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Abstract. A novel three-degree-of-freedom (DOF) forced vibration system has been developed for 
identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of 
wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of 
a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, 
cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to 
force vibrations at a consistent frequency but varying amplitudes between the three. This system was 
designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited 
(motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter 
derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required.  
Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are 
presented to demonstrate the functionality and robustness of the system and its applicability to multiple 
cross-section types. The system will allow routine identification of aeroelastic parameters through wind 
tunnel tests that can be used to predict response of flexible structures in extreme and transient wind 
conditions. 
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1. Introduction 
 

The complex interaction between the wind and a structure induces specific wind loads on the 

structure that are capable of producing large amplitude motions which may be catastrophic.  

Aeroelasticity is the study of the significant interaction of aerodynamic forces with the elastic 

response of a flexible structure. Major wind-induced instabilities can be generally classified as: 

self-excited (motion-induced), self-excited in the presence of buffeting, and vortex-induced. The 

combined effect of the three loads depict the response of a specific structure in any given wind 

condition. Self-excited loads are the product of the motion of a structure as it perturbs the flow 

around it such that the modified flow pattern produces additional aerodynamic damping and 

stiffness loads. If the structure is given an initial deflection, its motion will either decay or increase 

which is dependent on whether the wind is transferring energy to the structure or helping to 
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dissipate the kinetic energy of the structure. The theoretical dividing line between the decay and 

the increase is identified as the critical flutter speed. Buffeting wind loads are fluctuating loads 

acting on a structure and are induced by upstream wind turbulence and structure-induced 

turbulence. The fluctuating wind loads can be calculated based on the statistical description of the 

turbulence characteristics of the undisturbed flow approaching the structure and the signature 

turbulence due to the structure. Aerodynamic admittance function formulation, proposed by 

Davenport (1962), can be used to convert the wind turbulence characteristics into wind loads on 

the structure in frequency domain. Vortex-induced loads cause large amplitude vibrations over a 

specific range of wind speeds or “lock-in” wind speed. Vortices that shed from opposite surfaces of 

a structure alternately result in dynamic pressure distributions producing cross-wind vibration of 

the structure. The “lock-in” wind speed for vortex-induced vibrations is determined from the 

Strouhal Number (St) for the given cross-sectional shape, Strouhal (1878), and the amplitude of 

the vibration can be determined from the Scruton Number (Sc), Scruton (1981), for the structure. 

These wind induced loads play a major role in the design of flexible structures such as wind 

turbine blades, long-span bridges, high-mast poles and tall buildings. The complexity of the 

fluid-structure interaction makes analytical and computational simulations challenging.  

Therefore, to capture the complexities of the flow around a vibrating body it is necessary to 

perform wind tunnel tests. Three commonly used wind tunnel tests to extract the information on 

the aeroelastic behavior of models are scaled models of the full structure, taut-strip models, and 

section models. Scanlan and Tomko (1971) first introduced the method of extracting flutter 

derivatives from section model wind tunnel tests while Davenport et al. (1971) used a taut-strip 

method.  Comparison between the two methods was done by Scanlan et al. (1997). This work 

uses sections models so a brief overview of section model methods follows. 

A section model is a scaled and rigid geometrically faithful model of a two-dimensional 

cross-section of a body. Section model is commonly used to determine the aeroelastic load 

functions for a particular prototype body with a specific cross-sectional shape. End plates are 

typically used to reduce the aerodynamic end effects on the model and essentially ensure a 

two-dimensional flow over the cross-section. The aeroelastic load functions extracted from wind 

tunnel tests are extended to predict the response of the prototype structure. 

Scanlan and Tomko (1971) developed the self-excited load formulation in frequency domain in 

terms of flutter derivatives. Wind tunnel tests to extract flutter derivatives typically use a free 

vibration type test with varying degrees-of-freedom included depending on the cross-section.  

Free vibration tests involve giving the model a constant initial displacement and measuring the 

model’s displacement time history at several wind speeds. In order to extract all 18 flutter 

derivatives Sarkar et al. (2004) designed a three-degree-of-freedom (DOF) elastic suspension 

system that was suitable for free vibration. Several other wind tunnel free vibration rigs have been 

developed with all three DOFs, Dallaire et al. (2016) and Prud’homme et al. (2015). However, 

these systems have their limitations. First, free vibration tests do not allow for testing at high wind 

speeds due to the probability of either onset of divergent response (flutter) in some cross sections 

or highly decayed response because of high aeroelastic damping that occur in most cross sections.  

Second, limitation in the amplitude of vibration in the along-wind direction at high wind speeds 

due to a large mean drag force acting on the model and hence a large mean displacement that 

would significantly affect the 3-DOF results, specifically seen in the system designed by Sarkar et 

al. (2004). Third, the flutter derivatives that are meant to be strictly valid for small amplitudes of 

the structure are found to be sensitive to amplitudes for some cross sections, whereas it is difficult 

to maintain consistent amplitudes at all wind speeds in these free-vibration systems. These 
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limitations and the benefits of time-domain analysis prompted the development of forced vibration 

methods to extract the aeroelastic load functions. 

Time-domain methods for self-excited loads are more applicable to finite element modeling, 

transient wind response, feed-back based control strategies, and fatigue life estimations. A method 

based on the Rational Function Approximation developed by Roger (1977) using a 

two-degree-of-freedom (vertical and torsional) forced vibration system was developed by Cao and 

Sarkar (2012). This method directly extracted the rational functions by measuring model 

displacement and surface pressure. The system developed for these forced vibration tests consisted 

of two motors mounted outside the wind tunnel and connected into the elastic suspension system 

designed by Sarkar et al. (2004) to create simultaneous or independent cross-wind and torsional 

vibrations at several frequencies and amplitudes. Other forced vibration rigs have been developed 

but are limited to the same degree-of-freedom combination and do not allow for the coupled 

motion, Permata et al. (2013). For some cross-sections, particularly more bluff ones, it is necessary 

to include the along-wind loads and displacements in the analysis of the self-excited excitation 

which prompted the development of a forced vibration system that could create simultaneous or 

independent cross-wind, along-wind and torsional vibrations. Additionally, for the analysis of 

more complex structures, like a wind turbine blade, where the response of the entire blade is 

highly coupled between all three-degrees-of-freedom a full analysis is exceedingly important. 

This work describes a prototype three-degree-of-freedom forced vibration system that was 

designed, built and demonstrated in the Wind Simulation and Testing Laboratory at Iowa State 

University. The system will allow routine identification of aeroelastic parameters through wind 

tunnel tests in the future that can be used to predict response of flexible structures in extreme and 

transient wind conditions. Results from three experiments, airfoil, streamlined bridge deck and a 

bluff-shaped rectangular section, are presented to demonstrate the functionality and robustness of 

the system and its applicability to multiple cross-section types. Rational function coefficients of 

these sections are presented here and converted to their flutter derivative counterpart for 

comparison with previous results for validation. 

 

 

2. Component description and assembly of system 
 

The components that were used to assemble the three-DOF forced vibration system are 

described here. This system enables simultaneous or independent cross-wind, along-wind and 

torsional motions of a cantilevered section model. It is capable of capturing the effects of 

aeroelastic coupling between different degrees of freedom of a section model subjected to wind 

loading. 

The system was designed as a set of 3 nested frames fixed within a stationary frame. There are 

2 dynamic frames, each of which slide along 2 polished rods, one for the along-wind component 

and the other for the cross-wind component of the motions. The frame for the cross-wind 

component is mounted with the one for along-wind component and the frame for the torsional 

component is installed within the innermost cross-wind component frame. Fig. 1 shows the entire 

system mounted under the wind tunnel floor. The component for each degree of freedom will be 

described in the subsequent sections. 
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2.1 Cross-wind and along-wind degrees-of-freedom 
 
Fig. 2 shows the 3DOF system mounted under the wind tunnel from underneath and a side view.  

The two linear systems (along-wind and cross-wind) were built using four linear bearings each 

(McMaster Carr, Inc, part number 9338T100) mounted on polished steel rods. The 2 rods for the 

along-wind section are connected into a stationary frame made of aluminum T-slotted framing 

which is mounted underneath the floor of the wind tunnel. The friction in the bearings was not a 

concern because the frame is being forced to vibrate at a specific frequency and amplitude. The 

motors for the two linear systems were Deluxe Rod Actuators (Firgelli Automations) with a 0.15 m 

(6 in) stroke length. These 12 VDC actuators have a maximum speed of 0.08 m/s (3 in/s) with 0.44 

kN (100 lbs) of force. The stroke length was chosen to allow a maximum amplitude of 0.05 m (2 

in) to enable high-amplitude vibrations to study their effects if necessary. 

 

 

Fig. 1 3-DOF forced vibration system under the floor of the wind tunnel. 

 

 

 

 

(a) View from under the wind tunnel 

with wind direction denoted 

(b) Downwind view with wind coming out of the 

page 

Fig. 2 3-DOF Forced vibration system mounted under the aerodynamic test section 

Wind 

Wind 
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(a) 

 

(b) 

 

Fig. 3 SolidWorks model of the 3DOF forced vibration system. (a) interior cross-wind dynamic frame 

mounted inside the along-wind frame, and (b) the along-wind frame mounted inside the stationary outer 

frame 

 

 

Fig. 3 shows the SolidWorks schematic for the two linear dynamic systems. On the design in (a) 

shows the exterior stationary frame with the along-wind dynamic frame mounted inside it. The 

image in (b) shows the cross-wind frame installed inside the along-wind component. In an effort to 

clarify the images several components are hidden from view or are shown as wire frames.   

 

2.2 Torsional degree-of-freedom assembly 
 

The torsional assembly was designed to convert linear motion from an actuator into rotational 

motion. Fig. 4 shows a SolidWorks schematic of the design of the torsional system. A ball bearing 

(McMaster Carr, part number 6494K38) was mounted into the system that was vibrating in the 

cross- and along-wind directions. A solid steel rod runs through the bearing and connects 

perpendicularly into the motor. A Deluxe Rod Actuator (Firgelli Automations) with a 0.08 m (3 in) 

stroke length was used for the torsional system. This system has a maximum amplitude of 10 

degrees, allowing high-amplitude vibration in the rotational direction if necessary.   

 

2.3 Control system 
 

A control system was designed for this system to allow independent amplitude of vibration 

along each degree of freedom (DOF) but with the same frequency. Although maintaining an 
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identical frequency along all 3DOF is desirable for maintaining consistency between the three 

subsets of identified parameters associated with each degree of freedom, in the future, the control 

system could be modified if necessary to allow for independent frequencies using a parallel 

computing method. An Arduino Uno R3 board was used to communicate between the motors and 

the computer.An Adafruit Motor/Stepper/Servo Shield for Arduino v2.3 was used for 

communicating with the three motors through the Pulse Width Modulation (PWM) ports on the 

Arduino. The Motor shield allows for up to four DC motors to be connected at the same time and 

the shield can be stacked to connect more motors to the system. The motors required 12V DC and 

a higher current than the motor shield could supply, therefore, three IBT-2 motor drivers were used 

to connect the motors to the system and an AC 110V/220V to DC 12V 33A Switch Power Supply 

Driver was used to supply power to the three motors. The PWM signal would pass from the 

Arduino into the motor shield which would then communicate with the PWM chips in the IBT-2 

which would direct the correct voltage pulses into the motors. Fig. 5 shows the interior of the 

control box developed. MATLAB Arduino toolkit was used to program the motors to vibrate in a 

sinusoidal fashion.  

 

 

Fig. 4 SolidWorks design interior torsional system mounted on linear bearing for cross-wind vibration 
 

 

 

Fig. 5 Interior of control box for the three motors 
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2.4 Wind tunnel used 
 

The experiments described here were performed in the Aerodynamic and Atmospheric Boundary 

Layer (AABL) Wind and Gust Tunnel located in the Wind Simulation and Testing Laboratory 

(WiST Lab) in the Department of Aerospace Engineering at Iowa State University. This wind tunnel 

has an aerodynamic test section of 2.44 m (8.0 ft) width × 1.83 m (6.0 ft) height, an atmospheric 

boundary layer test section of 2.44 m (8.0 ft) width × 2.21 m (7.25 ft) height), and a design 

maximum wind speed of 53 m/s (173.9 ft/s) in the aerodynamic section.  

 

2.5 Displacement measurements 
 

In order to extract the Rational Function Coefficients, it is necessary to measure the 

displacement of the model and the aerodynamic loads simultaneously. In order to measure the 

displacements three uniaxial force transducers (Transducer Techniques) were connected to the 

respective relative stationary frame using springs. Each force transducer measured the 

displacement along one DOF. To ensure that the measurements were correct, they were compared 

to physical measurements made on the system. Displacement data was captured at 625 Hz using 

the MATLAB Data Acquisition toolbox. 

 

2.6 Aerodynamic load measurements 
 

All of the section models tested with the system had between 32-42 pressure taps located along 

their mid-plane. A 64-channel pressure transducer (Scanivalve ZOC33/64 Px) was used to measure 

the pressures that were later converted to loads on the model. The data was acquired using 

Scanivalve’s Scantel software at a frequency of 312.5 Hz. To ensure the displacement and load 

time histories were synchronous, a trigger system was used to start both data acquisition systems. 

All tests were performed in smooth flow (Turbulence Intensity, TI < 0.27%). 

 

3. Equations for 3 DOF rational function extraction 

 

For time domain analysis of structures, the equations for the self-excited loads are written first 

in Laplace domain and then converted to time domain. This method, based on the Rational 

function formulation (Roger1977, Karpel1982), was developed for two-degrees-of-freedom 

(vertical and torsional) by (Cao and Sarkar 2012). The Laplace domain formulation is shown in Eq. 

(1) with expanded terms given in Eq. (2). Eqs. (3)-(5) give the time domain formulation for the 

self-excited lift, drag and moment after converting from Laplace domain 
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where A0, A1 are the stiffness matrix and damping matrix, respectively; F is the lag matrix, all of 

order 3 x 3, and 𝜆𝐿, 𝜆𝐷 and 𝜆𝑀 are the lag coefficients. The elements of A0, A1 and F matrices and 

𝜆𝐿, 𝜆𝐷 and 𝜆𝑀 are known as the Rational function coefficients. Q, defined in Eq. (2) is the 

Rational function matric which contains the 9 Rational functions. In order to validate the extracted 

Rational function coefficients, it is necessary to convert them to their flutter derivative 

counterparts. Eq. (6) gives the relationships between the components of the Rational function 

matrix and the 18 flutter derivatives. 
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* 2

1 11
( ) /H imag Q K  * 2

1 22
( ) /P imag Q K  * 2

1 31
( ) /A imag Q K  

(6) 

* 2

2 13
( ) /H imag Q K  * 2

2 23
( ) /P imag Q K  * 2

2 33
( ) /A imag Q K  

* 2

3 13
( ) /H real Q K  * 2

3 23
( ) /P real Q K  * 2

3 33
( ) /A real Q K  

* 2

4 11
( ) /H real Q K  * 2

4 22
( ) /P real Q K  * 2

4 31
( ) /A real Q K  

* 2

5 12
( ) /H imag Q K  * 2

5 21
( ) /P imag Q K  * 2

5 32
( ) /A imag Q K  

* 2

6 12
( ) /H real Q K  * 2

6 21
( ) /P real Q K  * 2

6 32
( ) /A real Q K  

 

 

4. Experimental set-up, results and discussion 
 

Three section models, a streamlined bridge deck, an asymmetric thick wind turbine blade 

airfoil, and a rectangular bluff cross section, were used to validate both the 

three-degree-of-freedom rational function extraction procedure and this system. Each of these 

models presented a unique case to investigate the applicability of this system.  The beauty of this 

procedure to extract the rational function coefficients for three-degrees-of-freedom is that it 

requires model tests to be conducted at only three different wind speeds. 

 

4.1 Streamlined bridge deck benchmark study 
 

With the development of longer-span bridges, particularly cable-stayed bridges, the importance 

of the lateral or along-wind degree-of-freedom on the coupled aeroelastic effects has been 

emphasized. Further, modern long-span bridges usually use box-girder bridge deck sections with a 

large aspect ratio (width to depth ratio) making them streamlined that have a better aerodynamic 

performance. Therefore, a streamlined bridge deck (Fig. 6) was selected for the tests to represent a 

shallow box girder bridge deck section with semi-circular fairings on the edges. The thickness to 

chord ratio was 7% and the model was 0.6 m long with a chord length of 0.3 m. This cross section 

was also chosen because all 18 flutter derivatives of this section had been extracted using a free 

vibration method (Chowdhury and Sarkar 2004) and the rational functions of this section that are 

associated with 2 degree-of-freedom (vertical and torsional) were extracted using a forced 

vibration method (Cao and Sarkar 2012), making it convenient for validation of the current results.   

The model was tested at 5 m/s, 6.5 m/s and 9.4 m/s with a forced vibration frequency of 1.06 

Hz for all three degrees-of-freedom. The along-wind amplitude (p) was 0.1 m (0.5 in), the 

cross-wind amplitude (h) was 0.025 m (1 in), and the torsional amplitude (α) was 4 degrees. The 

results for the rational function coefficients are given below 
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Fig. 6 Cross-section of the streamlined bridge deck 
 

 

𝐴0 = [
0.737 0.067 −5.185
0.042 −0.032 −0.007

−0.043 −0.006 0.807
]   𝐴1 = [

−4.923 −0.567 −1.861
0.720 −0.886 −0.109
1.835 −0.019 −0.814

] 

  𝐹 =  [
−2.421 −0.013 0.651
0.658 −0.825 0.261
0.553 −0.017 0.559

]  𝜆𝐿 = 0.162; 𝜆𝐷 = 0.891;  𝜆𝑀 = 0.2655 

The rational function coefficients for the 2DOF case (Cao and Sarkar 2012) are copied below 

0

0.3273 6.2384

0.0970 1.3818
A

 
  

 
, 1

3.7549 1.4947

0.8510 0.3819
A

  
  

 
, 

0.9484 1.3397

0.2689 0.1682
F

 
  

 
, 

0.1843L  , 0.2239M   

For further validation, these rational function (RF) coefficients were converted to their flutter 

derivative counterparts. Fig. 7 shows some selected flutter derivatives for the streamlined bridge 

deck compared to those extracted from the free vibration test (Chowdhury and Sarkar 2004).  

These flutter derivatives as converted from RF coefficients using the relationships given in Eqs. (2) 

and (6) are compared. 

 

4.2 Asymmetric wind turbine blade airfoil case 
 

The National Renewable Energy Laboratory (NREL) has designed a family of S-series airfoils 

that are thick (high thickness to chord ratio), generate low-noise during operation and 

aerodynamically efficient with high lift-to-drag ratio, for use in 20-25 m wind turbine blade. A 

section of the S830 airfoil with a 21% thickness to chord ratio was used for second set of tests.   

The airfoil had a chord of 0.15 m (6 in). The maximum lift-to-drag ratio for this airfoil was 

found to occur at a 6-degree angle of attack, therefore 0, 3, 6, and 9 degree angles of attack were 

tested.  The cross-section of the airfoil is shown in Fig. 8 and an image of the model in the wind 

tunnel is shown in Fig. 9. 

The two degree-of-freedom (h, α) rational function coefficients for this airfoil as extracted by 

Sauder and Sarkar (2015) are available for comparison. Also, all 18 flutter derivatives associated 

with 3DOF for an airfoil NACA0020 that is similar in thickness/chord ratio (20%) to the S830 

airfoil (21%) but different from it, as being symmetric, are available for comparison (Chowdhury 

and Sarkar 2003). The tests for this model were done at 6.5 m/s, 9.4 m/s and 10.9 m/s and 

frequency of 1.2 Hz. The amplitudes of vibration were h = 38 mm (1.5 in), p = 25 mm (1 in) and α 
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= 8 degrees. The results for the rational function coefficients of the S830 airfoil at a 0-degree angle 

of attack are given below and selected flutter derivatives are given in Fig. 10. 

 

 

  

  

  
(a) 
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(c) 

Fig. 7 Flutter derivatives associated with (a) lift, (b) drag, and (c) moment, for the streamlined bridge deck 

benchmark study compared to those from free vibration tests (Chowdhury and Sarkar 2004) 

 

 

 

Fig. 8 Profile of the S830 airfoil 
 

 

 

Fig. 9 Airfoil model in wind tunnel as mounted on the 3DOF system (underneath the test section) with a 

stand for supporting the pressure tubes (upstream view) 
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𝐴0 = [
−1.835 0.308 −2.665
0.175 0.145 0.312
0.828 −2.312 −2.405

]   𝐴1 = [
−2.969 −0.379 −2.195
0.566 −0.190 −0.380
2.695 0.056 −1.663

] 

 𝐹 =  [
−2.939 0.348 −0.093
0.168 0.169 −0.331

−0.497 2.420 2.476
]  𝜆𝐿 = 0.011; 𝜆𝐷 = 0.016;  𝜆𝑀 = 0.006 

 

  

  

(a) 

  

  
 (b)  

Fig. 10 Selected flutter derivatives for the S830 airfoil compared to 2 DOF tests (Sauder and Sarkar 2015) 

and the NACA0020 airfoil (Chowdhury and Sarkar 2003), associated with (a) lift and (b) moment 
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Fig. 11 Cross-section of the bluff rectangular section model 
 

 

4.3 Rectangular bluff cross-section 
 

To test the robustness of the 3DOF system and the associated method to extract the rational 

function coefficients for a one-lag load model, it was deemed necessary to test a relatively bluff 

cross-section of a flexible structure such as a long-span bridge or a tall building. This bluff section 

model is rectangular with a width-to-depth ratio (B/D) of 5:1, and the length, chord length and 

thickness of the model are about 0.533 m, 0.16 m, and 0.032 m, respectively (Fig. 11). 

The wind speeds used for these tests were 5 m/s, 6.5 m/s and 9.4 m/s with a frequency of 1.06 

Hz. The amplitudes of vibration were h = p =12.7 mm (0.5 in), and α = 3 degrees. The extracted 

rational function coefficients associated with h, p,  are given below 

𝐴0 = [
−0.029 −0.025 −25.270
−0.017 −0.014 −3.567
0.0627 −0.049 −8.747

]   𝐴1 = [
−1.672 −0.836 26.166
−2.189 −0.082 29.189
6.524 −6.642 −13.280

] 

𝐹 =  [
−13.300 0.344 −16.574

2.621 0.013 −32.662
−5.048 −4.636 32.452

] 𝜆𝐿 = 1.225; 𝜆𝐷 = 1.045;  𝜆𝑀 = 0.6763 

For this case the rational function coefficients, as given below, were also extracted using the 

two degree-of-freedom (h, ) forced vibration system in a previous study (Cao and Sarkar 2012).   

0

0.0618 7.9085

0.0387 0.6258
A

  
  

  
, 1

0.7820 7.3997

1.7649 1.0621
A

 
  

  
, 

10.4613 5.7309

1.5021 2.9637
F

  
  

 
, 

1.2048L  , 0.7091M   

 

In this case, only the flutter derivatives determined using a two degree-of-freedom system are 

available for comparison (Matsumoto et al. 1996). Fig. 12 gives the flutter derivatives for the bluff 

cross-section. A comparison between the 8 flutter derivatives that were determined with the 2 DOF 

(h, ) test is presented where applicable. The two results are very similar which suggests that this 

method can be used for bluff cross-sections as well. 
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Fig. 12 Comparison of the three degree-of-freedom flutter derivatives for the bluff rectangular 

cross-section compared to Matsumoto et al. (1996) flutter derivatives extracted using two 

degree-of-freedom (h, α) free vibration 
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4.4 Discussion 
 

In all of the above forced vibration tests, one frequency of vibration was used for all three DOF. 

Although it is possible to have a unique frequency for each actuator that imparts motion along 

each DOF, the choice of one frequency for all DOF is because of practical and fundamental 

considerations. In the past, use of different frequencies along 2-DOF or 3-DOF free vibration 

section model tests (Sarkar et al. 1994, Chowdhury and Sarkar 2004, 2005) to extract flutter 

derivatives or rational functions have shown that results are independent of the choice of 

frequency used. The consistency between the flutter derivatives results (Fig. 7) from 3DOF-section 

model tests of the streamlined bridge deck (Fig. 6) where different frequencies along the 3 DOF 

were used (Chowdhury and Sarkar 2004) and the current tests where one frequency was used 

offers further proof of frequency independence. 

The discrepancy between some of the flutter derivatives like H1* and A2*, particularly in the 

higher reduced velocity range, from the current 3DOF tests and past 2DOF results (Sauder and 

Sarkar 2015) for the airfoil highlights several likely reasons that can improve the outcome of this 

type of tests in the future. These reasons are (a) possible error in exact resetting of the zero angle 

of attack for the airfoil model because it was found that the flutter derivatives for this asymmetric 

and thick airfoil are highly sensitive to the angle of attack; the mechanism to control the torsional 

motion by a linear actuator in the current setup can be improved by replacing it with a direct 

motor-driven mechanism that can be better reset, (b) slightly different amplitudes of forced 

vibration that were used between the 3DOF and 2DOF models; this airfoil because of its 

asymmetry behaves like a bluff section at zero angle of attack and it is known that flutter 

derivatives of bluff sections (e.g., rectangular section B/D=2) are highly sensitive to amplitudes; 

results of comparison between the current 3DOF and 2DOF results from the literature for a bluff, 

sharp-edged, rectangular cross-section that shows good agreement (Fig. 12) proves the importance 

of maintaining consistent and low amplitudes of vibration between different tests, (c) higher 

modes of vibration that occurred (spurious modes) in this setup because this airfoil model was not 

stiff enough for this 3DOF system setup that uses a cantilevered model; improving the model and 

setup to avoid this problem is discussed in the next section of the paper, (d) one last reason that is 

not ruled out completely is the dependence of the aeroleastic loads on the coupled modes; 

inclusion of the third DOF could influence the aeroelastic load along the other DOFs in some cross 

sections that are non-symmetric. 

 
 
5. Conclusions 
 

A three degree-of-freedom forced vibration system has been developed that can be used for 

section model testing in the wind tunnel for simultaneous identification of aeroelastic- damping 

and stiffness parameters associated with one-, two- and three DOF. This system allows for the 

simultaneous extraction of all the frequency-domain flutter derivatives or time-domain rational 

function coefficients and can potentially be used to study other phenomena like vortex shedding 

and torsional divergence. The functionality and robustness of the system has been successfully 

demonstrated by testing an asymmetric airfoil used in wind turbine blades, a streamlined bridge 

deck and a bluff cross-section. Sample flutter derivatives are presented as a means to validate the 

extracted time-domain rational function coefficients for each cross-section.   
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While this system worked for the above section models it has some limitations and drawbacks 

that need to be addressed. First, because the model is cantilevered, it is very easy for the model to 

experience spurious modes. To avoid that in the presented work, the data was numerically filtered 

to erase these spurious modes from the data. It should be noted that these additional vibration 

modes can be mostly avoided by having a stiffer central support bar through the section model that 

is fixed to the 3DOF system than the ones used in the current models. This could be also corrected 

by building an additional frame to support the other end of the model so that it is no longer 

cantilevered.   

Overall, this system is able to produce the necessary data to extract the rational function 

coefficients for all three degrees-of-freedom or any combination of degrees-of-freedom. 
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