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Abstract.  This work presents a static and free vibration analysis of functionally graded metal–ceramic (FG) 
beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) 
during their fabrication. A new displacement field containing integrals is proposed which involves only three 
variables. Based on the suggested theory, the equations of motion are derived from Hamilton’s principle. 
This theory involves only three unknown functions and accounts for parabolic distribution of transverse 
shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the beam. 
The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The 
accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed 
numerical study is carried out to examine the influence of the deflections, stresses and natural frequencies on 
the bending and free vibration responses of functionally graded beams. 
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1. Introduction 
 

Functionally graded materials (FGMs) have many advantages for use in engineering structural 

components. Unlike fiber-matrix laminated composites, FGMs do not have problems of 

de-bonding and delaminating that result from large inter-laminar stresses. The concept of FGMs 

was initially introduced in the mid-1980s by Japanese scientists. FGMs are microscopically 

inhomogeneous and spatial composite materials which are usually composed of two different 

materials such as a pair of ceramic-metal or ceramic-polymer. The composition of the material 

changes gradually throughout the thickness direction. As a result, mechanical properties are 

assumed to vary continuously and smoothly from the top surface to the bottom. Due to good 

characteristics of ceramics in heat and corrosive resistances combined with the toughness of metals 

or high elastic of polymers, the combination of ceramics and metals or polymers can lead to 

excellent materials. The FGMs are widely used in mechanical, aerospace, nuclear, and civil 

engineering. Consequently, studies devoted to understand the static and dynamic behaviors of 

FGM beams and plates have being paid more and more attentions in recent years. Tai et al. (2011) 
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used levy-type solution for buckling analysis of orthotropic plates based on two variable refined 

plate theory. Farahani et al. (2015) investigated the vibration of sumberged functionally graded 

cylindrical shell based on first order shear deformation theory using wave propagation method. 

Al-Basyouni et al. (2015) investigated size dependent bending and vibration analysis of 

functionally graded micro beams based on modified couple stress theory and neutral surface 

position. Benferhat et al. (2016a) studied the effect porosities on Static analysis of the FGM plate. 

Benferhat et al. (2016b) studied the effect of porosity on the bending and free vibration response 

of functionally graded plates resting on Winkler-Pasternak foundations. Ait Yahia et al. (2015) 

studied the wave propagation in functionally graded plates with porosities using various 

higher-order shear deformation plate theories. Bellifa et al. (2016) analyze the bending and free 

vibration analysis of functionally graded plates using a simple shear deformation theory and the 

concept the neutral surface position. Bounouara et al. (2016) used a nonlocal zeroth-order shear 

deformation theory for free vibration of functionally graded nanoscale plates resting on elastic 

foundation. Ahouel et al. (2016) investigated a size-dependent mechanical behavior of functionally 

graded trigonometric shear deformable nanobeams including neutral surface position concept. 

Zemri et al. (2015) studied a mechanical response of functionally graded nanoscale beam: an 

assessment of a refined nonlocal shear deformation theory beam theory. Nedri et al. (2014) 

analyze the free vibration analysis of laminated composite plates resting on elastic foundations by 

using a refined hyperbolic shear deformation theory. Ait Amar Meziane et al. (2014) proposed an 

efficient and simple refined theory for buckling and free vibration of exponentially graded 

sandwich plates under various boundary conditions. Tlidji et al. (2014) using the elasticity solution 

for bending response of functionally graded sandwich plates under thermomechanical loading. 

Hadji et al. (2014) studied the static and free vibration of FGM beam using a higher order shear 

deformation theory. Bourada et al. (2015) used a new simple shear and normal deformations 

theory for functionally graded beams. Mahi et al. (2015) investigated a new hyperbolic shear 

deformation theory for bending and free vibration analysis of isotropic, functionally graded, 

sandwich and laminated composite plates. Belabed et al. (2014) used an efficient and simple 

higher order shear and normal deformation theory for functionally graded material (FGM) plates. 

Bennai et al. (2015) used a new higher-order shear and normal deformation theory for functionally 

graded sandwich beams. Recently Tai et al. (2014) used levy Solution for free vibration analysis of 

functionally graded plates based on a refined plate theory. Hadji et al. (2015) studied the influence 

of the porosities on the free vibration of FGM beams. Ait Atmane et al. (2015) used a 

computational shear displacement model for Vibrational analysis of functionally graded beams 

with porosities. 

Mouaici et al. (2016) studied the effect of porosity on vibrational characteristics of 

non-homogeneous plates using hyperbolic shear deformation theory. 

This work aims to develop a new simple higher order shear deformation theory for the bending 

and free vibration analyses of FG beams with considering porosities that may possibly occur inside 

the functionally graded materials (FGMs) during their fabrication. The proposed theory has only 

three unknowns and three governing equations, but it satisfies the stress free boundary conditions 

on the top and bottom surfaces of the beam without requiring any shear correction factors. 

Analytical solutions are obtained for FG beam and its accuracy is verified by comparing the 

obtained results with those reported in the literature. The effects of various variables, such as 

span-to-depth ratio, gradient index and the volume fraction of porosity on bending and free 

vibration of FG beam are all discussed. 
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Fig. 1 Geometry and coordinate of a FG beam 

 

 

2. Problem formulation 
 

Consider a functionally graded beam with length L  and rectangular cross section hb , with 

b  being the width and h  being the height as shown in Fig. 1. The beam is made of isotropic 

material with material properties varying smoothly in the thickness direction. 

 

2.1 Effective material properties of metal ceramic functionally graded beams 
 
The properties of FGM vary continuously due to the gradually changing volume fraction of the 

constituent materials (ceramic and metal), usually in the thickness direction only. The power-law 

function is commonly used to describe these variations of materials properties. The expression 

given below represents the profile for the volume fraction. 

A FG beam made from a mixture of two material phases, for example, a metal and a ceramic. 

The material properties of FG beams are assumed to vary continuously through the thickness of 

the beam. In this investigation, the imperfect beam is assumed to have porosities spreading within 

the thickness due to defect during production. Consider an imperfect FGM with a porosity volume 

fraction,  1 , distributed evenly among the metal and ceramic, the modified rule of mixture 

proposed by Wattanasakulpong and Ungbhakorn (2014) is used as 




















22


ccmm VPVPP

                          

(1) 

Now, the total volume fraction of the metal and ceramic is : 1 cm VV , and the power law of 

volume fraction of the ceramic is described as 

k

c
h

z
V 










2

1

                                  

(2) 

Hence, all properties of the imperfect FGM can be written as 

  

   
22

1 
mcm

k

mc PPP
h

z
PPP 










                       

(3) 

It is noted that the positive real number k   k0  is the power law or volume fraction 
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index, and z  is the distance from the mid-plane of the FG plate. The FG beam becomes a fully 

ceramic plate when k  is set to zero and fully metal for large value of k . 

Thus, the Young’s modulus  E  and material density    equations of the imperfect FGM 

beam can be expressed as 

     
22

1 
mcm

k

mc EEE
h

z
EEzE 








                     (4) 

     
22

1 
 mcm

k

mc
h

z
z 








                     (5) 

However, Poisson’s ratio    is assumed to be constant. The material properties of a perfect 

FG beam can be obtained when   is set to zero. 

 

2.2 Kinematics and constitutive equations 
 
The displacement field can be obtained  

    
dxtxzfk

x

w
ztxutzxu 



 ),()(),(),,( 1

0

0                   (6a) 

          ),(),,( 0 txwtzxw 
                            

(6b) 

In this work, the present higher-order shear deformation beam theory is obtained by setting 

  







 22

3

1

4

1

2

1
zhzzf

                          
(7) 

The strains associated with the displacements in Eq. (6) are 

s
x

b
x

0
xx k )z(fk z                            (8a)                       

                
0 )( xzxz zg                                 (8b) 

where 

x

u
x




 00 ,

2

2

x

w
k bb

x



 , 1kk s

x  ,  dxkxz  1

0                     (8c)       

and  

               
dz

zdf
zg

)(
)( 

                             
(8d) 

The integral defined in the above equations shall be resolved by a Navier type method and can 

be written as follow: 
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x
Adx






 ' 

                               
(9) 

where the coefficient 'A  is expressed according to the type of solution used, in this case via 

Navier. Therefore, 'A and 1k  are expressed as follows 

             
,

1
'

2
A

 

2

1 k
                            

(10) 

where   is defined in expression (22). 

The state of stress in the beam is given by the generalized Hooke’s law as follows 

x11x  )z(Q   and xz55xz  )z(Q                       (11a) 

where 

    )z(E)z(Q11   and  
 


12

)z(E
)z(Q55                     (11b)                   

 
2.3 Equations of motion 
 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Thai and Vo 2012) 

          0
2

1


t

t

dtTVU                           (12) 

where t  is the time; 1t  and 2t  are the initial and end time, respectively; U   is the virtual 

variation of the strain energy; V   is the virtual variation of the potential energy; and T   is 

the virtual variation of the kinetic energy. The variation of the strain energy of the beam can be 

stated as 
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  (13) 

where N , bM , sM  and Q  are the stress resultants defined as 





2

2

 ),,1(),,(

h

h

xsb dzfzMMN   and 



2

2

h

h

xz dzgQ                    (14)    

The variation of the potential energy by the applied transverse load q  can be written as          
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              
L

dxwqV
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(15) 

The variation of the kinetic energy can be expressed as 
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  (16)              

where dot-superscript convention indicates the differentiation with respect to the time variable t ; 

)(z  is the mass density; and ( iI , iJ , iK ) are mass inertias expressed by  
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By substituting Eqs. (13), (15) and (16) into Eq. (12), the following can be derived: 
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Introducing Eq. (14) into Eq. (18), the equations of motion can be expressed in terms of 

displacements ( 0u , 0w ,  ) and the appropriate equations take the form 
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where 11A , 11D , etc., are the beam stiffness, defined by 
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3. Analytical solution 
 

The equations of motion admit the Navier solutions for simply supported beams. The variables 

0u , 0w ,   can be written by assuming the following variations 
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where   is the frequency of free vibration of the plate, 1i  the imaginary unit.  

with 

                       Lm /                                 (22) 

The transverse load q  is also expanded in Fourier series as 
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where mQ  is the load amplitude calculated from 

          
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Substituting Eqs. (21) and (23) into Eq. (19), the following problem is obtained 
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4. Results and discussion 
 

In this section, various numerical examples are presented and discussed to verify the accuracy 

of the present theory in predicting the bending and free vibration of simply supported FG beams. 

The FG beam is taken to be made of aluminum and alumina with the following material 

properties: 

Ceramic ( CP : Alumina, Al2O3): 380cE GPa; 3.0 ; 3960c kg/m
3
. 

Metal ( MP : Aluminium, Al): 70mE  GPa; 3.0 ; 2702m kg/m
3
. 

And their properties change through the thickness of the beam according to power-law. The 

bottom surfaces of the FG beams are aluminum rich, whereas the top surfaces of the FG beams are 

alumina rich.  

For convenience, the following dimensionless form is used:  
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4.1 Results for bending analysis 
 
Table 1 contains nondimensional deflection and stresses of perfect and imperfect FG beams 

under uniform load for different values of power law index and span-to-depth ratio. The obtained 

results are compared with various shear deformation beam theories (i.e., ESDBT, SSDBT, 

PSDBT) and Le et al. (2010). It can be observed that the values obtained using various shear 

deformation beam theories (i.e., ESDBT, SSDBT, PSDBT) and Le are in good agreement with the 

those given by the present theory for perfect FG beams and for all values of power law index p and 

span-to-depth ratio L/h and takes maximum values for the imperfect FG beam ( 10.  and 

20. ). This is expected because the imperfect FG beam is the one with the lowest stiffness and 

the perfect FG beam is the one with the highest stiffness. In addition the comparisons show that 

the effect of the porosity on the deflection of FG beams. The results reveal that the deflection 

results increase as the volume fraction of porosity    increases. Due to ignoring the shear 

deformation effect, CBT underestimates deflection of moderately deep beams. 

Figs. 2 show the variations of axial stress x , through the depth of the perfect and imperfect 

FG baem for 1p  under uniform load. The stresses are tensile at the top surface and compressive 

at the bottom surface and take the maximum values for the imperfect FG beam. Figs. 3, shows the 

distribution of the shear stresses xz  through the thickness of the FG beam. The volume fraction 

exponent of the FG beam in taken as 1p . It’s clear that the distributions are not parabolic and 

the stresses increase for the imperfect FG beam. 

Fig. 4 illustrates the variation of the non-dimensional transversal displacement of perfect and 

imperfect FG beams based on the present plate theory versus non-dimensional length for different 

power law index. The deflection is maximum for the imperfect FG beam ( 10. and 20. ) and 

minimum for the perfect FG plate ( 0 ). In addition, the results show that the increase of the 

power law index leads to an increase of transversal displacement. 
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Fig. 2 Variation of nondimensional axial normal stress  z,/lx 2  across the depth of FG beams 

under uniform load 
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Table 1 Nondimensional deflections and stresses of FG beams under uniform load 

 

 

 

4.2 Results for free vibration analysis 
 

Tables 2 and 3 shows the nondimensional fundamental frequencies   of perfect and imperfect 

FG beams of FG beams for different values of power law index p and span-to-depth ratio h/L . 

The calculated frequencies are compared with those given by Simsek. (2010) using various beam 

theories. An excellent agreement between the present theory and results of Simsek. (2010) is 

found. The results reveal that the frequency results decrease as the volume fraction of porosity    

increases. 

 
 

 

k   Method 

5hL  20hL  

  w  u  x  xz  w  u  x  xz  

 

 
 

0 

CBT* 0  2.8783 0.9211 3.7500 - 2.8783 0.2303 15.0000 - 

PSDBT* 0  3.1654 0.9398 3.8019 0.7330 2.8962 0.2306 15.0129 0.7437 

Li et al. 

(2010) 
0  3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500 

 

Present 

0  3.1654 0.9398 3.8019 0.7330 2.8962 0.2305 15.0128 0.7436 

10.  3.3646 0.9989 3.8019 0.7330 3.0785 0.2450 15.0128 0.7436 

20.  3.5906 1.0660 3.8018 0.7330 3.2852 0.2615 15.0128 0.7436 

 

 
 

1 

CBT* 0  5.7746 2.2722 5.7958 - 5.7746 0.5680 23.1834 - 

PSDBT* 0  6.2594 2.3038 5.8835 0.7330 5.8049 0.5686 23.2051 0.7437 

Li et al. 

(2010) 
0  6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500 

 

Present 

0  6.2594 2.3038 5.8834 0.7330 5.8049 0.5685 23.2051 0.7437 

10.  7.2507 2.7310 6.2195 0.7330 6.7457 0.6745 24.5346 0.7437 

20.  8.6774 3.3637 6.7061 0.7330 8.1093 0.8316 26.4622 0.7437 

 
 

 

5 

CBT* 0  8.7508 3.6496 7.9428 - 8.7508 0.9124 31.7711 - 

PSDBT* 0  9.8281 3.7100 8.1104 0.5904 8.8182 0.9134 31.8127 0.6013 

Li et al. 
(2010) 0  9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790 

 

Present 

0  9.8281 3.7100 8.1104 0.5904 8.8182 0.9134 31.8127 0.6013 

10.  12.9183 5.1357 9.0711 0.5495 11.6160 1.2667 35.5387 0.5601 

20.  20.0934 8.6894 11.0613 0.4733 18.2672 2.1517 43.2983 0.4831 

 

 

10 

CBT* 0  9.6072 3.8097 9.5228 - 9.6072 0.9524 38.0912 - 

PSDBT* 0  10.9381 3.8864 9.7119 0.6465 9.6905 0.9536 38.1382 0.6586 

Li et al. 

(2010) 
0  10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436 

 
Present 

0  10.9381 3.8863 9.7119 0.6465 9.6905 0.9536 38.1382 0.6586 

10.  14.5261 5.4151 10.9461 0.6168 12.7847 1.3296 42.8964 0.6290 

20.  23.1357 9.4017 13.1949 0.5496 20.2308 2.3133 51.4893 0.5617 
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Fig. 3 Variation of nondimensional transverse shear stress  z,xz 0  across the depth of FG beams 

under uniform m load 

 

 

Table 2 Variation of fundamental frequency   with the power-law index for FG beam for 5h/L   

* Results form Ref (Simsek 2010) 

 

 

 

Theory   0p  20.p   50.p   1p  5p  10p  Metal 

CBT
*
 0  5.3953 5.0206 4.5931 4.1484 3.5949 3.4921 2.8034 

FSDBT
*
 0  5.1525 4.8066 4.4083 3.9902 3.4312 3.3134 2.6772 

ESDBT
*
 0  5.1542 4.8105 4.4122 3.9914 3.4014 3.2813 2.6781 

PSDBT
*
 0  5.1527 4.8092 4.4111 3.9904 3.4012 3.2816 2.6773 

Present 

0  5.1527 4.8081 4.4107 3.9904 3.4012 3.2816 2.6773 

10.  5.2223 4.8498 4.4042 3.9070 3.1478 3.0292 2.3554 

20.  5.3048 4.8995 4.3928 3.7865 2.6961 2.5718 1.8433 

Table 3 Variation of fundamental frequency   with the power-law index for FG beam for 20h/L  

Theory   0p  20.p   50.p   1p  5p  10p  Metal 

CBT
*
 0  5.4777 5.0967 4.6641 4.2163 3.6628 3.5546 2.8462 

FSDBT
*
 0  5.4603 5.0827 4.6514 4.2051 3.6509 3.5415 2.8371 

ESDBT
*
 0  5.4604 5.0829 4.6516 4.2051 3.6483 3.5389 2.8372 

PSDBT
*
 0  5.4603 5.0829 4.6516 4.2050 3.6485 3.5389 2.8372 

Present 

0  5.4603 5.0815 4.6511 4.2050 3.6485 3.5389 2.8371 

10.  5.5340 5.1244 4.6412 4.1117 3.3767 3.2809 2.4960 

20.  5.6214 5.1755 4.6254 3.9776 2.8856 2.8021 1.9533 

* Results form Ref (Simsek 2010) 
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Fig. 4 Variation of the transverse displacement w  versus non-dimensional length of a FG beam 

( h5L  ) 
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Fig. 5 Variation of the fundamental frequency   of FG beam with power-law index 

 

 

 

Fig. 5 shows the non-dimensional fundamental natural frequency   of perfect and imperfect 

FG beams versus the power law index for different values of span-to-depth ratio using the present 

theory. It is observed that an increase in the value of the power law index p  leads to a reduction 

of frequency. In addition, the porosity leads to a decrease of the frequency of the beam. 
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5. Conclusions 
 

Bending and vibration analysis of perfect and imperfect FG beams under uniform load is 

carried out in the present study by a new shear deformation beam theory. 

The theory inherently satisfies the condition of zero transverse shear stresses on the top and 

bottom surfaces of the beam. The results generated in the present work for various analyses are 

compared with the existing published results. The comparison proves the accuracy of the presently 

considered shear deformation theory, and hence it can successfully be employed for the structural 

analyses of FG beam. 
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