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Abstract.  The flutter instability is one of the most important themes need to be carefully investigated in the 
design of long-span bridges. This study takes the central-slotted ideal thin flat plate as an object, and 
examines the characteristics of unsteady surface pressures of stationary and vibrating cross sections based on 
computational fluid dynamics (CFD) simulations. The flutter derivatives are extracted from the surface 
pressure distribution and the critical flutter wind speed of a long span suspension bridge is then calculated. 
The influences of angle of attack and the slot ratio on the flutter performance of central-slotted plate are 
investigated. The results show that the critical flutter wind speed reduces with increase in angle of attack. At 
lower angles of attack where the plate shows the characteristics of a streamlined cross-section, the existence 
of central slot can improve the critical flutter wind speed. On the other hand, at larger angles of attack, where 
the plate becomes a bluff body, the existence of central slot further reduces the flutter performance. 
 

Keywords:  central-slotted plate; aerodynamic interference; flutter derivatives; flutter performance; large 

angles of attack 

 
 
1. Introduction 
 

Design and construction of long-span bridges faces many challenges to ensure their 

performance against strong wind. The flutter instability is one of the most important themes need 

to be carefully investigated. For the flutter suppression of long-span bridges, optimizing the deck 

cross-sectional shape is considered to be one of most effective means to control the flow pattern 

and improve the bridge flutter performance. 

The twin-box or multiple-box sections have attracted great attention as these sections have a 

great potential of showing improved flutter performance and have been adopted in a number of 

bridge designs, such as the Xihoumen Bridge (Zhang et al. 2013), the Stonecutter Bridge (Zhu and 

Xu 2014), and the Yi Sun-sin Bridge (Lee et al. 2014). Sato et al. (2000) showed that the critical 

flutter wind speed increases with the increase in slot width at the center of the girder. Sato et al. 

(2002) confirmed through a full aeroelastic model test that a slotted box girder with a slot ratio of 

                                                      
*Corresponding author, Professor, E-mail: lele@swjtu.edu.cn 



 

 

 

 

 

 

Haojun Tang, Yongle Li, Xinzhong Chen, K.M. Shum and Haili Liao 

 

0.3 was applicable for a super long-span bridge. The slot ratio is defined as the ratio of slot width 

to the deck width. Diana et al. (2006) carried aerodynamic studies of the proposed Messina Strait 

Bridge with a multiple-box section. Kwok et al. (2012) investigated the aerodynamic performance 

of twin-box bridge sections using section model wind tunnel test, and found that the vortex 

shedding frequency gradually increases with increasing slot width. Trein et al. (2015) studied the 

unsteady pressure characteristics of twin-box bridge deck, and showed that the results of 

single-box investigations could be extended to twin-box sections. Yang et al. (2015) studied the 

flutter performance of twin-box bridge decks through experimental investigation and investigated 

the best slot ratio for flutter stability. Yang et al. (2015) analyzed the effects of center slots on the 

aerodynamic performance of five representative girder cross sections with various slot widths. 

Miranda et al. (2015) investigated the capabilities and limitations of RANS and LES based CFD 

simulations in reproducing the flow field around a twin-box deck section. 

While the aforementioned studies have greatly improved our understanding of the aerodynamic 

performance and the mechanism of the twin-box deck sections, the aerodynamic characteristics 

and flutter performance of this type of cross sections at large angles of attack have not yet been 

fully explored. Increasing number of long span bridges are now constructed in complicated 

mountainous canyon area where strong wind shows large angle of attack. The flutter performance 

at larger angles of attack becomes an increasing concern for the design and construction of these 

bridges, calling for further investigations on the aerodynamic characteristics of twin-box sections 

and sections with central slots.  

In this paper, actual cross-section of bridge is simplified as an ideal thin flat plate to analyze the 

effects of central slot at large angles of attack on flutter performance of bridge. The aerodynamic 

characteristics of upstream and downstream plates are analyzed using CFD simulations. The flutter 

derivatives are then extracted from the dynamic surface pressures on the vibrating plate section, 

and the critical flutter wind speed is determined for a target bridge. The effects of slot ratio and 

angle of attack are discussed. 

 

 
2. Aerodynamic characteristics of central-slotted plate 

 

2.1 CFD model 
 
The computational domain and boundary conditions are shown in Fig. 1. The computational 

conditions are given as follows: the ratio of plate width B to thickness H is 200, where B is 0.7 m. 

The computational domain is assumed to be 24B in the mean-flow direction and 12B in the 

cross-flow direction. The distance of the plate center to the velocity inlet boundary is 6B. The wind 

velocity at the inlet is uniform with a turbulence intensity of 0.5% and a turbulent viscosity ratio of 

2.0 according to Huang et al. (2009). Different slot ratios are considered by keeping the global side 

ratio B/H unchanged while increasing the central slot width D. The slot ratio  is defined as D/B. 

Meanwhile, the angles of attack ranging from 0°-10° are selected according to the measurement 

wind data at a bridge site located in mountainous canyon area. 

Both calculations with stationary and vibrating plate sections are carried out to investigate the 

static (mean) surface pressure distribution and the characteristics of motion-induced unsteady 

surface pressure distribution. The computational mesh is shown in Fig. 2. In order to improve the 

calculation accuracy, the computational domain is divided into three regions, named as rigid mesh 

zone, dynamic mesh zone, and fixed mesh zone, respectively. The rigid mesh zone moves along 
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with the plate to ensure the quality of the mesh near the plate. The rigid mesh zone and the fixed 

mesh zone are discretized by a quadrilateral structured gird, and the dynamic mesh zone is 

discretized by a triangular unstructured gird. The element size progressively increased from the 

side of plate to the computational boundary. The mesh numbers for plate with different slot ratios 

are listed in Table 1. The height of the first layer of cells is 10
-5

 to ensure that the mean value of y
+
 

is less than 1 in both stationary and vibrating cases. 

RANS simulations are performed by using the k- SST model. Such model is known to 

provide more accurate results, if compared to standard k- and k- models, in external 

aerodynamic cases which involve boundary layer separation (Miranda et al. 2015). The 

dimensionless time-step has been set equal to 10
-3

. The discretized problem has been numerically 

solved by adopting a SIMPLE pressure-velocity coupling algorithm. 

 

 
Table 1 Mesh numbers for different slot ratios 

Slot ratio φ 0% 5% 10% 15% 20% 30% 

Cells of rigid zone 62,000 76,954 67,226 63,592 62,930 61,160 

Cells of dynamic zone 79,558 120,594 106,712 106,774 111,670 147,874 

Cells of fixed zone 28,000 28,000 28,000 28,000 28,000 28,000 

Total number 169,558 225,548 201,938 198,366 202,600 237,034 
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(a) Computational domain (b) Model section 

Fig. 1 Computational domain and model section 
 

 

     

Fig. 2 Local computational mesh employed in numerical analysis 
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A second order scheme is selected for pressure, and a second order upwind scheme is selected 

for momentum, turbulent kinetic energy, and specific dissipation rate. The CFD software 

FLUENT is used in the simulation. 

 

2.2 Aerodynamic interference of static cross sections 
 

The characteristics of surface pressures of the stationary central-slotted plate are firstly 

analyzed. From the distributed pressures, the lift and moment coefficients for upstream and 

downstream plates and for the overall slotted plate are calculated to understand the aerodynamic 

interference. For the plate without slot, the lift and moment coefficients are defined as Eqs. (1) and 

(2), respectively. 

𝐶𝐿(𝛼) = −𝐿(𝛼)/(
1

2
𝜌𝑈2𝐵)                         (1) 

𝐶𝑀(𝛼) = 𝑀(𝛼)/(
1

2
𝜌𝑈2𝐵2)                         (2) 

where L () and M () are the lift force (downward) and pitching moment (nose-up), respectively; 

α is the angle of attack; B is the width of plate; ρ is the air density; and U is the mean wind 

velocity and set to 14 m/s. For the central-slotted plate, B is replaced with B′ for the single 

upstream or downstream plate and 2B′ for the overall cross-section. 

For plates with different slot ratios at different angles of attack, Fig. 3 shows the average lift 

and moment coefficients, 𝐶𝐿̅ and 𝐶𝑀̅. Fig. 4 shows the root mean square of lift coefficient, 𝐶𝐿
′ . 

For the plate without slot, with the increase in angle of attack, the value of 𝐶𝐿̅ increases and is 

relatively stable when the angle is larger than 6°, and the value of 𝐶𝑀̅  increases but then 

decreases, showing a good agreement with the results reported by Amandolese et al. (2013). To 

eliminate the effects of mesh number on the results, the total mesh number is changed to 110,060, 

138,244, and 244,632, and the results remain unchanged, as shown in Fig. 5. 

For the overall slotted plates with different slot ratios, the values of 𝐶𝐿̅ and 𝐶𝑀̅ almost keep 

the same at lower angles of attack, but change obviously at larger angles of attack due to the 

aerodynamic interference between the two plates in tandem arrangement. 
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(a) Lift coefficients (b) Moment coefficients 

Fig. 3 The average aerodynamic coefficients versus angle of attack 
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Fig. 4 The RMS lift coefficient versus slot ratio 
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Fig. 5 The average aerodynamic coefficients of the plate without slot 

 

 

When the angle of attack is small, including 0°, 2° and 4°, the values of 𝐶𝐿̅ of the upstream 

plate are larger than those of the plate without slot, but it is the opposite for the downstream plate. 

The values of 𝐶𝑀̅ of the upstream plate are also larger than those of the downstream plate. Fig. 6 

shows the streamline diagrams of mean velocity vector of fixed central-slotted plate with 0°, 2° 

and 4° angles of attack. The downstream plate has weak effects on the aerodynamic characteristics 

of the upstream plate, which, however, has obvious effects on the downstream plate. For the 

upstream plate, the size of the stable vortex formed on the leading edge is almost unchanged, so its 

average lift coefficient increases due to the decrease in width. Compared with the upstream plate, 

the vortex formed on the upper surface of the downstream plate is small, so its average lift and 

moment coefficients are also small. The average lift and moment coefficients for both plates are 

gradually close to the values of single plate with the increase in slot ratio. 

When the angle of attack is large, including 6°, 8° and 10°, the variations of 𝐶𝐿̅ and 𝐶𝑀̅ 

become ruleless for both upstream and downstream plates. The values of 𝐶𝐿
′  increase suddenly at 

certain slot ratios and then gradually decrease with the further increase in slot ratio. Fig. 6 also 

shows the streamline diagrams of mean velocity vector of fixed central-slotted plate with 6° and 8° 
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angles of attack respectively. The effects of central slot on the aerodynamic characteristics of plate 

are related to the slot ratio. At smaller slot ratios, a small stable vortex can exist between two big 

vortices formed above the upstream and downstream plates, so the values of 𝐶𝐿
′  for both plates 

are still equal to zero. With the increase in slot ratio, the length of the small vortex is stretched. 

When the slot ratio increases to a critical value, the small vortex cannot stablely exist and the 

vortex shedding is excited, so time series of lift coefficient of both plates are fluctuant. As no 

vortex shedding phenomenon is observed for single independent upstream or downstream plate at 

the same angle of attack, the vortex shedding is indeed caused by the existence of central slot. 

 

2.3 Motion-induced unsteady pressure distribution 
 

The unsteady pressure characteristics along the central-slotted plate are then analyzed. To 

derive the motion-induced pressures, single degree-of-freedom (SDOF) vibration in heaving and 

torsion is imposed respectively. The amplitude of single peak is set as h0=0.025B for heaving 

vibration, and  0 =3° for torsional vibration. The plate center is set as the torsional center. The 

vibration frequency, f , is 2Hz for both SDOF heaving and torsional vibrations. 

The unsteady pressure components are expressed by the magnitude and phase difference. The 

magnitude, 𝐶̃ , is the amplitude of the unsteady pressure fluctuation and normalized by the 

dynamic pressure of the flow, 0.5U
2
. The phase difference, , is defined as the phase lag of 

negative peak-pressure from the maximum relative angle of attack, defined by the maximum 

displacement (nose-up) for torsional vibration and the neutral position (downward) for heaving 

vibration. The information is discretized according to the non-dimensionalized (normalized by 

0.5B) x widthwise coordinate. This parameter is defined as x
*
 and ranges from -1 to 1, where -1 

and 1 are the leading edge and the trailing edge of the plate respectively and 0 is the center. 

 

 

 

Fig. 6 Streamline diagrams of mean velocity vector 
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Fig. 7 Unsteady pressure characteristics of plate without slot with torsional 1DOF 
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Fig. 8 Unsteady pressure characteristics of plate without slot with heaving 1DOF 
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Fig. 9 Unsteady pressure characteristics of central-slotted plate with torsional 1DOF 
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Fig. 10 Unsteady pressure characteristics of central-slotted plate with heaving 1DOF 

 

 

The reduced wind velocity, defined by U/(f·B), ranges from 2 to 10, in steps of 2. Larger 

reduced wind velocities or smaller steps are considered for partial cases. The change in reduced 

velocity is achieved by changing the mean wind speed, U. For the plate without slot, the 

distributions of the magnitude for unit relative angle of attack, 𝐶̃ 𝛼0(𝑥
∗)/𝛼0  for torsional 

vibration and 𝐶̃ ℎ0(𝑥
∗)/(

𝜔ℎ0

𝑈
) for heaving vibration, and the phase difference at a reduced wind 

velocity U/(f·B)=10 are shown in Fig. 7 with torsional 1DOF and Fig. 8 with heaving 1DOF 

respectively. With the same relative angle of attack, the unsteady pressure distributions caused by 

torsion and heaving can have an easy comparison. 

The magnitude and phase difference are sensitive to variation in angle of attack, and the two 

parameters have similarities in their respective distribution and change laws between the torsional 

and heaving vibrations. With the increase in angle of attack, the peak of the magnitude curve at the 

leading edge moves to the plate center and becomes gradual, and the increasing interval of phase 

difference from negative peak at the upwind side to positive peak becomes broader, which implies 

the size of the vortex in front of the plate and its movement distance along the plate gradually 

increase. The effects of the increasing angle of attack on the unsteady pressure characteristics are 

similar as those of the decreasing B/D observed by Matsumoto (1996), who investigated the 

unsteady pressure characteristics of rectangular cylinders with side ratios varying from B/D=5 to 

B/D=20. Therefore, the streamlined plate presents the characteristics of bluff body at larger angles 

of attack during the vibration. 

For the central-slotted plates with different slot ratios, the distributions of the magnitude for 

unit relative angle of attack and the phase difference at the same reduced wind velocity U/(f·B)=10 

are shown in Figs. 9 and 10 respectively. The central slot has the same effects on the aerodynamic 

characteristics of the vibration plate, compared with the stationary plate. At lower angles of attack, 

the central slot has little effects on the magnitude and phase difference distributions of the 
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upstream plate due to the weak aerodynamic interference caused by the downstream plate. With 

the increase in slot ratio, the unsteady pressure characteristics of the downstream plate are 

gradually close to those of the upstream plate. At larger angles of attack where the plate becomes a 

bluff body, the vortex shedding can also be caused by the central slot with large width during the 

vibration. Thus, the larger the slot ratio is, the bigger the unsteady pressure characteristics of the 

two plates change. 

 
2.4 Flutter derivatives 
 
The Scanlan’s linearized theory of flutter derivatives is widely used to estimate the critical 

flutter wind speed. Flutter derivatives can be extracted from wind tunnel test or numerical 

simulation by free or forced vibration. Through the measurement of the magnitude and phase 

difference distributions, eight flutter derivatives can be obtained from the following equations 

For torsional motion 

𝐻2
∗ = (

𝑈

𝑓𝐵
)
2 1

8𝜋2𝛼0
∫ 𝐶̃ 𝛼0(𝑥

∗) sin(𝜓𝛼(𝑥
∗)) 𝑑𝑥∗

1

−1
                 (3) 

𝐻3
∗ = −(

𝑈

𝑓𝐵
)
2 1

8𝜋2𝛼0
∫ 𝐶̃ 𝛼0(𝑥

∗) cos(𝜓𝛼(𝑥
∗)) 𝑑𝑥∗

1

−1
               (4) 

𝐴2
∗ = (

𝑈

𝑓𝐵
)
2 1

8𝜋2𝛼0
∫ 𝑥∗𝐶̃ 𝛼0(𝑥

∗) sin(𝜓𝛼(𝑥
∗)) 𝑑𝑥∗

1

−1
               (5) 

𝐴3
∗ = −(

𝑈

𝑓𝐵
)
2 1

8𝜋2𝛼0
∫ 𝑥∗𝐶̃ 𝛼0(𝑥

∗) cos(𝜓𝛼(𝑥
∗))𝑑𝑥∗      

1

−1
           (6) 

For heaving motion 

𝐻1
∗ = −(

𝑈

𝑓𝐵
)
2 1

8𝜋2(ℎ0/𝐵)
∫ 𝐶 ℎ0(𝑥

∗) cos(𝜓ℎ(𝑥
∗))𝑑𝑥∗

1

−1
             (7) 

𝐻4
∗ = −(

𝑈

𝑓𝐵
)
2 1

8𝜋2(ℎ0/𝐵)
∫ 𝐶 ℎ0(𝑥

∗) sin(𝜓ℎ(𝑥
∗)) 𝑑𝑥∗

1

−1
             (8) 

𝐴1
∗ = −(

𝑈

𝑓𝐵
)
2 1

8𝜋2(ℎ0/𝐵)
∫ 𝑥∗𝐶 ℎ0(𝑥

∗) cos(𝜓ℎ(𝑥
∗)) 𝑑𝑥∗   

1

−1
          (9) 

𝐴4
∗ = −(

𝑈

𝑓𝐵
)
2 1

8𝜋2(ℎ0/𝐵)
∫ 𝑥∗𝐶 ℎ0(𝑥

∗) sin(𝜓ℎ(𝑥
∗))𝑑𝑥∗

1

−1
          (10) 

 

where 𝐶̃ 𝛼0(𝑥
∗) and 𝐶̃ ℎ0(𝑥

∗) are the magnitudes of the unsteady pressure fluctuation for 

torsion and heaving, respectively; 𝜓𝛼 and 𝜓ℎ are the phase differences for torsion and heaving, 

respectively; and 𝐻𝑖
∗, 𝐴𝑖

∗ (i=1, 2, 3, 4) are the flutter derivatives. 

Under the action of self-excited lift and pitching moment, the flutter equations of a bridge 

surrounded by the smooth flow are expressed as follows 

𝑚(ℎ̈ + 2𝜉ℎ𝜔ℎℎ̇ + 𝜔ℎ
2ℎ) =

1

2
𝜌𝑈2(2𝐵) {𝐾𝐻1

∗ ℎ̇

𝑈
+ 𝐾𝐻2

∗ 𝐵𝛼̇

𝑈
+ 𝐾2𝐻3

∗𝛼 + 𝐾2𝐻4
∗ ℎ

𝐵
}      (11) 

𝐼(𝛼̈ + 2𝜉𝛼𝜔𝛼𝛼̇ + 𝜔𝛼
2𝛼) =

1

2
𝜌𝑈2(2𝐵2) {𝐾𝐴1

∗ ℎ̇

𝑈
+ 𝐾𝐴2

∗ 𝐵𝛼̇

𝑈
+ 𝐾2𝐴3

∗𝛼 + 𝐾2𝐴4
∗ ℎ

𝐵
}      (12) 
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where m and I are the mass and the mass moment of inertia respectively; h  and   are the vertical 

and torsional damping ratios respectively; h  and   are the structural natural frequencies in 

vertical and torsional directions, respectively; K (=ωB/U, ω the circular frequency of vibration, B 

the width of bridge) is the reduced frequency; h and  are the vertical and torsional displacements 

of bridge, respectively; and the dot on the cap denotes the derivative with respect to the time. 

The flutter derivatives of the plate with different slot ratios under 0°, 2°, 4°, 6°, 8° and 10° 

angles of attack are calculated. The direct flutter derivatives, 𝐻1
∗ and 𝐴2

∗ , and the coupled flutter 

derivatives, 𝐻3
∗ and 𝐴1

∗ , are shown in Figs. 11-14, respectively. 

At 0° and 2° angles of attack, as the values of 𝐻1
∗ and 𝐴2

∗  are always negative, the uncoupled 

self-excited forces provide positive damping and result in an increase in the system damping 

which is favorable to the stability of vertical and torsional motions. The negative damping 

generated by the coupled forces, the aerodynamic stiffness terms 𝐻3
∗ and 𝐴1

∗  in particular, is the 

main contributing source that drives the bridge to coupled flutter instability observed by Chen and 

Kareem (2006). With the increase in slot ratio, the absolute values of 𝐻3
∗ and 𝐴1

∗  both decrease 

which is favorable to the flutter stability. 

At larger angles of attack, the variations of 𝐻1
∗, 𝐴1

∗  and 𝐴2
∗  of the plate without slot versus 

reduced wind velocity will change, and this phenomenon is intensified by the existence of central 

slot. With the increase in angle of attack and slot ratio, the direct flutter derivatives, 𝐴2
∗  and 𝐻1

∗, 

change their signs from negative to positive successively, which implies the torsional flutter and 

the single-vertical-mode flutter, i.e., galloping, may be developed. 
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Fig. 11 Flutter derivatives of central-slotted plate (𝐻1
∗) 
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Fig. 12 Flutter derivatives of central-slotted plate (𝐻3
∗) 
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Fig. 13 Flutter derivatives of central-slotted plate (𝐴1
∗) 
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Fig. 14 Flutter derivatives of central-slotted plate (𝐴2
∗ ) 

 

 

3. Flutter performance of a long-span suspension bridge 
 

A realistic suspension bridge located in mountainous canyon area with center span of 1100 m is 

used as an example. The two main cable planes are 27 m apart and the bridge deck is suspended by 

hangers at intervals of 10 m. The mass and the mass moment of inertia are 3.29×10
4 

kg and 

3.32×10
6 

kg·m per meter respectively. The finite element model of the suspension bridge is 

established using ANSYS software, and some natural frequencies of modes are shown in Table 2. 

Then, the self-excited forces on the main girder are considered to analyze the flutter 

performance of the suspension bridge of which the flutter derivatives are calculated from the plate. 

Based on the Scanlan’s linearized model, many analysis methods for flutter in the frequency 

domain have been developed, including Chen et al. (2000), Ge and Tanaka (2000), Ding et al. 

(2002), Hua et al. (2007). In this paper, a three-dimensional full-order analysis method using 

ANSYS software is applied to analyze the flutter performance of the bridge. The aeroelastic 

stiffness matrices and damping matrices are represented by a pair of Matrix27 elements which are 

attached to each node in the element of girder. If the system has n DOFs, there will be n conjugate 

pairs of complex eigenvalues and eigenvectors. The jth conjugate pair of complex eigenvalues can 

be expressed as 𝜆𝑗 = −𝜉𝑗𝜔𝑗 ±𝜔𝑗√1 − 𝜉𝑗
2  ( j=1, 2, …, n), where ξj  and j are jth modal 

damping and frequency, respectively. The system is dynamically unstable if one of the modal 

damping is negative beyond the critical flutter wind velocity. 

Firstly, the effects of angle of attack on flutter performance of the bridge are analyzed. In 

addition to the computed flutter derivatives of the plate without slot, the flutter derivatives based 

on the Theodorsen function are also used for comparison. The predicted critical flutter wind speed 

and flutter frequency are summarized in Table 3. 
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Table 2 Modal frequencies and shapes of the suspension bridge 

Order number 1 4 5 10 13 

Frequency 

(Hz) 
0.054 0.153 0.218 0.289 0.325 

Vibration 

mode 

Symmetric lateral 

bending - Girder 

Symmetric vertical  

bending - Girder 
Swing - Cable 

Symmetric 

Torsional - Girder 

 

 
Table 3 Flutter conditions of the bridge with plate deck 

Angle of attack Branch Velocity (m/s) Frequency (Hz) 

Based on Theodorsen function 

0° mode 10 89.8 0.262 

Based on computed flutter derivatives 

0° mode 10 90.5 0.258 

2° mode 10 86.7 0.258 

4° mode 10 72.0 0.273 

6° mode 10 50.9 0.286 

8° mode 13 35.0 0.314 

10° mode 13 31.2 0.316 

 

 

Figs. 15 and 16 show the changes in the real and imaginary parts of complex eigenvalues as the 

wind velocity is increased. The flutter conditions calculated by the computed flutter derivatives 

agree with that by Theodorsen function at 0° angle of attack. The angle of attack is a negative 

factor for the flutter performance of the bridge, and the critical flutter wind speed decreases with 

the increase in angle of attack. At lower angles of attack, the plate presents the characteristic of 

streamlined body. As heaving and torsional motions have strong coupling effect at the flutter 

critical state, the flutter frequency is between the first symmetrical vertical bending frequency 

(0.153 Hz) and the first symmetrical torsional frequency (0.325 Hz). It seems that the flutter 

critical state is determined by the complex mode 10 corresponding to the swing mode of main 

cable. Actually, the properties of the complex mode 10 and the complex mode 13 corresponding to 

the first symmetric torsional mode have been switched at a certain wind velocity when their 

frequencies become close, referred to curve-veering phenomena (Chen and Kareem 2003). The 

symmetric vertical bending and torsional modes, i.e., modes 4 and 13, are most important modes 

for this coupled flutter. The flutter critical state of the bridge is determined by the complex mode 

13 when the angle of attack increases to 8° or 10°, and the flutter frequency is very close to the 

first symmetrical torsional frequency, which means the coupled bending-torsional flutter of bridge 

gradually converts to the torsional flutter. 

Then, the effects of central slot on flutter performance of the bridge are analyzed based on the 

computed flutter derivatives of central slotted plates. The predicted flutter conditions are 

summarized in Table 4, and Fig. 17 shows the changes in modal damping of flutter modal branch 

as the wind velocity is increased. The existence of central slot has different effects on flutter 

performance of the bridge at different angles of attack. For 0°and 2° angles of attack, with the 

increase in slot ratio, the critical flutter wind speed increases, but the flutter frequency is 

unchanged.  
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(d) =6° (e) =8° (f) =10° 

Fig. 15 Real part of complex eigenvalues versus wind velocity 
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Fig. 16 Imaginary part of complex eigenvalues versus wind velocity 
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(c) =8° 

Fig. 17 Modal damping of flutter modal branch versus wind velocity 

 

The central slot improves the absolute value of system damping of the complex mode 

corresponding to the first symmetric torsional mode, so the modal damping of this mode changes 

its sign from positive to negative at a higher wind speed. For φ=30% when the absolute value of 

system damping of the mode 13 is large enough, the properties of the complex modes 10 and 13 

are not switched anymore, and the flutter critical state of the bridge is determined by the complex 

modal branch 13. 
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Table 4 Flutter conditions of the bridge with central-slotted plate deck 

Angle of attack = 5% = 10% = 15% = 20% = 30% 

Velocity (m/s) 

0° 96.9 101.2 106.3 112.6 126.3 

2° 93.5 95.7 100.0 103.4 110.8 

4° 75.6 70.8 66.5 64.7 65.0 

6° 51.0 47.0 43.3 42.8 45.7 

8° 33.0 34.7 30.0 30.5 26.0 

10° 25.3 22.0 29.0 31.0 23.0 

Frequency (Hz) 

0° 0.253 0.253 0.253 0.252 0.250 

2° 0.252 0.255 0.254 0.254 0.256 

4° 0.271 0.278 0.282 0.284 0.286 

6° 0.286 0.286 0.311 0.312 0.312 

8° 0.316 0.317 0.318 0.320 0.322 

10° 0.319 0.321 0.321 0.322 0.324 

 

 

For 4° and 6° angles of attack, with the increase in slot ratio, the flutter frequency increases and 

the critical flutter wind speed shows a decreasing tendency. The effects of the slot ratio and the 

angle of attack on flutter performance of the bridge are very similar. Although the absolute value 

of system damping of the complex mode 13 can be improved by central slot at lower wind speeds, 

its sign changes from negative to positive in advance. For 8° and 10° angles of attack, the flutter 

frequencies are all close to the first symmetrical torsional frequency, and the central slot is still a 

negative factor for the flutter performance of the bridge. The absolute value of system damping of 

the complex mode 13 decreases with the increase in slot ratio and becomes zero in advance. After 

the flutter critical state, the damping ratio of the mode 4 corresponding to the first symmetric 

vertical mode also changes its sign from positive to negative with the further increase in wind 

speed. 

In summary, the central slot can improve the critical flutter wind speed of plate at lower angles 

of attack, but it becomes a negative factor when the angle of attack is large enough to make a 

streamlined plate present the characteristics of bluff body. 

 
 

4. Conclusions 
 

In this study, the effects of central slot at large angles of attack on flutter performance of a 

suspension bridge with plate deck are analyzed and the following conclusions are made: 

(1) The angle of attack is a negative factor for the flutter performance of the bridge, and the 

critical flutter wind speed decreases with the increase in angle of attack. The streamlined plate 

presents the characteristics of bluff body at larger angles of attack, and the size of the vortex 

formed on the leading edge and its movement distance along the plate increase, which means 

the coupled bending-torsional flutter of bridge gradually converts to the torsional flutter. 

(2) When the angle of attack is small, including 0° and 2°, the existence of central slot can 

improve the flutter performance of the bridge. The streamlined characteristics of the plate are 

not changed by the existence of central slot due to the weak aerodynamic interference between 
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the upstream and downstream plates. With the increase in slot ratio, the absolute values of the 

aerodynamic stiffness terms, 𝐻3
∗ and 𝐴1

∗ , both decrease, and the critical flutter wind speed 

increases but the flutter frequency keeps the same value which is between the first symmetrical 

vertical bending and the first symmetrical torsional frequencies. 

(3) When the angle of attack is large, including 4°, 6°, 8° and 10°, the central slot becomes a 

negative factor for the flutter performance of the bridge. The central slot makes the plate 

further present the characteristics of bluff body, and the vortex shedding is even excited when 

the slot ratio increases to a critical value. With the increase in slot ratio, the direct flutter 

derivative, 𝐴2
∗ , changes its sign from negative to positive in advance, so the flutter frequency is 

gradually close to the first symmetrical torsional frequency and the critical flutter wind speed 

shows a decreasing tendency. As the accuracy of CFD simulations for vibrating plate at large 

angles of attack is not confirmed, these results are yet to be proved by further wind tunnel 

tests. 
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