
 
 
 
 
 
 
 
 

Wind and Structures, Vol. 23, No. 6 (2016) 595-613 
DOI: http://dx.doi.org/10.12989/was.2016.23.6.595                                                595 

Copyright © 2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=was&subpage=8         ISSN: 1226-6116 (Print), 1598-6225 (Online) 
 
 

 

 
 
 
 

Galloping of steepled main cables in long-span suspension 
bridges during construction 

 

Yonghui An1a, Chaoqun Wang2b, Shengli Li2 and Dongwei Wang2c 
 

1Department of Civil Engineering, State Key Laboratory of Coastal and Offshore Engineering,  
State Key Laboratory of Structural Analyses for Industrial Equipment,  

Dalian University of technology, Dalian, China 
2School of Civil Engineering, Zhengzhou University, Zhengzhou, China 

 
(Received March 29, 2016, Revised October 2, 2016, Accepted October 25, 2016) 

 
Abstract.    Large amplitude oscillation of steepled main cables usually presents during construction of a 
long-span bridge. To study this phenomenon, six typical main cables with different cross sections during 
construction are investigated. Two main foci have been conducted. Firstly, aerodynamic coefficients of a 
main cable are obtained and compared through simulation and wind tunnel test: (1) to ensure the simulation 
accuracy, influences of the numerical model’s grid size, and the jaggy edges of main cable’s cross section on 
main cable’s aerodynamic coefficients are investigated; (2) aerodynamic coefficients of main cables at 
different wind attack angles are obtained based on the wind tunnel test in which the experimental model is 
made by rigid plastic using the 3D Printing Technology; (3) then numerical results are compared with wind 
tunnel test results, and they are in good agreement. Secondly, aerodynamic coefficients of the six main 
cables at different wind attack angles are obtained through numerical simulation. Then Den Hartog criterion 
is used to analyze the transverse galloping of main cables during construction. Results show all the six main 
cables may undergo galloping, which may be an important reason for the large amplitude oscillation of 
steepled main cables during construction. The flow structures around the main cables indicate that the 
characteristic of the airflow trajectory over a steepled main cable may play an important role in the galloping 
generation. Engineers should take some effective measures to control this harmful phenomenon due to the 
big possibility of the onset of galloping during the construction period. 
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1. Introduction 
 

Large-scale bridges play an important role in modern economies (An, Spencer et al. 2015), and 
structural safety is a major concern for the public (An, Bartlomiej et al. 2016). The wind effects on 
bridges are more obvious with the increase in the bridge span (Wang, Li et al. 2011, Wang, Li et al. 
2013). The main cables of a long-span suspension bridge usually show hexagon cross section after 
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construction; generally, there are two methods to conduct the construction of the main cables: the 
steepled main cables (Li and Ou 2009) in which two edges of the hexagon cross section are 
vertical, and the flat-topped main cables in which two edges of the hexagon cross section are 
horizontal. Researchers have found that steepled main cables of long-span suspension bridges can 
suffer galloping, which can seriously affect the safety and progress of construction during the 
construction period (Li and Ou 2009). Galloping is a relevant issue during both the design and the 
construction stages of engineering structures. Galloping is a type of crosswind vibration that often 
occurs in slender structures with non-circular section shapes, for example, the inclined square 
prism (Hu, Tse et al. 2015a, Tse, Hu et al. 2014), the iced conductor (Den Hartog 1932), and the 
main cable during construction (Li and Ou 2009). When wind speed reaches a critical value, the 
effects of negative aerodynamic damping counteract the effects of inherent damping on the 
structure; the structure thus continually absorbs energy from the wind field (Den Hartog 1932). 
Therefore, the amplitude of galloping is characterized as unstable. In addition, the amplitude of 
galloping is usually very large, and it can lead to structural damage or failure (Wang 1996).  

Den Hartog (1932), one of the pioneers in the field, established a criterion based on 
quasi-steady theory when studying the transverse galloping of the iced transmission line, which 
can be used to predict whether a structure has the potential to gallop. Then, researchers have 
conducted a series of studies on the onset of galloping in various types of engineering structures 
based on the classical criterion (Li and Ou 2009, Cai, Yan et al. 2015). Further researches have 
been conducted to study the amplitude of galloping, and efficient control measures have been 
proposed. Hu et al. (2012) first obtained the aerodynamic coefficients of the iced conductor by 
wind tunnel test and then studied the galloping amplitude of various types of iced conductors via 
time histories analysis based on the obtained aerodynamic coefficients. Furthermore, Yan, Hu et al. 
(2011) invented a damper that could control the transverse galloping of the iced conductor. 

The aerodynamic characteristics of slender structures have been found to play an important role 
in the onset and the amplitude of galloping, and the aerodynamic characteristics greatly depend on 
the cross-sectional shape of the slender structures (Cai, Yan et al. 2015). The influences of 
changing the cross-sectional shape on the galloping performances of slender structures have been 
widely investigated (Ibarra, Sorribes et al. 2014). For example, a D-section prism with the circular 
surface facing the flow condition cannot gallop in any flow condition (Païdoussis, Price et al. 
2010). For a circular cylinder fitted with a splitter plate, the galloping response varies with the 
different shapes of the splitter plate (Assi and Bearman 2015). Accurate aerodynamic coefficients 
of one slender structure at different wind attack angles are the key parameters for examining 
galloping (Macdonald and Larose 2007). In general, researchers obtained the aerodynamic 
coefficients through the wind tunnel test (Hu, Tse et al. 2015b, Xin, Li et al. 2012), numerical 
simulation (Li, Wang et al. 2015b, Rezvani and Mohebbi 2014), or the combination of the two 
methods (Defraeye et al. 2010).  

Li and Ou (2009) obtained the aerodynamic coefficients of steepled main cables for long-span 
suspension bridges using a simple model based on the Computational Fluid Dynamics (CFD) 
simulation and predicted whether the main cable in different construction periods has the potential 
to gallop. In engineering, the cross-sections of the main cables during the construction period have 
jaggy edges, which were ignored in the study of Li and Ou (2009). However, the numerical result 
may be significantly influenced by the grid size of the numerical model (Blocken and Toparlar 
2015). Thus, the numerical model must be optimized to ensure the accuracy and the reliability of 
the aerodynamic coefficients. Furthermore, it is important to conduct the corresponding wind 
tunnel test for further validation. 
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The purpose of the present paper is to investigate the galloping of steepled main cables in 
different construction periods more accurately. Both the CFD simulations and wind tunnel tests 
have been conducted. First, the aerodynamic coefficients of one main cable at different wind attack 
angles are obtained on the basis of the wind tunnel test. Then, to ensure the accuracy of the results, 
the influences of the numerical model’s grid size and the jaggy edges of the main cable’s cross 
section on the numerical result are studied. The numerical results are compared with the 
experimental results. Finally, the transverse galloping of the main cables during construction are 
studied by the CFD simulation based on the Den Hartog criterion. 

 
 

2. Models and theory 
 
2.1 Models 
 
The research objects in this paper are based on the design parameters of the Xihoumen Bridge, 

which has a main span of 1650 m and has been observed to undergo large amplitude oscillation 
during the construction of the main cables. Fig. 1 illustrates the designed cross-section of the main 
cable (Li and Ou 2009); the numbers in the figure indicate the construction sequence of the 169 
steel ropes. To investigate the galloping of the main cable in different construction periods, six 
cables that refer to six typical construction periods (Fig. 2) are selected as research objects. The 
cable’s six cross-sections are named main cables 1# to 6#, respectively, as shown in Fig. 2. 
 

Fig. 1 The designed cross-section of the steepled main cable 
 

 
            (a) 1#     (b) 2#        (c) 3#       (d) 4#        (e) 5#        (f) 6# 

Fig. 2 Main cables referring to the six typical construction periods in this work 
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Fig. 5 Numerical model of the main cable 1# 
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where ρ is the air density and it is 1.225 kg/m3, U is the wind velocity and it is 10 m/s, and H and 
B are the cable’s height and width in the wind axes, respectively (Fig. 4).  

The classical criterion established by Den Hartog (1932) is adopted to study the onset of 
galloping in this paper. The criterion indicates that galloping may occur when the aerodynamic 
characteristic of a slender structure meets the following formula 

L
D 0

C
A C




  


                           (3) 

where A is the Den Hartog coefficient. 
 
 
3. Comparison between the experiment and the numerical simulation 

 
To ensure accuracy of the numerical results, the influences of the numerical model’s grid size, 

and the jaggy edges of the main cable’s cross section on the main cable’s aerodynamic coefficients 
are investigated. The aerodynamic coefficients of main cable 1# are obtained based on the 
numerical simulation and the wind tunnel test, respectively, for comparison. 

 
3.1 Numerical simulation  
 
A 2D numerical model is established in the CFD software ANSYS FLUENT to obtain the 

aerodynamic coefficients of the main cable 1#. To maintain consistency, the scale ratio of the 
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(a) (b) 

Fig. 10 Aerodynamic coefficients of main cables 1# and 7# 
 
 

(a) (b) 

Fig. 11 Aerodynamic coefficients of main cables 3# and 8# 
 
 

(a) (b) 

Fig. 12 Aerodynamic coefficients of main cables 6# and 9# 
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Table 1 Dimension parameters of the experimental model 

Parameter Value 

Scale Ratio 1:4 

Length L (mm) 1000 

Width B (mm) 120 

Height H (mm) 45.5 

Length-width ratio 8.33 

 
 
 

3.2 Experiment 
 

The wind tunnel test was conducted in the high-speed test section of the DUT-1 wind tunnel at 
the Dalian University of Technology, China. The size of the wind tunnel test section is 18 m×3 
m×2.5 m (length × width × height). To ensure the quantity of the wind flow, the distance between 
the experimental model and the wind inlet is 2/3 of the length of the test section. The turbulent 
intensity is no more than 0.8% in the wind tunnel. Tests are performed under a quasi-laminar flow 
in the rear part of the test section, and the wind attack angles range from -5° to 5° with an interval 
of 1°. The blockage ratio of the model in the wind tunnel is approximately 1.6%, which is much 
lower than the critical value of 5% (Holmes 2015). The speed inhomogeneity of the flow field in 
the wind tunnel is no more than 1.0% (accounting for more than 75% of the total deck section 
area), the directional inhomogeneity is no more than 1°, and the average flow direction is no more 
than 1°. The flow quality is high. The Reynolds number of the main cable model is the same with 
the corresponding numerical model. Considering the complex shape of the cross-section, the 
experimental model is made using 3D printing technology with rigid plastic. The dimension 
parameters of the experimental model are determined as shown in Table 1. 

Forces are measured by a high-frequency force balance equipped on the bottom board of the 
wind tunnel, and the sampling frequency and duration are 100 Hz and 40 s, respectively. The test 
wind speed is 10 m/s. To reduce the effect due to the upper end, a rectangular plate is hung over 
the model as shown in Fig. 13. The feature dimensions of the end plate (Fig. 13) are about 10 
times of those of the model cross-section to avoid three-dimensional effects at the tip of the model. 
The plate should be horizontally hung over the model and very close to the model top. In addition, 
the wind speeds of 10 m/s, 13.8 m/s and 15 m/s are adopted to conduct the wind tunnel test, and 
the test results based on the three wind speeds are very close. Thus, the test results on the Reynolds 
number in this study are dependable. The depth of wall boundary layer in the cross-section of the 
wind tunnel has been taken into account in the test. Many experiments for models with different 
cross-sections have been conducted to study the influence of the wall boundary layer on the 
measured forces of the model. Results indicate that for such a model with a constant section and a 
length of 1m, the forces measured by the balance should be multiplied by a reduction factor of 0.9; 
and the forces have been multiplied by such a reduction factor in this paper. 
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Galloping of steepled main cables in long-span suspension bridges during construction 

 

(a) (b) 

Fig. 17 Drag coefficients of the main cables with consideration of the jaggy edges of main cables’ cross 
sections 

 
 

(a) (b) 

Fig. 18 Lift coefficients of the main cables with consideration of the jaggy edges of main cables’ cross 
sections 

 
 

4. Galloping analysis 
 
The comparison above shows that both wind tunnel test and numerical simulation can be used 

to study the galloping of main cables. With consideration of the high cost of the wind tunnel test, 
the aerodynamic coefficients of main cables 1#~6# are determined by numerical simulation as 
shown in Figs. 17 and 18. The results show that aerodynamic coefficients of the main cable vary 
with the progress of the construction. Fig. 18 indicates that the lift coefficients of all the main 
cables decrease in certain range of the wind attack angles. 

The Den Hartog coefficients are obtained by Eq. (3) to predict the onset of galloping. In general, 
different fitting equations (e.g. polynomials with different orders) can lead to very different results 
of the Den Hartog coefficient (Pagnini et al. 2016, Mannini, Marra et al. 2014). In consideration of 
the potential error caused by the fitting equations, taking main cable 1# for example, polynomials 
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with different orders are chosen for the fitting of the curves of the force coefficients versus the 
attack angle (Fig. 19). As for the drag coefficients, Fig. 19 shows that the 7th and 9th order 
polynomials appear slightly different at the two ends and they are almost overlapped around α = 0°. 
As for the lift coefficients, the 5th, 7th and 9th order polynomials are almost overlapped. According 
to Eq. (3), the first derivative of the lift coefficient with respect to the attack angle is very 
important to the result of Den Hartog coefficient. Fig. 20 shows the derivative of the lift 
coefficients with respect to the attack angle, and Den Hartog coefficients corresponding to the 
force coefficient curves fitted by polynomials for main cable 1#. The 5th, 7th and 9th order 
polynomials appear slightly different around α = 0°, but the 9th order polynomial shows significant 
difference with the 5th and 7th order polynomials at the two ends. As is known, high order 
polynomials may lead to very scattered results when fitting a curve if the given sample points are 
not sufficient, that is why the 9th order polynomial shows significant difference with the 5th and 7th 
order polynomials at the two ends. In conclusion, the 5th and 7th order polynomials are appropriate 
for the fitting of the curves of force coefficients versus the attack angles. 

 
 

(a) Drag coefficients (b) Lift coefficients 

Fig. 19 Polynomial fitting of force coefficients using different polynomial orders for main cable 1# 
 

(a) Derivative of the lift coefficients with respect to 
the attack angle 

(b) Den Hartog coefficients 

Fig. 20 Derivative of the lift coefficients with respect to the attack angle and Den Hartog coefficients 
corresponding to the force coefficient curves fitted by polynomials for main cable 1# 
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Fig. 21 Den Hartog coefficients corresponding to force coefficient curves fitted by 7th order polynomial 
for the six main cables 

 
 
 
Den Hartog coefficients corresponding to force coefficient curves fitted by 7th order polynomial 

for the six main cables are shown in Fig. 21. In addition, the main cables with negative Den 
Hartog coefficients are selected and shown in Table 2. It can be seen form Table 2 that all the main 
cables have negative Den Hartog coefficients, and this indicates these cables may suffer galloping. 
The number of wind attack angles that correspond to the negative Den Hartog coefficients presents 
no obvious trend with the progress of the construction (for comparison, only integers of the wind 
attack angles are shown). Therefore, there is no obvious difference in the galloping probabilities of 
different construction stages. 

Researchers have investigated the galloping generation mechanism by experiment (Kim and 
Kim 2014) and simulation (Tang, Zheng et al. 2015), and these studies are based on dynamic 
models or aeroelastic models. In this paper, steady models are adopted in numerical simulation, 
thus the flows are steady. 

 
 
 

Table 2 Cases with negative Den Hartog coefficients 

Main cable 
Wind attack angles that correspond to the 

negative Den Hartog coefficients 

Number of the wind attack angles that 
correspond to the negative Den Hartog 

coefficients 

1# -1°~5° 7 

2# 5° 1 

3# 1°~4° 4 

4# -5°~5° 11 

5# -5°~-4° 2 

6# 4°~5° 2 
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Table 3 Galloping performances and flow characteristics for main cables 1#~6# 

Main cable Galloping performance 
Flow characteristic over the main 

cable (see Fig. 22) 

1# 
+4° galloping no reattachment 
-4° no galloping reattachment 

2# 
+4° no galloping reattachment 

-4° no galloping reattachment 

3# 
+4° galloping no reattachment 

-4° no galloping reattachment 

4# 
+4° galloping no reattachment 

-4° galloping no reattachment 

5# 
+4° no galloping no reattachment 

-4° galloping no reattachment 

6# 
+4° galloping no reattachment 

-4° no galloping reattachment 

 
 
As is known, the galloping generation is connected to the fluid dynamics around a model. To 

study the galloping generation mechanism, the flow structures around the main cables are 
extracted from the numerical results. For instance, the flow characteristics of the six main cables 
under the wind attack angles -4° and +4° are presented in terms of a velocity vector fields (Fig. 22). 
According to Fig. 22, for some cases (e.g., main cable 1# under wind attack angle +4°), the air 
directly bypass over the main cables at the windward side with no apparent reattachment 
phenomenon; but for the other cases (e.g., main cable 2# under wind attack angle -4°), the air 
bypasses over the main cables at the windward side and then reattaches the main cables. Galloping 
performances and flow characteristics over main cables 1#~6# for the cases in Fig. 22 are shown 
in Table 3. There is an obvious rule in Table 3: the air bypasses over a main cable at the windward 
side and then reattaches the main cable if the main cable has the potential to gallop under a wind 
attack angle, on the contrary, the air directly bypasses over a main cable at the windward side with 
no apparent reattachment phenomenon if the main cable has no potential to gallop under a wind 
attack angle. This rule works for almost all the 12 cases (except for main cable 5# under wind 
attack angle +4°) of the six main cables under the wind attack angles -4° and +4°. The Den Hartog 
coefficient of main cable 5# under wind attack angle +4° is close to 0. In consideration of 
calculation error of the Den Hartog coefficient, it seems that the rule mentioned above may reveal 
the galloping generation mechanism for the steepled main cables. At least, the rule indicates that 
the characteristic of the airflow trajectory over a steepled main cable may play an important role in 
the galloping generation of the steepled main cables. 

According to Den Hartog criterion, negative aerodynamic damping is a necessary condition for 
the onset of galloping. When wind speed reaches a critical value, the effect of negative 
aerodynamic damping counteracts the effect of inherent damping of the structure, and the structure 
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continually absorbs energy from the wind field. Therefore, the amplitude of galloping increases 
with time; i.e., galloping occurs. Galloping can be prevented by increasing the inherent damping of 
the main cables in construction (e.g., utilization of vibration control ropes), which is an useful 
suggestion for engineers. 

 
 

5. Conclusions  
 
Both the CFD simulations and wind tunnel tests are used to study the galloping of steepled 

main cables for long-span suspension bridges during construction. To ensure accuracy of the 
results, the influences of the numerical model’s grid size and the jaggy edges of the main cable’s 
cross section on the numerical results are examined; and it is concluded that the numerical results 
are influenced by the jaggy edges of the main cable’s cross section, and the influence cannot be 
ignored in the study of the onset of galloping based on the Den Hartog criterion. Experimental 
results of the main cable’s aerodynamic coefficients are close to the corresponding numerical 
results, and both experimental and numerical studies reach the same conclusion on the onset of 
galloping. Numerical results show that all the six main cables in the different construction periods 
may suffer galloping based on the Den Hartog criterion, which is a possible explanation for the 
phenomenon of the large amplitude oscillation of steepled main cables during construction. 
Engineers should take some effective measures to control this harmful phenomenon due to the big 
possibility of the onset of the galloping during the construction period. 
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