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Abstract. This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon 
nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform 
temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or 
FG along the thickness direction where the effective properties of nano-composite structure are estimated 
through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin–Voigt theory. 
The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and 
damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are 
assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in 
conjunction with Hamilton’s principle is utilized for deriving the motion equations where the size effects are 
considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, 
the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of 
different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic 
medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping 
constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is 
better than other considered cases. In addition, considering structural damping of system reduces the 
resonance frequency. 
 

Keywords: dynamic stability; FG-CNT-reinforced visco-cylindrical shell; DQ and Bolotin methods; 

harmonic temperature distribution; 2D magnetic field 

 
 
1. Introduction 
 

Recently the subject of CNTs has attracted attentions of researchers because of their 

extraordinary physical and chemical properties such as high tensile strengths, high stiffness, high 

aspect ratio and low density (Iijima 1991, Yakobson et al. 1996, Saito et al. 1998). A large number 
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of investigations are carried out to study different aspect of behavior of CNTs and the results of 

these studies shows that CNTs have excellent mechanical, electronic, electromechanical and 

thermal properties (Yu et al. 2000, Pan et al. 2001). Due to the remarkable properties, it has also 

been used as reinforcement for nanocomposites that may significantly improve the mechanical, 

electrical and thermal properties of the resulting nanocomposites; However, the majority of 

CNT-reinforced composite study has been focused on the polymer matrix composites (Qian et al. 

2002, Wan et al. 2005, Esawi and Farag 2007, Li and Wang 2008, Zamanian et al. 2017). A great 

deal of interest for the analysis of carbon nanotube-reinforced composite (CNTRC) structures is 

being manifested in the specialized literature. This interest is mainly due to the advent of the new 

composite material systems exhibiting exotic properties as compared to the traditional, carbon 

fiber-reinforced composite structures. Due to their very attractive thermo-mechanical properties 

these new materials are going to play a great role in the construction of Micro-Electro Mechanical 

Systems (MEMS) and Nano-Electro-Mechanical Systems (NEMS) (Liew et al. 2015, Koizumi 

1993, Anon 1996). 

Since shells among the fundamental engineering structures have many industrial applications. 

Extensive research has been done in different field of shell behavior consisting free vibration 

(Paliwal 1996), forced vibration (Rogacheva 1998), mechanical and thermal buckling (Bich et al. 

2013, Alijani et al. 2015). Loy et al. (1999) considered the vibration of functionally graded 

cylindrical shells. They showed that the natural frequency of functionally graded cylindrical shell 

will increase in comparison with isotropic. Pradhan (2000) presented Rayleigh method is used to 

derive the governing equation of Vibration characteristics of functionally graded cylindrical shells 

under various boundary conditions. Mechanism of ovalling vibrations of cylindrical shells in cross 

flow was presented by Tsujiguchi and Yamada (2001). A geometrically nonlinear wind-induced 

vibration analysis strategy for large-span single-layer reticulated shell structures based on the 

nonlinear finite element method was introduced by Li and Tamura (2005). Haddadpour et al. (2007) 

studied the free vibration analysis of functionally graded cylindrical shells including thermal 

effects. The motion equations are obtained based on Love’s shell theory and the von Karman–

Donnell-type of kinematic nonlinearity and the Galerkin method is used to solving equations. 

Haddadpour et al. (2011) analyzed the vibration of functionally graded cylindrical shells with ring 

support. The governing equations of motion are obtained using an energy functional and by 

applying the Ritz. It is assumed that the Material properties are graded in the thickness direction, 

according to the power-law volume fraction function method. The influence of changes in shell 

geometrical parameters and variations of ring support position on vibration characteristics are 

considered. Khalili (2012) analyzed the free vibration analysis of homogeneous isotropic circular 

cylindrical shells based on a new three-dimensional refined higher-order theory. The equations of 

motion are derived using Hamilton’s principle. Solutions are obtained based on Galerkin method. 

The present theory gives more accurate results in contrast to the other theories. Zhou (2012) 

considered the free vibrations of cylindrical shells with elastic-support boundary conditions. 

According to the Flügge classical thin shell theory, the motion equations of cylindrical shells are 

solved by using the wave propagations method. Jin et al. (2013) studied an exact solution for the 

free vibration analysis of composite cylindrical shells with general elastic boundary conditions. 

Xuyuan et al. (2015) investigated the vibration analyses of symmetrically laminated composite 

cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method. They have 

analyzed the effect of boundary rigidity and lamination on natural frequency behavior. 

Hosseini-Hashemi et al. (2015) implemented the free vibrations of functionally graded viscoelastic 

cylindrical panel under various boundary conditions. The materials are assumed to be functionally 
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graded viscoelastic (FGV). Results are compared for various boundary conditions, thickness to 

radius ratios and shallowness angles. Jin et al. (2016) described a unified solution for the vibration 

analysis of functionally graded material (FGM) doubly-curved shells of revolution with arbitrary 

boundary conditions. The solution was derived by means of the modified Fourier series method 

(Ye and Jin 2016, Ye et al. 2016). Three-dimensional (3D) vibration analysis of FG sandwich deep 

open shells with general boundary restraints, including open spherical shells and the cylindrical 

ones was presented by Ye et al. (2016). 

Shen et al. (2012) investigated the nonlinear vibration of nanotube-reinforced composite 

cylindrical shells in thermal environments. Two types of CNT-reinforced composite (CNTRC) 

shells, namely, uniformly distributed (UD) and FG reinforcements, are available. The material 

properties of FG-CNTRC shells are assumed to be varied in the thickness direction. They used 

higher-order shear deformation theory for deriving equations of motion. The results show that in 

most cases the natural frequencies of FG-CNTRC shell with symmetrical distribution of CNTs are 

higher. Alibeigloo et al. (2013) used nonlocal theory to investigate the vibration of CNTs. The state 

equations obtained from constitutive relations and governing motion equations are solved 

analytically by applying of the state space method. They showed that by considering the nonlocal 

parameter causes the CNTs more flexible and reduces the natural frequencies. Also natural 

frequency of SWCNTs clearly is impressed by both axial and circumferential wave numbers. 

Alibeigloo (2014) analyzed the free vibration analysis of functionally graded CNT reinforced 

composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity. By 

using state space technique across the thickness direction, state space differential equations are 

solved analytically. The analysis was carried out by using the Fourier series expansion across the 

axial and circumferential directions. The results suggest that dimensionless frequency of CNTRC 

cylindrical panel in the case of FG, at a same point are always greater in comparison with 

corresponding points in the other cases of CNT distribution. Song et al. (2015) studied the 

Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal 

environments. They have used Reddy’s high-order shear deformation theory for structural 

modeling. The equations of motion are obtained based on FSDT and TSDT. The results are 

validated with high-order shear deformation theory. They showed that the CNTs can increase the 

stiffness of the whole structure. They used numerical method to calculate the free vibration 

responses. Civalek et al. (2016) studied free vibration of carbon nanotubes reinforced (CNTR) and 

functionally graded shells and plates based on FSDT via discrete singular convolution method. The 

equations are based on First order shear deformation and five types of distributions of CNTR 

material are also considered. Mirzaei et al. (2016) presented the free vibration of 

FG-CNT-reinforced composite cylindrical panels. To establish the eigenvalue problem of the 

system, the energy based Ritz method with Chebyshev polynomials as the basis functions is 

implemented. The results show frequencies of the panel are dependent to both, volume fraction of 

CNTs and their distribution pattern across the thickness. By increasing the volume fraction of 

CNTs, the frequencies of the panel increases.  

According to the best authors of knowledge, no report has been found in the literature on the 

dynamic stability analysis of FG-CNT-reinforced micro cylindrical shell subjected to harmonic 

non-uniform temperate distribution and 2D magnetic field. In the present study, the orthotropic 

Mindlin plate theory is used for nonlinear bending behavior of polymeric temperature-dependent 

plates reinforced by SWCNTs resting on orthotropic temperature-dependent elastomeric medium. 

For CNTRC plate, both cases of uniform and FG distribution patterns of SWCNT reinforcements 

are considered. The equivalent material properties of nano-composite structure are obtained based 
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on the rule of mixture. Considering the size and structural damping effects, the nonlinear motion 

equations are obtained based on Hamilton's principal along with the Mindlin theory. DQM and 

Bolotin methods are utilized for calculating the DIR of FG-CNT-reinforced cylindrical shell. The 

main issues of this paper is considering the effects of the volume percent and distribution type of 

CNTs, viscoelastic medium type, temperature, boundary conditions, mode number, magnetic field, 

nonlocal parameter and structural damping constant on the dynamic stability bahaviour of the 

structure. 

 

2. Basic relations 
 

2.1 Mixture rule 
 

For obtaining the equivalent material properties of two-phase nano-composites (i.e., polymer as 

matrix and CNT as reinforcer), the mixture rule is utilized. Based on the mixture rule, the effective 

Young and shear moduli of FG-CNT-reinforced cylindrical shell can be written as (Shen and 

Xiang 2012) 
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where 
11rE , 

22rE  and 
11rG indicate the Young’s moduli and shear modulus of CNTs, 

respectively; and mE , mG  represent the corresponding properties of the isotropic matrix; j  

(j= 1, 2, 3) shows the scale-dependent material properties; CNTV  and mV  are the volume 

fractions of the CNTs and matrix, respectively. The uniform and three types of FG distributions of 

the CNTs along the thickness direction of the structure take the following forms 
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where CNTw , m  and CNT are the mass fraction of the CNT, the densities of the matrix and 

CNT, respectively. Similarly, the thermal expansion coefficients in the longitudinal and transverse 

directions respectively (
11  and 

22 ) and the density (   ) of the CNT-reinforced cylindrical 

shell can be determined as 
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where 11r , 22r  and m  are the thermal expansion coefficients of the CNT and matrix, 

respectively. It should be noted that 12  is assumed as constant over the thickness of the 

structure. 
 

2.2 Visco-nonlocal theory  
 
Based on the Eringen's nonlocal elasticity theory, the stress state at a reference point in the 

body is regarded to be dependent not only on the strain state at this point but also on the strain 

states at all of the points throughout the body. The relation between stress (
ij ) and strain (

ij ) in 

nonlocal form may be expressed as (Eringen 1972) 
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where ae0  is the small scale parameter, 
2  is the Laplace operator; ijC  and  ,xx    

denote the temperature-dependent elastic coefficients are the thermal expansion constants, 

respectively which can be obtained using rule of mixture (section 2.1). Noted that the temperature 

distribution across the thickness direction follows a harmonic law as follows (Fazzolari 2015, 

Madani et al. 2016) 
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where oT and iT  are the outer and inner surfaces temprature, repectively.  

With respect to this fact that all materials exhibit viscoelastic response, however, according to 
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Kelvin–Voigt (Kolahchi et al. 2016a) at real life, ijC  depend on the time variation as follows 

1  ,ij ijC C g
t

 
  

                              (14)

 

where g  is the structural damping constant. 

 
2.3 FSDT or Mindlin theory 
 

In the classical shell theory, the cross-section rotations and the shear strains in z direction are 

neglected. These shortcomings are fixed in the FSDT. According to the assumption of FSDT 

cylindrical shell theory, the displacement field can be written as (Reddy 2002) 

     , , , , , , , ,xu x z t u x t z x t    
                    (15)

 

     , , , , , , , ,v x z t v x t z x t    
                    (16)

 

   , , , , , ,w x z t w x t 
                         (17)

 

where ( ),,,(),,,,(),,,,( tzxwtzxvtzxu  ) denote the displacement components at an arbitrary 

point ( zx ,, ) in the cylindrical shell, ( ),,(),,,(),,,( txwtxvtxu  ) are the displacement of a 

material point at ( ,x ) on the mid-plane (i.e., 0z ) of the shell along the x-,  -, and 

z-directions, respectively;
 x and  are the rotations of the normal to the mid-plane about x- and 

 - directions, respectively. Based on above relations, the nonlinear strain-displacement equations 

may be written as 

2
1

,
2

x
xx

u w
z

x x x




   
    
                            (18)

 

2
1 1

,
2

v z w
w

R R R







  

     
      

                         (19)

 

1 1
,x

x

v u w w
z

x R x R x R




 


  

        
       
                        (20)

 

,xz x

w

x
 


 

                              (21)
 

1
.z

w
v

R
  



 
   

                            (22)

 

136



 

 

 

 

 

 

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells… 

where
 

),(  xx are the normal strain components and ),,(   xxzz are the shear strain 

components. 

 
 

3. Motion equations 

 
The schematic figure of an embedded FG-CNT-reinforced micro-visco cylindrical shell with 

length L , radius R  and thickness h  is shown in Fig. 1. The structure is subjected to harmin 

axial load and the surrounding medium is modeled with spring, orthotropic shear and damper 

constants. For obtaining the motion equations of presented structure, the energy method and 

Hamilton's principal are applied. 

 

 

 
 

(a) (b) 

  
(c) (d) 

Fig. 1 A schematic figure for embedded FG-CNT-reinforced viscoelastic micro cylindrical shell 

subjected to harmonic temperature distribution and magnetic field 
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3.1 Potential energy 
 
The total potential energy of nano-composite cylindrical shell can be expressed as 

 
1
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2
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Substituting strain-displacement relations from Eqs. (18)-(22), the above equation may be 

expanded as 
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where the stress resultant-displacement relations can be written as 
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In which k is shear correction coefficient. Substituting Eqs. (12) and (18)-(22) into Eqs. 

(25)-(27), the stress resultant-displacement relations can be expressed as 
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3.2 Kinetic energy 
 
The kinetic energy of nano-composite structure can be expressed as follows 
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Simplifying the above relation, we have 
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where the moments of inertia can be defined as 
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3.3 External works 
 

External works in this paper are due to the nonhomogeneous viscoelastic medium and 2D 

magnetic field. 

 

3.3.1 Nonhomogeneous viscoelastic medium 
The external work due to the nonhomogeneous viscoelastic medium can be expressed as 

(Kolahchi et al. 2016a, Mosharrafian and Kolahchi 2016) 
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where θ describes the local ξ direction of orthotropic foundation with respect to the global x-axis 

of the shell; G  and G  are the shear constants in   and   directions, respectively; dC  is 

the damper constant; Wk  is the spring constant which may be written as a nonhomogeneous form 

as follows (Mosharrafian and Kolahchi 2016) 
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where 1 , 10   . The foundation stiffness 0k  for soft medium may be written by  
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where 

1 2 exp ,s sH H
c

L L

   
     
                            (44)

 

where 
sE , s , sH  are Young’s modulus, Poisson’s ratio and depth of the foundation, 

respectively. In this paper, 
sE  is assumed to be temperature-dependent while s  is assumed to 

be a constant. 
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3.3.2 2D magnetic field 
Due to existence of CNTs as reinforcer in the shell, the structure is sensitive to magnetic field. 

The exerted body force due to the magnetic field, 0H  can be written as (Kolahchi et al. 2016b) 
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                        (45)

 

where   is the magnetic permeability of the CNTs;  is the gradient operator; ),,( wvuu  is 

the displacement field vector; h  is the disturbing vectors of magnetic field; J is the current 

density and 0H  for the unidirectional state can be defined as   eHeH xxx


0H  where 

  is the Kronecker delta tensor. Using Eqs. (1)-(3), the Lorentz force per unit volume can be 

expressed as 
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The resultant Lorentz’s forces and the corresponding bending moments may be expressed as 
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Substituting Eqs. (46)-(48) into Eqs. (49) and (50) yields 
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3.4 Hamilton's principal 
 

The Hamilton's principal can be written as follows 
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Substituting Eqs. (24), (39), (41) and (51)-(55) into Eq. (56) yields the following motion 
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Substituting Eqs. (28) to (35) into Eqs. (57) to (61), the motion equations can be expanded as 
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In this paper, three types of boundary conditions are considered as follows 

 Simple-Simple (SS) 

0, 0,xx L u v w M      
                (67)

 

 Clamped- Clamped (CC) 

0, 0,xx L u v w        
                  (68)

 

 Clamped- Simple (CS) 
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4. Solution procedure 

  
4.1 DQ method 
 

In the DQ method, the differential equations can be changed into a first order algebraic 

equation by employing appropriate weighting coefficients. In other words, the partial derivatives 

of a function are approximated with respect to x and   as follows (Kolahchi et al. 2016a, b) 
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A more superior choice for the positions of the grid points is Chebyshev polynomials as 

expressed 
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also 
)(n

ikA  and 
)(m

jlB  are the weighting coefficients associated with n
th
-order partial derivative of 

),( xF  with respect to x  at the discrete point ix  and m
th
-order derivative with respect to   

at 
i , respectively which may be calculated as 
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For higher order derivatives we have 
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The harmonic axial load P is considered as 

( ) cos( t),cr crP t P P   
                          (81)

 

where   is the frequency of excitation, crP  is the static stability load,   and   may be 

defined as static and dynamic load factors, respectively. Finally, the motion equations coupled with 

boundary conditions in matrix form can be expressed as 

[ cos( ) ] [ ] [ ] [0],
b b b

L NL cr G cr G L NL

d d d

d d d
K K P K P t K C C M

d d d
  

      
           

                 (82)

 

where [ ] [ ]Txd u v w   ;  KL  and  KNL  are respectively, linear and nonlinear stiffness 

matrixes;  KL  is the coefficient of force;  LC  and  NLC  are respectively, linear and 

nonlinear damp matrixes and  M  is the mass matrix; the subscripts of b and d are related to 

boundary and domain points, respectively. 

 
4.2 Bolotin method 
 

In order to determinate the boundaries of dynamic instability regions, the method suggested by 

Bolotin (Kolahchi et al. 2016a) is applied. Hence, the components of  d  can be written in the 

Fourier series with period T2  as 
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Substituting Eq. (83) into Eq. (82) and setting the coefficients of each sine and cosine as well as 

the sum of the constant terms to zero, yields 

         
2

0 ,
2 2 4

L NL cr crG G
K K P K P K C M

  


 
     

          (84)

 

Solving the above equation based on eigenvalue problem, the variation of   with respect to 

  can be plotted as DIR. 

 

 

5. Numerical results 
 

In this section, the effects of different parameters on the dynamic stability of embedded 

visco-micro cylindrical shell are studied. For this purpose, the cylinder is made from Poly methyl 
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methacrylate (PMMA) with the constant Poisson’s ratios of 34.0m , temperature-dependent 

thermal coefficient of   KTm /100005.01 6 , and temperature-dependent Young moduli 

of  GPaTEm 0034.052.3   in which TTT  0
 and KT 3000   (room temperature). In 

addition, (10, 10) SWCNTs are selected as reinforcements with the material properties listed in 

Table 1. The elastomeric medium is made of Poly dimethylsiloxane (PDMS) which the 

temperature-dependent material properties of which are assumed to be 48.0s  and 

 GPaTEs 0034.022.3   in which TTT  0  and KT 3000   (room temperature) (Shen 

and Xiang 2012, Kolahchi et al. 2016b). 

 

5.1 DQ Convergence 
 

The convergence and accuracy of the DQ method in calculating the excitation frequency and 

DIR of the nano-composite structure is shown in Fig. 2. It can be seen that with increasing the 

number of grid points, the DIR shifts to lower frequencies and in N=15, the results become 

converge. However, in the present work, the number of grid points for obtaining the accurate 

results is assumed 15. 

 
Table 1 Temperature-dependent material properties of (10, 10) SWCNT (L= 9.26 nm, R= 0.68 nm, h= 0.067 

nm, 175.012 CNT ) 

VCNT 
MD (Liew et al. 2014)  Rule of mixture 

E11 (GPa) E22 (GPa) E11 (GPa) 1η  E22 (GPa) 2η  

0.11 94.8 2.2 94.57 0.149 2.2 0.934 

0.14 120.2 2.3 120.09 0.150 2.3 0.942 

0.17 145.6 3.5 145.08 0.149 3.5 1.381 

 

 
Fig. 2 The effect of DQ grid points number on the DIR of structure 
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5.2 Validation 
 

In order to validate the results of this work, neglecting viscoelastic medium, 2D magnetic field, 

structural damping parameter, nonlocal effects and harmonic temperature distribution, present 

results are compared with those reported by Lei et al. (2014). For this purpose, a 

FGX-CNT-reinforced simply supported cylindrical shell with R/h=200 is considered based on 

Love’s thin shell theory. Using DQ and Bolotin methods, the dimensionless excitation frequency 

(
12 21 22(1 ) / ER      ) with respect to the dynamic to static load factor ( /  ) is plotted 

in Fig. 3 for the first four modes. As can be seen, present results obtained by DQM are in good 

agreement with those reported by Lei et al. (2014) based on the mesh-free kp-Ritz method, 

indicating validation of this work. 

 
5.3 Effects of different parameters 
 

Here, the effects of different parameters on the dimensionless excitation frequency 

( 12 21 22(1 ) / ER      ) versus dynamic load factor (i.e.,  ) are shown in Figs. 4-10.  

These figures indicate the DIR of structure where the regions inside and outside the boundary 

curves correspond to unstable (parametric resonance) and stable regions, respectively. 

The effect of distribution type of CNT in visco-micro-cylindrical shell on the DIR is shown in 

Fig. 4 where the UD and three types of FG distribution patterns are considered. It can be found 

that the DIR of FGA- and FGO- CNT-reinforced visco-micro-cylindrical shell is lower than the 

DIR of UD ones while the FGX-CNT-reinforced visco-micro-cylindrical shell has higher DIR with 

respect to three other cases. It is because the stiffness of CNT-reinforced visco-micro-cylindrical 

changes with the form of CNT distribution in matrix. However, it can be concluded that CNT 

distribution close to top and bottom are more efficient than those distributed nearby the mid-plane 

for increasing the stiffness of cylindrical shell. 

 

 
Fig. 3 Validation of this work with Lei et al. (2014) 
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Fig. 4 The effect of CNT distribution on the DIR of structure 

 

 
Fig. 5 The effect of CNT volume percent on the DIR of structure 

 
 

Fig. 5 demonstrates the effect of the CNT volume fraction on the DIR of the structure. As can 

be seen with increasing the CNT volume fraction, the DIR shifts to higher excitation frequencies. 

It means that the resonance frequency increases with increasing the CNT volume fraction. 

Physically, with increasing the CNT volume fraction, the stiffness of structure increases. 
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Fig. 6 The effect of structural damping on the DIR of structure 

 

 
Fig. 7 The effect of nonlocal parameter on the DIR of structure 
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that considering the nature of structure as viscoelastic can yields the accurate results with respect 

to non-visco ones. The reason is that assuming viscoelastic structure means induce of damping 

force which results in more absorption of energy by the system. 

In order to show the nonlocal parameter effects on the DIR of structure, Fig. 7 is plotted. It is 

obvious that considering size affects leads to higher excitation frequency. In other words, the DIR 

of system shifts to higher frequencies with assuming the nonlocal effects. It is due to the fact that 

nonlocal theory introduces a more flexible model wherein atoms are joined by elastic springs 

while the values of spring constants in local theory are supposed to be infinite. 

The effect of the magnetic field on the DIR of the CNT-reinforced micro cylindrical shell is 

depicted in Fig. 8. As can be seen, the excitation frequency of structure increases with increasing 

magnetic field. It is due to the fact that with increasing the magnetic field, the stiffness of system is 

enhanced. However, the magnetic field is one of the main parameters for control of the resonance 

frequency of structure. 
The DIR of the CNTR-reinforced visco-micro-cylindrical shell is presented in Fig. 9 for four 

cases of without medium (WM), nonhomogeneous visco-Winkler (NVW) medium, orthotropic 

nonhomogeneous visco-Pasternak (ONVP) medium and nonhomogeneous visco-Pasternak (NVP) 

medium. Obviously, considering every types of viscoelastic medium increases the excitation 

frequency of structure and shifts the DIR to right. It is due to the fact that considering viscoelastic 

medium leads to stiffer structure. Furthermore, the excitation frequency predicted by ONVP or 

NVP is higher than that predicated by NVW. It is because the NVW is capable to describe just 

normal load of while the ONVP or NVP describes both transverse shear and normal loads of the 

elastomeric medium. In addition, the DIR of NVP is happened in higher frequency with respect to 

ONVP since in ONVP, the shear layer is considered with the degree of 45 with respect to x axis. 
 

 

 
Fig. 8 The effect of viscoelastic medium type on the DIR of structure 
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Fig. 9 The effect of boundary conditions on the DIR of structure 

 

 
Fig. 10 The effect of boundary conditions on the DIR of structure 
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Fig. 11 The effect of temperature gradient on the DIR of structure 

 

 
Fig. 12 The effect of mode number on the DIR of structure 

 

 

Fig. 11 shows the effect of temperature gradient on the DIR of the CNT-reinforced 

visco-micro-cylindrical shell. As can be seen, increasing the temperature gradient leads to higher 

resonance frequency and DIR moves to higher frequencies. It is due to the fact that with increasing 

0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionless excitation frequency, 

D
y
n

a
m

ic
 l

o
a
d

 a
m

p
li

tu
d

e
, 

 

 

T=0

T=50

T=100

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionless excitation frequency, 

D
y
n

a
m

ic
 l

o
a
d

 a
m

p
li

tu
d

e
, 

 

 
Mode 1

Mode 2

Mode 3

Mode 4

153



 

 

 

 

 

 

H. Tohidi, S.H. Hosseini-Hashemi, A. Maghsoudpour and S. Etemadi 

the temperature gradient, the structure becomes softer. 

The effect of mode number on the DIR of the structure is depicted in Fig. 12. It can be seen that 

with increasing the mode number, the DIR of the CNT-reinforced visco-micro-cylindrical shell 

shifts to right and the instability region will be happed at higher excitation frequencies. 
 
 

6. Conclusions 
 

Dynamic stability analysis of the viscoelastic orthotropic micro cylindrical shell reinforced by 

FG-CNTs is the main contribution of this work considering the harmonic temperature distribution, 

2D magnetic field, orthotropic temperature-dependent properties of the structure in conjunction 

with the nonhomogeneous orthotropic viscoelastic foundation. After deriving the motion equations 

by Hamilton's principal, the DQ and Bolotin methods were utilized to calculate the resonance 

frequency and DIR of structure. The results were found to be in good agreement with the Lei et al. 

(2014). In order to explore the dynamic stability characteristics, the influences of the nonlocal 

parameter, structural damping, viscoelastic foundation type, boundary condition, mode number, 

magnetic field, temperature gradient, CNTs volume percent and distribution type on the DIR were 

also examined. Numerical results indicate that the excitation frequency was significantly 

influenced by the structural damping. It was found that the FGX-CNT-reinforced 

visco-micro-cylindrical shell has higher DIR with respect to three other cases. Also, with 

increasing the CNT volume fraction, the DIR shifts to higher excitation frequencies. In addition, 

considering size affects and magnetic field leads to higher excitation frequency. Furthermore, 

increasing the temperature gradient leads to higher resonance frequency. It is hoped that the 

presented new results can be used as a benchmark solution for future researches. 
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