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Abstract.  The minimization method is widely used to predict the dynamic characteristics of a system. 

Generally, data recorded by experiment (for example displacement) tends to contain noise, and the error in 

the properties of the system is proportional to the noise level (NL). In addition, the accuracy of the results 

depends on various factors such as the signal character, filtering method or cut off frequency. In particular, 

coupled terms in multimode systems show larger differences compared to the true value when measured in 

an environment with a high NL. The iterative least square (ILS) method was proposed to reduce these errors 

that occur under a high NL, and has been verified in previous research. However, the ILS method might be 

sensitive to the signal processing, including the determination of cutoff frequency. This paper focused on 

improving the accuracy of the ILS method, and proposed the modified ILS (MILS) method, which differs 

from the ILS method by the addition of a new calculation process based on correlation coefficients for each 

degree of freedom. Comparing the results of these systems with those of a numerical simulation revealed 

that both ILS and the proposed MILS method provided good prediction of the dynamic properties of the 

system under investigation (in this case, the damping ratio and damped frequency). Moreover, the proposed 

MILS method provided even better prediction results for the coupling terms of stiffness and damping 

coefficient matrix. 
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1. Introduction 
 

Flutter is a phenomenon caused by the self-excitation of structures initially induced by wind. 

Because of this phenomenon, a bridge could collapse when a critical wind speed is reached (Simiu and 

Scalan 1996). Therefore, flutter derivatives must be determined to compute the exact onset velocity of 

flutter instability. The signal character, filtering method, cutoff frequency and system identification 

(SID) methods all influence the accuracy of flutter derivatives. In these systems, indirect flutter  
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derivatives, which are coupled terms, are particularly sensitive to noise and tend to have a big 

difference between their estimated and true values (Chowdhury and Sarkar 2003). 

The free vibration technique, forced vibration technique, and a combination of these techniques 

are used to extract flutter derivatives. The free vibration technique is easily applicable to this test 

(Chowdhury and Sarkar 2003). Because the position of the model can be determined freely by the 

interaction of the fluid and structure, the free vibration techniques can properly simulate actual 

conditions. However, compared to the other test methods, this method is relatively more affected 

by surrounding circumstances. The free vibration technique is affected adversely by high 

frequency components of flow separation, the nonlinearity of large spring displacements and noise 

from the measuring devices, as such errors accumulate for the data. The forced vibration technique 

is more complex and the interaction between fluid and structure is difficult to simulate because the 

model moves along a planned route (Fuyou et al. 2016). However, the results can be easily 

evaluated because they are mainly affected by only device related problems such as a finite 

sampling rate (Sarkar et al. 2009). The combined technique described by Hwang et al. (2014) 

showed that the interaction between fluid and structure was accurately implemented. The excited 

location is linked with a spring system, which has actual dynamic properties, and this is set to 

move simultaneously with the structures. However, this method needs to be further verified since 

only a small amount of data has been generated and analyzed. 

The present study is based on the free vibration technique which can simulate the response of a 

structure under actual conditions. This study uses displacement information as the reference 

variable. To evaluate velocity and acceleration one should use a differencing method. Errors 

accumulate upon differentiation and all methods mentioned above need to deal with contaminated 

signals. Specifically, indirect flutter derivatives (𝐻2
∗, 𝐻3

∗, 𝐴1
∗ , 𝐴4

∗ ) are sensitive to the noise to signal 

ratio in two degrees of freedom (2DOF).  

Research on the flutter phenomenon was initiated by Scalan and Tomko (1971). Since the 

extraction of flutter derivatives was difficult, methods to enhance extraction have been developed. 

Sarkar (1992) developed the modified Ibrahim time domain (MITD) method to extract all direct- 

and cross-flutter derivatives from the coupled free vibration data of a 2DOF section model. Sarkar 

et al. (1992) identified eight flutter derivatives simultaneously from noisy displacement time-

histories generated under laminar and turbulent flow. Chen et al. (2002) developed SID methods 

by using the general least square (GLS) theory for extracting 18 flutter derivatives. A complicated 

step is required for this GLS method wherein the complex mode theory and the MITD method 

should be used to find the initial value. The MITD method depends on time shifts N1 and N2. In 

addition, the time shift variables must be determined for optimal performance. On the other hand, 

the proposed method used a simple initial value and was stabilized using the linear least-square 

(LS) method. Chowdhury and Sarkar (2003) developed a method to extract 18 flutter derivatives 

in 3DOF by using the ILS method. However, the LS for the sum of the power of all residuals 

should be minimized when considering the possibility of all events occurring together. Therefore, 

none of the flutter derivatives cannot change after the estimation procedure of the ILS method. The 

proposed method can improve the accuracy of flutter derivatives after applying the ILS method 

through the use of correlation coefficients. The proposed method was applied to various numerical 

models. 

Flutter derivatives respond to the solution of the homogeneous problem because such problems 

contain stiffness and damping coefficients. The ILS method correctly predicts the damping ratio 

and natural frequency, which accurately evaluates the critical velocity. However, the ILS method is 

occasionally prone to compute inaccurate flutter derivatives. No other technique has been 
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developed to improve the accuracy of flutter derivatives after using the ILS algorithm. The global 

solution (the damping ratio and damped frequency) is sensitive to each component of the system 

matrix and thus the accuracy of flutter derivatives is important to obtain reasonable results. For 

example, a wrong onset velocity can be computed when one uses mixed flutter derivatives 

extracted by different methods. 

The proposed method using a correlation coefficient was investigated through a series of 

numerical analyses. Hereinafter, the procedure to compute the damping ratio and damped 

frequency is referred to as global approach, and the method to adjust system matrix components 

after the ILS method is referred to as the local approach. The local approach can enhance the 

quality of the flutter derivatives under high NL conditions. Two numerical models were 

constructed and verified to evaluate the accuracy of the computed flutter derivatives. The 

numerical model described by Jakobsen and Hjorth-Hansen (1995) was verified for use as a 

reference model. Based on this verified reference model, a series of parametric studies were 

conducted to investigate the effect of noise, following which another model was verified under 

various NL conditions. All numerical verifications were conducted in 2DOF. Finally, methods to 

apply the proposed algorithm were introduced. The proposed method gave reasonable predictions 

of flutter derivatives without significant loss of accuracy. 

 

 

2. Flutter analysis of free vibration technique 
 

To extract flutter derivatives a sequence of initial system matrices were introduced. Since the 

residuals are included in each variable when computing the flutter derivatives, the equation of 

motion becomes nonlinear. For this reason, the GLS method described by Ghilani and Wolf (2006) 

was adopted for extraction of flutter derivatives with the free vibration technique.  
 

2.1 Equation of motion 
 
To describe windy condition, the general equation of motion is 

se adM X C X K X F F                              (1) 

where, 
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Fig. 1 Positive sign convention of 3DOF motion 

 

 

Fad: aerodynamic force by buffeting 

Flutter analysis is conducted under uniform flow conditions, so the aerodynamic force is 

negligible. The self-excited force term can thus be moved to the left-hand side and the previous 

terms can be rewritten as 

0eff effM X C X K X                                (2) 

Fig. 1 presents the general sign convention of dynamic response in wind engineering. 

Downward of vertical, rightward of lateral and clockwise of torsional displacement are positive at 

the mass center. Displacement is in units of meter and rotation is in units of radian when solving 

whole equations. The h, p and θ axes, shown in Fig. 1, are the global coordinates used in this 

study. Note that vertical and torsional sign convention is different from conventional structural 

analyses. Wind moving from left to right is denoted as positive. 
 

2.2 Procedure for flutter analysis 
 
2.2.1 State-space form 
Dynamic equations are expressed in an effective form that can be organized into four 

differential equations. The state-space equation is 

1 1

0 I XX

M K M C XX
 

     
    

     
 or X A X                    (3) 

The iterative procedure to get matrix A will be explained in section 3. The solution of the first 

order matrix differential equation is shown below 

0At
X e X                                     (4) 

where,
0X is the initial condition. 

 

2.2.2 General least square (GLS) method 
Xu et al. (2014) highlighted the possible causes for the nonlinearity of flutter derivatives. 

Because errors are difficult to quantify exactly, each output such as displacement, velocity and 
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acceleration must contain residuals at each point in time. Moreover residuals express possible 

cause for error as a single noise variable for each output. The equation of motion is assumed to 

contain residuals for each measurement, which is expressed by Eq. (5) 

( , , ) ( ) ( ) ( )eff eff

XX X
F X X X X V C X V K X V                     (5) 

The Matrices C , K , and iV presented in Eq. (5) are unknowns, and iV , which is residual, is 

represented by , , , , , , , ,h h h p p p   . Because Eq. (5) involves a product of two unknowns, it 

is a nonlinear equation (Chun 2011) 

1 11 2 12 3 13 4 11 5 12 6 13 7( ) ( ) ( ) ( ) ( ) ( ) ( ) 0eff eff eff eff eff effh V C h V C V C p V K h V K V K p V                

 

 

(6) 

The Fourier expansion series can be adopted when solving this nonlinear equation 
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(7) 

We assumed that the residual is consistent over the entire process regardless of time and the 

discretized form of the equation. As such, it is constructed in matrix form as 

B V dA J L                                   (8) 

The correction matrix can be computed as 

1

((2 ) (2 )) ((2 ) ) ( (2 )) ((2 ) ) ( (2 ))( )( )T T

DOF DOF DOF N N DOF DOF N N DOFdA L X J X 

                   (9) 

where N is the amount of data acquired over time. The final solution is the sum of the initial and 

correction matrix 

0A A dA                                  (10) 

8 21 9 22 10 23 11 21 12 22 13 23 14( ) ( ) ( ) ( ) ( ) ( ) ( ) 0eff eff eff eff eff effV C h V C V C p V K h V K V K p V               

15 31 16 32 17 33 18 31 19 32 20 33 21( ) ( ) ( ) ( ) ( ) ( ) ( ) 0eff eff eff eff eff effp V C h V C V C p V K h V K V K p V              
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where A is the effective stiffness and damping coefficient matrix and J is the Jacobian matrix 

The general procedure for solving nonlinear equations of motion was introduced by using 

information above. The GLS method is used to solve the nonlinear equation. Because we deal with 

a nonlinear problem, the correction in matrix A is included in the initial approximation. The initial 

value is generally obtained by the LS method. The aim of these procedures is to extract the matrix

A , which consists of matrices C and K . Matrix A represents mechanical damping when there is 

no wind. This study assumes that the weight matrix equals the identity matrix, which means that 

each variable has equal effect. The procedure to obtain the flutter derivatives is explained in 

section 3. 

 

 

3. Proposed numerical process 
 

Because displacement data is easily measured in the free vibration technique, the equation of 

motion is generally solved by variables that are discretized by displacement data. Errors 

accumulate during the differentiation process, and then, are sequentially applied during 

discretization. Therefore, the coupling terms can be affected severely by these errors in a 

multimode system. For example, 𝐻2
∗, 𝐻3

∗, 𝐴1
∗ , and 𝐴4

∗  are sensitive to the data quality under 2DOF. 

In this study, the central differencing method is used for discretization.  

Because the filtering mainly influences the coupling term, this study suggests a method to 

change only the coupling term when finding the solution. For this reason, the choice of cutoff 

frequency is mentioned when using the filtering method. Additionally, the method that uses both 

the iterative general least square system identification procedure and the correlation coefficient 

approach is referred to hereafter as the MILS method. Details of the solution algorithm are given 

below. 
 

3.1 Distortion of filtering 
 
As signal filtering can remove unnecessary information in the frequency domain, it has a 

dramatic effect on noisy signals. However, signal filtering can easily distort signals in multimode 

systems, and thus, should be used with care. This study used a low-pass filtering method. The FIR 

filter was used to filter for consistency and the Kaiser window method was used in Matlab (James 

et al. 2003). A 200 Hz sampling rate was used in this study. The cutoff frequency factor is equal to 

multiply each eigen-frequency and factor. Fig. 2 presents the error in the results versus cutoff 

frequency factor. Each model is constructed with three types of NL. The NL described by Sarkar 

(1992) indicates, as a percentage, how many errors are contained in a signal, and is shown below 

2

2 2

( )
(%) 100

( ) ( )

i

i i

E
NL

E Y E




 



                         (11) 

where ,i iY  are elements of the vectors ,Y  , respectively, and ( )E  denotes the expected value. 

If the NL is high, the quality of the signal is poor. The black markers in Fig. 2 indicate a unity 

NL, red indicates an NL of 10, and green indicates a NL of 20. The X axes give the ratio of design 

frequency to the representative frequency of each DOF. The Y axes give the error in the form of 

the difference ratio between the true and simulated values of the system matrix components. 
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(a) Error for the stiffness 

 
(b) Error for the damping coefficient 

Fig. 2 Error of system matrix components as a function of cutoff frequency factor in model 1 (the cutoff 

frequency factor is equal to multiply each eigen-frequency and factor) 

 
 

The cutoff frequency strongly influences the covariance terms in Fig 2. The error in the 

coupling terms is markedly different when the cutoff frequency factor is less than 1.5. In addition, 

a change of sign often seems to occur in a particular range of cutoff frequency. The stability of the 

solution is assured when the cutoff frequency factor exceeds two for vertical motion. If the ratio of 

torsional to vertical frequency exceeds two, a filtering method should be applied to the torsional 

data. In torsional motion, the solution is stable with a cutoff frequency of 1.3-2.2. For multimode 

357



 

 

 

 

 

 

Nakhyun Chun, Jiho Moon and Hak-Eun Lee 

systems, the cutoff frequency factor of the lowest frequency should exceed the ratio of the highest 

frequency to lowest frequency. To solve our problems, we introduce in section 3.2 technique that 

involve the correlation scheme. Because it is significantly affected by cutoff frequency, only the 

covariance terms of the system matrix are adjusted according to step (8) in the section 3.2. 
 

3.2 Algorithm of proposed method 
 
Chowdhury and Sarkar (2003) proposed the ILS method, which matched properly with the 

numerical case. However, in some cases the results are inappropriate. Furthermore, if poor results 

are computed once in the ILS method, the problem cannot be fixed. For this reason, a new 

approach needs to be considered. Usually cross derivatives (𝐻2
∗, 𝐻3

∗, 𝐴1
∗ , 𝐴4

∗) are sensitive to the NL 

in 2DOF, so the adjustment matrix that can handle the coupling term is introduced as step (8). 

Herein, to obtain better results, we introduce a new strategy that involves verification in 2DOF. 

The iterative general least square (IGLS) method is used from step (1) to (7) and is similar to the 

ILS method. The proposed algorithm is introduced in step (8).  

(1) construct velocity and acceleration from filtered displacement 0X  

(2) construct X that is a matrix of vertical and rotation motion that consist of displacement and 

velocity 

(3) obtain matrix 0A by using LS : 1

0 0 0 0 0( )( )T TA X X X X   

(4) set 0 0 0

1 ,
A t

X e X X
 
  is the initial condition 

(5) obtain matrix iA by using GLS : 1

1( )( ) , ( 1,2, , )T T

i i i i i idA LX JX A A dA i k

     

(6) set 1 0iA t

iX e X


 
  , and then repeat steps (4)-(6) 

(7) perform until 1max i iA A iteration level  , and then, compute matrix A  

(8) apply adjustment coefficients ( , , , )a b c d to covariance terms in matrix A  

11 12 11 12

21 22 21 22

0 0 1 0

0 0 0 1
iA

K a K C c C

b K K d C C

 
 
   

        
 
      

, and then  0A A  
   

(9) compute iX for , , ,a b c d : 1 0iA t

iX e X


 
   

(10) find maximum of correlation coefficient, not for velocity, but between the filtered 

displacement and approximated displacement : 0( , )i iC X X  

(11) obtain several , , ,a b c d that satisfy the condition
1i iC C   

(12) find maxima and minima of , , ,a b c d , and then, these shall be the new bounds 

(13) repeat (8)~(12) five times 

(14) perform until 1max i iC C iteration level  , and then compute matrix A , which must 

satisfy the convergence criteria  

We now give a detailed explanation of the algorithm. The GLS method is similar to the ILS 

method shown in step (1) to (7) apart from the fact that the GLS method handles a nonlinear 

problem so the correction value is considered in step (5). In addition, the approximated value in 

step (9) is obtained using bounded values thorough step (8). Bounded values should be considered  
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Table 1 Numerical model 

Model K [N/m] C [N·s /m] 
   [Hz] Ratio of 

frequency 

  [%] 

   [Hz]   [%] 

Model 1 420.100 -59.181 
8.931 -0.080 2.016 

2.546 
0.156 

0.435 0.039 5.133 0.023 

Model 2 1.755 19.659 
0.040 -0.080 2.016 

2.543 
0.024 

0.435 0.039 5.127 0.023 

 

 

carefully: if the range of bounds is too broad, calculation times become unmanageably long. In 

contrast, if the range of bounds is too narrow, the appropriate solutions cannot be computed. This 

study uses bounded values from -1.5 to 1.5 and the initial step size of 0.3 for each adjustment 

coefficient. The updated bounded value from step (12) is newly defined and classified into a 

certain ratio in step (8), as follows 

2

1

i
i tDOF

kk

n n









                               (12) 

Here the index i denotes each adjustment coefficient,
i presents the step size that is the 

difference between the largest and smallest adjustment coefficient,
in presents the number of steps 

for each adjustment coefficient and ni presents the total number of steps, which is 10×DOF
2. 

Previous maxima and minima are turned into the newly bounded values in step (12). Each DOF 

has correlation coefficient values for use in step (10). At this point, the order in which the 

correlation values are applied is important. The procedure in step (10) and (11) consists of five 

steps. It is performed three times for the adjusted coefficient of the DOF that has the largest 

correlation value, whereas the unsatisfied coefficient is excluded through step (11). The same 

procedure is applied twice for the remaining adjusted coefficient of the other DOF that has lower 

correlation. For 3DOF, we repeat this process three times for the adjusted coefficient of the DOF 

that has the largest correlation, while the unsatisfied coefficient is excluded through step (11). The 

same procedure is repeated twice for the remaining adjusted coefficient of the DOF that has the 

middle correlation value, while the unsatisfied coefficient is excluded through step (11). The same 

procedure is then repeated twice for the remaining adjusted coefficient of the DOF that has the  

 

 

lowest correlation value. Because displacement data is precise when using the free vibration 

technique, the proposed algorithm focuses on displacement data. As a result, the procedure that 

deals with correlation coefficients between the measured and approximated displacement signal is 

vital for success. The method to apply this correlation scheme can make corrections in the time 

domain and enhance the damping ratio and damped frequency. 
 

 
4. Numerical case study 
 

4.1 Description of numerical case 
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The proposed method, which is MILS, using the above procedure was used to a find solutions 

for numerical models. The simulations performed with two models, which were implemented in 

2DOF. The first model described by Jakobsen and Hjorth-Hansen (1995) is used as reference 

model and the second model was constructed by modifying the damping coefficient matrix of the 

first model. Because accurate damping ratios are difficult to estimate in dynamic systems, only the 

damping coefficient matrix is modified from the original signal shown in Table 1. To analyze the 

effect of noise, each model was tested under three cases that consist of NL of 1, 10, and 20. 

Figures in Table 1 are the true values. The values that are estimated by the MILS method are all 

simulated values and are compared with the true values. 

In model 1 (2), the vertical damping ratio is 0.1559% (0.236%) and the torsional damping is 

0.0226% (0.0227%). Each damping ratio was evaluated from a non-proportional damping 

analysis. In model 1 (2), the vertical damped frequency is 2.0157 Hz (2.0157 Hz) and the torsional 

damped frequency is 5.1325 Hz (5.1268 Hz). The mass is 2.6526 and the mass moment of inertia 

is 0.0189. The stiffness and damping coefficients follow the MKS unit. All values in Table 1 were 

rounded to three decimal places. 
 

4.2 Results of numerical case 
 
Tables 2-5 show the differences between the true and simulated values. The subindices of K 

and C denotes rows and columns, respectively. Tables 2 and 3 present results obtained using the 

ILS method. The damping ratio and damped frequency are almost same as the true values. In other 

words, the ILS method appropriately predicts the on-set velocity for flutter. For example, if the 

damping ratio or damped frequency is negative, the bridge has reached collapse. However, each 

component of the system matrix is sensitive to the NL. Note that the procedure to obtain the final 

solution by using the LS method, such as for the damping ratio or frequency, can be considered a 

global approach and the process to find each component of the matrix can be considered a local 

approach. The LS method can find a very accurate final solution since it is satisfied when the 

possibility of all events occurring together is the highest. However, if each component of the 

matrix is evaluated with erroneous value, there are limitations in correcting it. On the contrary, the 

MILS method can handle local problems by adopting adjustment coefficients locally, instead of 

just considering the global problem, because it includes the LS method 

 

 
Table 2 Error in accuracy for the ILS method (model 1) 

NL K12 (%) K21 (%) C12 (%) C21 (%)   (%)   (%) 

1 -9.515 7.065 -6.506 0.136 -1.924 2.212 

10 -6.044 19.151 51.576 -2.502 -1.219 1.327 

20 -2.081 49.420 118.027 -4.952 -0.513 4.867 

 
Table 3 Error in accuracy for the ILS method (model 2) 

NL K12 (%) K21 (%) C12 (%) C21 (%)   (%)   (%) 

1 0.622 -1.588 38.994 0.302 1.271 -2.203 

10 -5.770 5.128 37.922 0.460 -4.661 -2.203 

20 -2.189 -0.225 -433.252 5.185 1.271 -1.322 
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Table 4 Error in accuracy for the MILS method (model 1) 

NL K12 (%) K21 (%) C12 (%) C21 (%)   (%)   (%) 

1 -0.467 12.418 -15.856 0.136 -0.706 -1.327 

10 -4.721 6.109 19.771 -0.288 -0.641 0.000 

20 7.883 21.363 -55.398 5.785 2.502 -3.097 

 
Table 5 Error in accuracy for the MILS method (model 2) 

NL K12 (%) K21 (%) C12 (%) C21 (%)   (%)   (%) 

1 0.622 3.333 205.787 0.302 2.119 -2.643 

10 -5.770 -0.655 -17.272 0.460 -5.085 -2.203 

20 -2.638 8.654 -62.281 1.058 -1.271 -0.441 

 

 
Fig. 3 Comparison between the ILS and MILS methods 

 
 

For the ILS method, the damping ratio is accurate regardless of the NL, but the coupling term 

of each component is sensitive to the NL. Tables 4 and 5 present results of local problems that are 

improved when the correlation method is used to solve these problems. 

The error of covariance term is reduced in Tables 4 and 5. Specifically, the stiffness term 

corresponds better to the true values. Because the diagonal term is fixed, these results are reliable 

when the filtering process is performed appropriately. Fig. 3 presents a summary of the test results. 

The ILS method is limited in terms of its local approach, but the MILS method works well when 

using a local approach. However, distorted results can be obtained with the proposed method when 

the NL is low. For a low NL, the signal itself is so clear that the global approach is better for 

computing the true value. When using the MILS method for a low NL, the signals have multiple 

correlations coefficients with high accuracy. In addition, the correlations of the approximated 

signal are higher than those between the true value and measured signal. For this reason, some 

components of the system matrix are computed poorly in the MILS method. In other words, one 
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needs to determine whether the correlation method should be applied. This can be determined from 

specific correlation values. The correlation coefficient is conservatively determined to exceed 

0.9995 for an almost true signal. Consequently, it is suggested that 0.9995 be used as the reference 

value when using the MILS method; that is, only if the correlation coefficient is less than 0.9995 

should the MILS method be used. 

Fig. 3 presents the errors of the whole model under NL 20 (M1 and M2 denotes models 1 and 

2, respectively). Both methods have high accuracy for the global solution. The highest error in the 

global solution is the torsional damping ratio, at 4.87%, in the ILS method. The errors of K21 and 

C12 are relatively large among the coupling terms. The MILS method performs accurately except 

for K21 of model 2. Overall, the proposed method shows good results for these two models. Upon 

solving the complex eigenvalue problems of the non-proportional damping system, the true system 

has a vertical damping of 0.1559 and torsional damping of 0.0226 in model 1. In the ILS method, 

we obtain a vertical damping of 0.1551 and a torsional damping of 0.0237. In the proposed 

method, the vertical damping is 0.1598 and torsional damping is 0.0219. Additionally, the true 

system has a vertical damping of 0.0236 and torsional damping of 0.0227 in model 2. In the ILS 

method, a vertical damping is 0.0239 and torsional damping is 0.0224 in model 2. In the proposed 

method, the vertical damping is 0.0233 and torsional damping is 0.0226. Moreover, for the ILS 

method in model 1, the approximated values of K12, K21, C12, and C21 are -57.9487, 2.6226, -

0.1742 and 0.4130, respectively. For the proposed method in model 1, the approximated values of 

K12, K21, C12, and C21 are -63.8457, 2.1302, -0.0356 and 0.4596, respectively. In the ILS 

method in model 2, approximated values of K12, K21, C12, and C21 are -57.8850, 1.7512, 

0.266269 and 0.4570, respectively. For the proposed method in model 2, approximated values of 

K12, K21, C12, and C21 are -57.6193, 1.9071, -0.0301 and 0.4391, respectively. All values in 

Tables 2-5 are rounded to three decimal places. 

The simulation, which uses the numerical results of model 1, is compared with the true values 

in the time domain. Fig. 4 is based on model 1 from Jakobsen and Hjorth-Hansen (1995), the green 

line represents the true values and the blue line shows the filtered signal. The simulation agrees 

well with the true values for vertical and rotational values. 

 

 

 
Fig. 4 Time history results with high vertical damping and low torsional damping 
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Fig. 5 Comparison between the ILS and proposed method 

 

 

Fig. 5 presents detailed results of the MILS method. Displacement, velocity, and acceleration 

are well matched by using the correlation scheme and are superior to the results obtained with the 

ILS method when NL is 20. Both methods accurately reflect the tendencies of the true values; 

however, the results are not accurate in a certain range when magnifying the graph of 

displacement, velocity and acceleration. However, compared to the ILS method, the proposed 

method provides results that better match with the true values. 

To summarize, the global approach clearly presents the tendency of the signal, whereas the 

local approach produces greater accuracy and reflects the actual tendency. Our results show that 

the MILS method is more effective for a higher NL. 
 
 
5. Conclusions 
 

This paper introduced the MILS method, which was based on displacement data. The ILS 

method is a global approach that focuses on a systemic problem. Consequently, the ILS method is 

difficult to enhance local problems, while the proposed scheme can be applied to local problems. 

ILS Method Proposed Method 

Displacement 

Acceleratio
n 

Velocity 

[Discrete Time] [Discrete Time] 

Simulation Value 
True Value 

Simulation 
Value True Value 
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In other words, the MILS method uses both global and local approaches, and thus can be 

considered as a new SID method. To obtain better performance, more models that have high non-

proportionality must be verified and the adjustment of diagonal terms needs to be considered 

regardless of filtering in further works. 

The cutoff filtering factor cause the results of the coupling term to be biased, so the cutoff 

frequency should be carefully determined before applying the proposed method. In multimode 

systems, the lowest cutoff frequency factor must be higher than the ratio of highest to lowest 

frequency.  

The accuracy of the results depended on the level of the NL. Specifically, the MILS method 

performed well in high NL, while for low NL, the ILS method generally delivered more accurate 

results than the MILS method because the multiple optimal correlation values between the 

simulated and measured signals were higher than the correlation between the true and measured 

signals. For this reason, the ILS method is suitable when correlation coefficient exceeds 0.9995, 

whereas the MILS method is proper in other cases. 
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