 2 34

2

0

2

h h h

HH H H

hh hm m m m

A A AA

I I I I
  

  

 
  

  
          

         
             

   

            (4) 

Using the matrix notation to change the above formula to 

      0
hh h

I A B
 

     
       

    
                       (5) 

Where [I] is a second order diagonal identity matrix. The definition of [A] and [B] can be got 

bycomparing Eq. (4) with Eq. (5). 

The above equation was rewritten as a first order differential equation group with x h and 

y  . 

0 0
0

0

x x

yI I y

I A B hh



   
   

                
    

  

                        (6) 

Where each sub-matrix is a 2 2  matrix, 0 represents a zero matrix. 

Since (6) can uniquely determine the motion state of the 2 DOF system, so the equatio-n is 

called the state equation.  , , ,
T

x y h   is the state vector. 

The structure flutters with equal frequency when wind speed comes to the critical flutte-r 

velocity. So we can assume that 
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                            (7) 

Where   is a real number. Substituting Eq. (7) into Eq. (6), the next equation is got 
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                  (8) 

The above equation is satisfied for any i te  ，so 
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Fig. 9 Flow chart for post flutter analysis program 
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If Eq. (9) has a nonzero solution, its coefficient determinant must be zero. The coefficient 

determinant of Eq. (9) is a fourth-order differential equation with , called the characteristic 

equation. The equation has two unknown variables, and U. The nonlinear flutter derivatives are 

related to the torsional and vertical amplitudes. So in the process of calculation, a double cycle of 

motion amplitudes and wind speed is required. Firstly, the nonlinear flutter derivatives of initial 

motion amplitudes and the initial wind speed value were substituted into the coefficient matrix and 

four roots of  were got by the complex coefficient matrix eigenvalue method. If one of the four 

roots is a real number, this root is the vibration frequency of critical flutter state. The 

corresponding wind speed is the critical flutter velocity and the corresponding motion amplitudes 

are the steady-state response amplitudes of flutter. If there is no real number in the four roots, then 

go to the next loop until all critical flutter velocity and the steady-state response amplitude of 

flutter are found. If no appropriate motion amplitudes and wind speed can be obtained to calculate 

the critical flutter velocity and the steady-state response amplitudes of flutter, it is the state of 

flutter divergence. In order to solve the characteristic equation of Eq. (9), a double search for 

critical flutter velocity and the steady-state response amplitudes of flutter can be achieved with the 

help of computer program. It is worth noting that the ratio ( ) of vertical amplitude to torsional 

amplitude need be calculated before running the post-flutter analysis program, since motion 

amplitudes (torsional and vertical amplitudes) are involved in it. The four roots of   are 

substituted to Eq. (9) to get corresponding complex eigenvector by which equation of motion can 

be obtained. Then the ratio ( ) can be obtained from the flutter mode of vibration. A flow chart 

for the above proposed method is shown in Fig. 9. The meaning of some key signs in Fig. 9 is that: 

 is the eigenvalue of characteristic matrix;   is vibration frequency; 
j  is the j

th
 torsional 

damping ratio; 
i is the j

th
 ratio of vertical amplitude to torsional amplitude. 

 

4.2 Results analysis 
 

The post-flutter state analysis program as shown in Fig. 9 was compiled with MATLAB. The 

basic parameters of the streamlined steel box girder displayed in section 2.1 and the nonlinear 

flutter derivatives obtained in section 3.2 were substituted into the analysis program. Setting two 

damping ratios (damping ratio 0.3% and 0.6%) to run the above program, respectively. The results 

are shown in Fig. 10. 
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(a) Torsional movement (b) Vertical movement 

Fig. 10 Displacement response of streamlined steel box girder in post flutter 
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Analyzing the torsional motion curve with the damping ratio of 0.3% in Fig. 10(a) (the rest of 

the curves can be analyzed in the same way), we can find that: the critical flutter velocity is 65.6 

m/s, but when the wind speed is just a little higher than 65.6 m/s, the torsional amplitude was not 

infinitely divergent and the bridge did not lose stability immediately. Instead, the amplitude had a 

gradual increase when wind speed in the range of 65.6 m/s to 66.2 m/s. Since the bridge was not 

destroyed in the wind speed range of the small amplitude, this wind speed range was defined as " 

little amplitude zone ".When the wind speed exceeds 66.2 m/s to 66.6 m/s, the torsional amplitude 

will appear a jump, and directly to 19.6
o
 and the wind speed range was defined as the “step 

amplitude zone”. It should be noted that the discussion of the displacement response here refers to 

the flutter steady-state response. It means that when the wind speed increased from 66.2 m/s to 

66.6m/s, the torsional amplitude did not jump directly to 19.6
o
, but gradually increased to 19.6

o
 

through oscillation with continuously absorbing energy from wind. Then a new balance was 

achieved when the amplitude was 19.6
o
. When the wind speed was in the range of 66.6 m/s to 76.1 

m/s, the flutter amplitude increased with the increase of the wind speed, and the two are linear in 

general. This wind speed range was defined as "linearly growing amplitude zone". The amplitude 

began to infinitely grow, eventually leading to flutter divergence until wind speed exceeds 76.1 

m/s. 

Comparing the two torsional vibration curves with the damping ratios of 0.3% and 0.6% in Fig. 

10(a) (Fig. 10(b) similarly), we can find that increasing the damping ratio is equivalent to moving 

the whole curve to the right. Therefore, increasing the damping ratio can improve the critical 

flutter velocity and the divergent flutter velocity. But the improvement is very limited. The 

improvement of critical flutter velocity was only 0.9 m/s and that of divergent flutter velocity was 

only 0.4 m/s when the damping ratio was increased by 0.3%. In terms of the flutter response 

amplitude, increasing the damping ratio can slightly reduce the amplitude of the flutter steady-state 

response. 

 

 

5. Section model test validation 
 

5.1 Test parameters 
 

In order to test the rationality of the theory and the results mentioned above, a section model 

test was designed to verify them. The test was carried out in the high speed test section of the wind 

tunnel XNJD-1. The test section has a rectangular cross section with size of 2.4 m (width) X 2.0 m 

(height). The section model was made by a 1:40 scale ratio with the considerations of the actual 

size of girder cross section, the size of the wind tunnel and test requirements. The section model 

was suspended by eight pairs of tension springs, as shown in Fig. 11 below. 

 

5.2 Analysis of test results 
 

5.2.1 Effect of damping ratio 
In order to maintain consistency with the foregoing, the same two damping ratios were set in 

the test. Fig. 12 shows the changes of the torsional and vertical response of the streamline steel 

box girder with wind speed under the condition of different damping ratios. Limited to the wind 

tunnel test device, the test can’t detect the large amplitude movement of the girder. Therefore, this 

test only gave the results of “little amplitude zone” in the post-flutter state. 
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Fig. 11 Section model in wind tunnel 
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(a) Torsional movement (b) Vertical movement 

Fig. 12 Displacement response of streamlined steel box girder in wind tunnel 

 

 

The torsional vibration curve with the damping ratio of 0.3% in Fig. 12(a) was analyzed (the 

rest of the curves can be analyzed in the same way). Then it can be found that the streamlined steel 

box girder did not lose stability immediately when the wind speed just reached the critical flutter 

velocity. As predicted by previous numerical simulations, there is also a " little amplitude zone ". 

The wind speed range is 66.42 m/s to 67.74 m/s and there is a certain discrepancy in test results 

compared with the value of 65.6 m/s to 66.4 m/s in previous calculation. But this discrepancy is 

small and unavoidable. There are probably two reasons for this discrepancy: the first is the system 

and random discrepancy that cannot be avoided during the wind tunnel tests; the other is that the 

numerical simulation does not completely simulate the real situation of the wind tunnel. 

357



 

 

 

 

 

 

Junfeng Guo, Shixiong Zheng, Jinbo Zhu, Yu Tang and Chengjing Hong 

 

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d
e
 (
)

Frequency（Hz）

f=3.8125Hz

 
0 20 40 60 80 100 120 140

0

50

100

150

200

250

A
m

p
li

tu
d

e 
(m

m
)

Frequency（Hz）

f=3.8125Hz

 
(a) Torsional displacement (b) Vertical displacement 

Fig. 13 Displacement response spectrum of post flutter in wind tunnel 

 

 

The same conclusion as the previous numerical method can be obtained by comparing the two 

torsional vibration curves with the damping ratio of 0.3% and 0.6% in Fig. 12(a). Increasing the 

damping ratio can improve the critical flutter velocity but the improvement is very limited. 

Comparing numerical results (Fig. 10) with the test results (Fig. 12) comprehensively, we can 

see that the two are in good agreement with the same law. It prove that the method proposed in this 

paper is reasonable. 

 

5.2.2 Vibration characteristics in post-flutter state 
A torsional vibration curve and a vertical vibration curve with a damping ratio of 0.3% in Figs. 

12(a) and 12(b) were selected. Then the torsional vibration time-history curve and the vertical 

bending time-history curve of the two points (where wind speed is 67.74 m/s), which is located in 

“little amplitude zone”, were transformed by FFT (Fast Fourier Transform) to get the displacement 

response spectrum in post-flutter state as shown in Fig. 13. 

It can be seen that the torsional vibration and the vertical vibration are single-frequency 

vibrations when the wind speed exceeds the critical flutter velocity, and the two will be coupled 

into the same frequency for single-frequency harmonic vibration. This test verifies the assumption 

presented in section 3.1. 

 

 

6. Conclusions 
 

Based on the CFD, the nonlinear aerodynamic self-excited forces of the streamlined steel box 

girder were calculated. Then the nonlinear flutter derivatives were identified. The amplitude and 

the nonlinear flutter derivatives that change with amplitude were introduced into the traditional 2D 

flutter iterative method in frequency domain, and the program was modified accordingly, so that 

the improved method (post-flutter analysis program) can achieve a double search of the critical 

flutter velocity and the amplitude in post-flutter state. Finally, the corresponding wind tunnel test 

was set up to verify the rationality of the analytical method described in this paper. We got the 

following conclusions: 
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 There are four phases in post-flutter state of streamlined steel box girder with the increase of 

wind speed. They are “little amplitude zone”, “step amplitude zone”, “linearly growing amplitude 

zone” and “divergence zone”. 

 The damping ratio has a very limited effect on the critical flutter velocity and the stable 

response in post-flutter state of streamlined steel box girder. 

 After the flutter occurs, the torsional vibration and the vertical vibration will be coupled into 

the same frequency to do single-frequency harmonic vibration. 

 Different 3D flutter derivative surfaces have different sensitivity to the motion amplitude. 

The effect of the vertical amplitude on the nonlinear flutter derivatives can be negligible, and the 

torsional amplitude has a great influence on the nonlinear flutter derivatives. 

 When the reduced wind speed is large, the amplitude of the fundamental frequency of the 

aerodynamic self-excited force is nonlinearly related to the torsional amplitude, and the larger the 

torsional amplitude is, the greater the difference between the theoretical linear value and the actual 

value. 
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