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Abstract.  This paper addresses vibration and instability of embedded functionally graded (FG)-carbon 
nanotubes (CNTs)-reinforced pipes conveying viscous fluid. The surrounding elastic medium is modeled by 
temperature-dependent orthotropic Pasternak medium. Flugge shell model is applied for mathematical 
modeling of structure. Based on energy method and Hamilton’s principal, the motion equations are derived. 
Differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of 
system. The effects of different parameters such as volume percent of CNTs, elastic medium, boundary 
condition and geometrical parameters are discussed. 
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1. Introduction 
 

Recently, CNTs are used as a reinforcing constituent instead of conventional fibers in 

composite structures due to their special material properties. Therefore, the introduction of CNTs 

into a polymer matrix may greatly improve mechanical properties of the resulting nanocomposites, 

such as tensile strength and elastic modulus. However, these structures have wide application in 

many micro-electro-mechanical systems (MEMS) and the mechanical analyses of them are 

essential. 

The mechanical analysis of nano-composite structures has attracted considerable attention in 

recent years. 3D free vibration analysis of homogenous isotropic circular cylindrical shells was 

investigated by Khalili et al. (2012) using refined higher-order shear deformation theory (RHOST). 

Nascimbene (2013) studied optimization and advanced numerical computation of a sail 

fiber-reinforced composite model to increase the performance of a yacht under wind action. Leiw 

et al. (2014) used meshless approach for postbuckling analysis of CNT-reinforced-FG (CNTR-FG) 

cylindrical panels based on the arc-length method combined with the modified Newton–Raphson 

method. Based on kp-Ritz method and the Eshelby-Mori-Tanaka approach, Zhang et al. (2014a) 

presented large deflection geometrically nonlinear behaviour of CNTR-FG cylindrical panels. Lei 

et al. (2014) studied dynamic stability analysis of CNTR-FG cylindrical panels based on the 

Eshelby–Mori–Tanaka approach and the first-order shear deformation theory. Zhang et al. (2014b) 

                                                      
Corresponding author, Dr., E-mail: a_majidian@yahoo.com 



 

 

 

 

 

 

M. Ghaitani and A. Majidian 

investigated free vibration of CNTR-FG cylindrical panels based on the first-order shear 

deformation shell theory. Stresses due to bending behavior of functionally graded carbon 

nanotube-reinforced (FGCNTR) open cylindrical shells subjected to mechanical loads was studied 

by Jafari Mehrabadi and Sobhani Aragh (2014). Nonlocal nonlinear buckling analysis of 

embedded polymeric temperature-dependent microplates resting on an elastic matrix as orthotropic 

temperature-dependent elastomeric medium was investigated by Kolahchi et al. (2015). Thomas 

and Roy (2016) presented vibration analysis of functionally graded CNTR-FG shell structures 

using an eight-noded shell element considering transverse shear effect according to Mindlin’s 

hypothesis. Kolahchi et al. (2016) investigated nonlinear dynamic stability analysis of embedded 

temperature-dependent viscoelastic plates reinforced by single-walled carbon nanotubes 

(SWCNTs). 

None of the above researchers have considered instability of structures induced by internal 

fluid. In the field of cylindrical shell conveying fluid, Amabili et al. (2002, 2009) presented 

stability of circular cylindrical shells containing inviscid, incompressible fluid with and without 

considering geometric imperfections. Both a Finite Volume and a Discrete Vortex technique to 

solve the unsteady Navier-Stokes equations were employed by Morgenthal and McRobie (2002) to 

study the air flow around long-span bridge decks. A formulation, based on the semi-analytical 

finite element method, was proposed by Senthil Kumar and Ganesan (2008) for elastic conical 

shells conveying fluids. A fluid–structure interaction model for stability analysis of shells 

conveying fluid was developed by Firouz-Abadi et al. (2010) using the linearized Bernoulli 

equation for unsteady pressure on the fluid–shell interface. The unsteady fluid-structure interaction 

(FSI) problems with large structural displacement were solved by HE (2015) using partitioned 

solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. Nonlinear 

theoretical model for cantilevered micropipes/microbeams conveying fluid was developed by Hu 

et al. (2016) to explore the possible size-dependent nonlinear responses based on the modified 

couple stress theory. Monte Carlo simulation method was used by Alizadeh et al. (2016) in 

conjunction with finite elements for probabilistic self-excited vibration and stability analyses of 

pipes conveying fluid. The flow-induced vibration characteristics (natural frequency and critical 

flow velocity) of FGM cylindrical shells partially resting on elastic foundation were investigated 

by Park and Kim (2016) using an analytical method. 

In the present study, nonlinear vibration and instability of FG-CNT-reinforced pipes resting on 

orthotropic Pasternak medium are investigated. The pipe is conveying viscous fluid. The nonlinear 

governing equations are obtained based on Hamilton's principal along with Flugge shell theory. 

DQM is applied for obtaining the frequency and critical fluid velocity of the pipe. The effects of 

the volume percent of CNTs, Pasternak medium, CNTs distribution type and boundary conditions 

on the frequency and critical fluid velocity of the pipe are disused in detail. 

 

 

2. Formulation 
 

2.1 Mixture rule 
 

As shown in Fig. 1, a FG-CNT-reinforced (FG-CNTR) cylindrical shell with length L  and 

thickness h is considered. The CNTRC cylindrical shell is surrounded by an orthotropic Pasternak 

medium which is simulated by WK , ξgK  and ηgK  correspond Winkler foundation parameter, 

shear foundation parameters in ξ and η directions, respectively. 
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Fig. 1 A schematic figure of FG-CNT-reinforced pipe embedded in elastic medium (a) UD, (b) FGA, (c) 

FGO and (d) FGX 
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Four types of CNTRC cylindrical shell namely as uniform distribution (UD) along with three 

types of FG distributions (FGA, FGO, FGX) of CNTs along the thickness direction of a CNTRC 

cylindrical shell are considered. In order to obtain the equivalent material properties two-phase 

nanocomposites (i.e., polymer as matrix and CNT as reinforcer), the rule of mixture is applied. 

According to mixture rule, the effective Young and shear moduli of CNTRC cylindrical shell can 

be written as (Zhang et al. 2014a) 
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where 
11rE , 

22rE  and 
11rG indicate the Young’s moduli and shear modulus of SWCNTs, 

respectively, and mE , mG  represent the corresponding properties of the isotropic matrix. With 

the knowledge that load transfer between the nanotube and polymeric phases is less than perfect 

(e.g. the surface effects, strain gradients effects, intermolecular coupled stress effects, etc.), we 

introduced j  (j= 1, 2, 3) into Eqs. (1(a))- (1(c)) to consider the size-dependent material 

properties. j  is called the CNT efficiency parameter which will be determined later by 

matching the elastic modulus of CNTRCs observed from the MD simulation results with the 

numerical results obtained from the rule of mixture. The scale-dependent material properties, j  

(j= 1, 2, 3), can be calculated by matching the effective properties of CNTRC obtained from the 

MD simulations with those from the rule of mixture. CNTV  and mV  are the volume fractions of 

the CNTs and matrix, respectively, which the sum of them equals to unity. The uniform and three 

types of FG distributions of the CNTs along the thickness direction of the CNTRC cylindrical 

shells take the following forms 
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where CNTw , m  and CNT are the mass fraction of the CNT, the densities of the matrix and 

CNT, respectively. Similarly, the thermal expansion coefficients in the longitudinal and transverse 

directions respectively (
11  and 

22 ), Poisson’s ratio (
12 ) and the density (   ) of the CNTRC 

cylindrical shell can be determined as 

,,12
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where 12r and m are Poisson’s ratios of the CNT and matrix, respectively. In addition, 11r , 

22r  and m  are the thermal expansion coefficients of the CNT and matrix, respectively. It 

should be noted that 12  is assumed as constant over the thickness of the FG-CNTRC cylindrical 

shells. 

 

2.2 Basic equations 
 

Based on Flugge shell theory, the displacement field can be expressed as (Amabili 2008) 
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where ( zx uuu ,,  ) denote the displacement components at an arbitrary point ( zx ,, ) in the pipe, 

and ( wvu ,, ) are the displacement of a material point at ( ,x ) on the mid-plane (i.e., 0z ) of 

the pipe along the x-,  -, and z-directions, respectively..  

The von Kármán strains associated with the above displacement field can be expressed in the 

following form 
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where
 

),(  xx are the normal strain components and )(  x are the shear strain components. 

The constitutive equation for stresses σ  and strains ε  matrix in thermal environment may be 

written as follows 
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2.3 Energy method 
 

The total potential energy,V , of the FG pipe is the sum of strain energy, U , kinetic energy, K , 

and the work done by the elasomeric medium, W .  

The strain energy can be written as 
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Combining of Eqs. (5)-(10) and (12) yields 
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where the stress resultant-displacement relations can be written as 
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Substituting Eqs. (9)-(12) into Eqs. (15) and (16), the stress resultant-displacement relations 

can be obtained as follow 
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The kinetic energy of system may be written as 
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The external work due to Pasternak medium and fluid can be written as 

  ,
0

 

L

ElasticFluid wdxPPW

                        (23)

 

 

2.4 Fluid flow work 
 

Consider the flow of fluid in a FG pipe in which the flow is assumed to be axially symmetric, 

Newtonian, laminar and fully developed. The basic momentum governing equation of the flow 

simplifies to (Wang and Ni 2009) 
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where b  and P are fluid mass density and flow fluid pressure, respectively. The fluid force 

acted on the FG pipe can be calculated from Eq. (24). Since the velocity and acceleration of the 

pipe and fluid at the point of contact between them are equal (Wang and Ni 2009), we have 

,
dt

dw
vr 

                               (25)
 

where 

,
x

v
tdt

d
x










                          (26)
 

where xv is the mean flow velocity. In Eq. (24), shear stress ( ) is dependent to viscosity   

which can be expressed as follows 
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Finally, using Eqs. (25)-(29) and combination with Eq. (24), the fluid flow work may be written 

as 
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where f  is density of fluid. 

2.5 Orthotropic Pasternak foundation 
  

The external force of orthotropic Pasternak medium can be expressed as (Kutlu and Omurtag 

2012) 
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where WK , gK  and gK  are spring constant of Winkler type, shear constant in   and   

directions, respectively; angle θ describes the local ξ direction of orthotropic foundation with 

respect to the global x-axis of the pipe.  

 

2.6 Governing equations 
 

The governing equations can be derived by Hamilton's principal as follows 
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Substituting Eqs. (17), (22) and (23) into Eq. (32) yields the following governing equations 
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Substituting Eqs. (17) and (18) into Eqs. (33) to (35), the governing equations can be written as 

follow 
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3. DQM 
  

In this method, the differential equations are changed into a first order algebraic equation by 

employing appropriate weighting coefficients. Because weighting coefficients do not relate to any 
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special problem and only depend on the grid spacing. In other words, the partial derivatives of a 

function (say w  here) are approximated with respect to specific variables (say x and  ), at a 

discontinuous point in a defined domain as a set of linear weighting coefficients and the amount 

represented by the function itself at that point and other points throughout the domain. The 

approximation of the 
thn  and 

thm derivatives function with respect to x and y , respectively may 

be expressed in general form as (Shu and Du 1997) 
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where xN and N , denotes the number of points in x  and   directions, ),( xf is the 

function and jlik BA , are the weighting coefficients defined as 
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where M and P are Lagrangian operators defined as 
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The weighting coefficients for the second, third and fourth derivatives are determined via 

matrix multiplication 
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Using the following rule, the distribution of grid points in domain is calculated as 
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The solution of the motion equations can be assumed as follows 
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where fh
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   and 

f

t E

h
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  are the dimensionless natural frequency and dimensionless 

time. Substituting Eqs. (39) and (44)-(46) into the governing equations turns it into a set of 

algebraic equations expressed as 
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(49)

 

Finally, the governing equations (i.e., Eqs. (47)- (49)) in matrix form can be expressed as 

  ],0[][][][ 2  dMKK NLL 
                      (50)

 

where 
Twvud ][][  ;  LK  and  NLK  are respectively, linear and nonlinear stiffness 

matrixes; and  M  is the mass matrix. 
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However, using eigenvalue problem, the frequencies obtained from the solution of Eq. (50) are 

complex due to the damping existed in the presence of the viscous fluid flow. Hence, the results 

are containing two real and imaginary parts. The real part is corresponding to the system damping, 

and the imaginary part representing the system natural frequencies. 

 

 

4. Numerical results and discussion 
 

In this section, the effects of different parameters such as volume percent of CNTs, distribution 

type of CNTs, elastic medium and geometrical parameters of shell are shown on the frequency and 

critical fluid velocity of structure. For this purpose, a poly ethylene (PE) pipe with Yong modulus 

of GPaE 125 , poison’s ratio of 3.0  and density of 3/45.1 mKg  is considered. In 

addition, the material properties of CNTs are chosen from Zhang et al. (2014b). The pipe is 

considered with three kinds of boundary conditions: simply supported at both ends (SS) or 

clamped (CC), and one end simply supported and another clamped (SC). 

Figs. 2 and 3 show the effect of volume percent of CNTs on the dimensionless natural 

frequency ( Im( / )R E   ) and damping ( )Re( ) of pipe versus dimensionless flow velocity 

(
xf vCV 11/ ), respectively. As can be seen, )Im(  

decreases with increasing
 V , while the 

)Re( remains zero. These imply that the system is stable. When the natural frequency becomes 

zero, critical velocity is reached, which the system loses its stability due to the divergence via a 

pitchfork bifurcation. Hence, the eigen-frequencies have the positive real parts, which the system 

becomes unstable. In this state, both real and imaginary parts of frequency become zero at the 

same point. Therefore, with increasing flow velocity, system stability decreases and became 

susceptible to buckling. It can be observed that, the )Im( of system increases with increasing 

volume percent of CNTs due to increase in the stability of structure. 

 

 

Fig. 2 Effects of CNT volume percent on the dimension frequency ( )Im( ) versus dimension flow 

velocity 
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Fig. 3 Effects of CNT volume percent on the dimension frequency ( )Re( ) versus dimension flow 

velocity 

 

 

 

Fig. 4 Effects of CNT distribution type on the dimension frequency ( )Im( ) versus dimension flow 

velocity 

 

 

Depicted in Figs. 4 and 5 is the non-dimensional frequency and damping for the UD and three 

types of FG CNTRC cylindrical shell versus dimensionless flow velocity. It should be noted that 

the mass fraction ( CNTw ) of the UD and FG distribution of CNTs in polymer are considered equal 

for the purpose of comparisons. As can be seen, the frequency and critical fluid velocity of FGA- 
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and FGO- CNTRC cylindrical shell are smaller than those of UD-CNTRC cylindrical shell while 

the FGX- CNTRC cylindrical shell has higher frequency and critical fluid velocity with respect to 

three other cases. It is due to the fact that the stiffness of CNTRC cylindrical shell changes with 

the form of CNT distribution in matrix. However, it can be concluded that CNT distribution close 

to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the 

stiffness of plates. 

The dimensionless natural frequency and damping of the system are demonstrated in Figs. 6 

and 7 for different elastic mediums. In this figure, four cases are considered as follows: 

Case 1: mNKmNKmNK ggW /0,/0,/0 3    indicating without elastic medium. 

Case 2: mNKmNKmNK ggW /0,/0,/4.41 3    indicating Winkler medium. 

Case 3: mNKmNKmNK ggW /14.4,/14.4,/4.41 3  
indicating Pasternak medium. 

Case 4: 
0

3

45,/14.4

,/4.41,/4.41









mNK

mNKmNK

g

gW
indicating orthotropic Pasternak medium. 

As can be seen, considering elastic medium increases natural frequency and critical fluid 

velocity of the system. It is due to the fact that considering elastic medium leads to stiffer structure. 

Furthermore, the effect of the Pasternak-type is higher than the Winkler-type on the natural 

frequency and critical fluid velocity of the pipe. It is perhaps due to the fact that the Winkler-type 

is capable to describe just normal load of the elastic medium while the Pasternak-type describes 

both transverse shear and normal loads of the elastic medium.  

The effect of the different boundary conditions on the dimensionless natural frequency and 

damping of the pipe is depicted in Figs. 8 and 9. As can be seen, the natural frequency and critical 

fluid velocity of the pipe are maximum and minimum for CC and SS boundary conditions, 

respectively. It is because that considering CC boundary condition leads harder structure. 

 

 

 

Fig. 5 Effects of CNT distribution type on the dimension frequency ( )Re( ) versus dimension flow 

velocity 
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Fig. 6 Effects of elastic medium on the dimension frequency ( )Im( ) versus dimension flow velocity 

 

 

 

Fig. 7 Effects of boundary conditions on the dimension frequency ( )Im( ) versus dimension flow 

velocity 

 

 

5. Conclusions 
 

Internal fluid induced nonlinear vibration and instability of FG-CNT-reinforced pipe were 

presented in this study based on Flugge shell theory. CNT distributions in polymer were 
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properties of FG-CNTRC cylindrical shell. The surrounding elastic medium was simulated by 

orthotropic Pasternak foundation. Based on energy method and Hamilton's principle, the motion 

equations were derived. DQM is applied for obtaining the frequency and critical fluid velocity of 

system so that the effects of the volume percent of CNTs, elastic medium, distribution types of 

CNTs and boundary conditions were considered. Results indicate that considering elastic medium 

decreases frequency and critical fluid velocity of the FG-CNTRC shell. It was also concluded that 

frequency and critical fluid velocity get larger as the CNT volume fraction increases. Furthermore, 

the highest and lowest frequency and critical fluid velocity were respectively obtained for FGX- 

and FGO-CNTRC cylindrical shell. 
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